首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inter-generation correlations between F2-F3, F2-F4 and F3-F4 in six crosses of chickpea were calculated by using individual plant/progeny means. In general, correlation values in case of plant height, seeds per pod and 100-seed weight were higher between F3 and F4 than those between F2 and F3 and F2 and F4. However, inter-generation correlations were mostly non-significant in case of pods per plant and grain yield. These results clearly show that selection in F3 can be fruitful for seeds per pod and 100-seed weight. However, selection for pods per plant and grain yield in early generations may not show any relationship with later generation performance for these traits.  相似文献   

2.
Chickpea (Cicer arietinum L.) is normally grown as a spring-sown rainfed crop in the Mediterranean region in areas receiving more than 400 mm of rainfall annually. Because of large fluctuations in the total amount and distribution of the rainfall, the crop occasionally suffers from extreme terminal drought. Breeders face a dilemma in selecting materials for both normal moisture regimes and drought conditions because it is often difficult to conduct two parallel breeding programmes. This study examines the transferability of the selection indices (developed as a multiple regression of yield on most influential traits) from one environment to another with the objective of selecting an appropriate environment for the development of cultivars adapted to both environments. Experiments were conducted for 3 years (1989-1991) during the spring at two locations with normal moisture regime (hereafter referred to as drought-free) in Syria and Lebanon and one drought-prone location in Syria. Each year, 192-240 newly bred lines were evaluated in replicated trials for seed yield, days to flowering and maturity, plant height and 100-seed weight. Correlation analyses showed that increased seed size, early maturity and reduced plant height at the drought-prone location and early maturity at the drought-free location were of prime importance in increasing seed yield. Regression equations developed to predict seed yield showed that days to flower and maturity accounted from 67-80 % variation in seed yield at the dry location, whereas at the drought-free locations the contribution of days to maturity was smaller except in 1991 in Lebanon. The percent success in the transferability of the selection indices from the drought-free environments to the drought-prone environment was higher than that from the drought-prone environment to the drought-free environment. These results indicate that chickpea breeding material developed under drought-free environments could be useful under drought-prone conditions. Early-maturing lines selected under normal environments would also perform well under drier conditions.  相似文献   

3.
4.
Chickpea (Cicer arietinum L.) has an indeterminate growth nature, and the plant canopy with an improved light environment during critical growth stages may increase biomass (BM) production and improve crop yield. This study examined (i) the effects of shading, light enrichment and defoliation applied at various growth stages on BM and seed yield of chickpea in northern latitudes; and (ii) the difference between cultivars with fern‐ vs. unfoliate‐leaf type in responding to the altered canopy light environments. Field studies were conducted at Saskatoon and Swift Current, Saskatchewan in 2004 and 2005. Different light environments were created by 50 % defoliation at vegetative growth and at first flower, 50 % shading from vegetative growth to first flower, and two light enrichment treatments initiated at the first flower and pod formation stages. The 50 % shade treatment prior to flowering significantly decreased harvest index (HI) and seed yield. Light enrichments increased seed yield only one of three location‐years (the fourth site excluded because of disease damage). Defoliation at vegetative growth or first flower had a marginal effect on seed yield, largely as a result of the regrowth of vegetative tissues compensating for the lost plant tissues. The cultivar CDC Yuma (fern‐leaf type) exhibited consistently greater maximum light interception (LI), cumulative intercepted radiation, HI and seed yield than the cultivar Sanford (unifoliate‐leaf type) across all location‐years. Selective use of chickpea cultivars with improved morphological traits such as fern‐leaf type will likely improve LI and increase crop yield for chickpea in northern latitudes. Moreover, optimized crop management practices should be adopted to ensure that chickpea be grown under conditions with minimum shading before flowering and optimum light environment within the canopy especially during reproductive growth period.  相似文献   

5.
The present study was conducted to investigate the genetic inheritance of morpho-physiological leaf traits in chickpea (Cicer arietinum L.). The experimental material comprised six generations, viz., two inbred parents, ‘T88’ and ‘Bold Seeded’, having contrasting leaf traits, and their derived F1, F2 and backcross of F1 to either parent (B1 and B2). The experiment was randomized complete block design with three replications. Genetic parameters were estimated by generation mean analysis using all the six generations. Data were collected on individual plants within each family just before flowering on leaflet area (LA), number of leaflets per leaf (LL), rachis length (RL), and leaflet density (LD), which was calculated as number of leaflets per unit length of rachis. A simple additive-dominance model was found to be adequate to describe the inheritance of LL and LA, while dominance × dominance (i.e. [1]) and additive × dominance (i.e. [i]) interactions were also significant for RL and LD, respectively. Improvement or seed yield per plant may result from selection for LA by improving both RL and LL. Leaflet area may be included in the ongoing selection schemes, as a supplementary trait to increase the speed of improvement in seed yield per plant. Lanceolate leaflet shape was observed to be monogenically dominant over obovate leaflet shape, and segregated independently from purple/white flower color.  相似文献   

6.
Genetic diversity estimates in Cicer using AFLP analysis   总被引:2,自引:0,他引:2  
Amplified fragment length polymorphism (AFLP) analysis was used to evaluate the genetic variation among cultivated chickpea and wild Cicer relatives. In total, 214 marker loci were assessed, of which 211 were polymorphic (98.6%) across the 95 accessions that represented 17 species of Cicer. The genetic variation within a species was highest in C. pinnatifidum followed by C. reticulatum and lowest in C. macracanthum. Three main species groups were identified by UPGMA clustering using Nei's pair‐wise distance calculations. Group I included the cultivated species C. arietinum, C. reticulatum and C. echinospermum. Within this group, C. reticulatum accessions were clustered closest to the C. arietinum cultivars ‘Lasseter’, ‘Kaniva’ and ‘Bumper’, supporting the hypothesis that C. reticulatum is the most probable progenitor of the cultivated species. Cicer bijugum, C. judaicum and C. pinnatifidum were clustered together creating group II. Group III contained all nine perennial species assessed and two annual species C. yamashitae and C. cuneatum. The genetic distance detected between group I and group III (0.13) was equivalent to the genetic distance detected between group I and group II (the primary and annual tertiary species, respectively; 0.14). This indicated that the perennial tertiary species may be as valuable for increasing variation to incorporate novel germplasm in the cultigen as the annual tertiary species.  相似文献   

7.
Genetic Analysis of Developmental Traits in Chickpea   总被引:1,自引:0,他引:1  
Chickpea (Cicer arietinum L.) is an important legume crop in India. The present study was conducted to investigate the inheritance of several developmental traits in three crosses of chickpea, viz., WFWG III’בT20’, ‘T88’בBold Seeded’, and ‘NP34’בP1528-1-1’, each having seven generations. The seven generations were P1, P2, F1, B1, B2, F2, and F3. The experimental lay-out was randomized complete block design with three replications. Data were acquired on days to flowering (DF), days to maturity (DM), plant height in cm (PH), number of primary branches (PB), and number of secondary branches (SB). Generation mean analysis was used to estimate the genetic components; narrow sense heritability was estimated using variance components; and correlation analysis to estimate correlation coefficients among different traits. Genetic differences were found in all three crosses for all traits studied. Additive, dominance, and epistatic effects were found for many traits'. Duplicate epistasis was observed for all traits except number of PB. Higher order interactions and/or linkage were detected for DM and SB. For many traits the relative magnitudes of the genetic effects differed among crosses, thus the extrapolation to other crosses may be difficult. The inheritance becomes more complex as the fate of the character is decided at a later stage in the life cycle. Positive heterosis was observed for some traits, but the exploitation of this component may not Feasible since stable male sterile lines are not available. Early maturity and high yield ‘may be selected independently because of the absence of any significant correlation between these two traits.  相似文献   

8.
Chickpea is sensitive to cold conditions (<15 °C), particularly at its reproductive phase and consequently it experiences significant decrease in the seed yield. The information about the effects of cold stress on chickpea during the seed filling phase is lacking. Moreover, the underlying metabolic reasons associated with the low temperature injury are largely unknown in the crop. Hence, the present study was undertaken with the objectives: (i) to find out the possible mechanisms leading to low temperature damage during the seed filling and (ii) to investigate the relative response of the microcarpa (Desi) and the macrocarpa (Kabuli) chickpea types along with elucidation of the possible mechanisms governing the differential cold sensitivity at this stage. At the time of initiation of the seed filling (pod size ∼1 cm), a set of plants growing under warm conditions of the glasshouse (temperature: 17/28 ± 2 °C as average night and day temperature) was subjected to cold conditions of the field (2.3/11.7 ± 2 °C as average night and day temperature), while another set was maintained under warm conditions (control). The chilling conditions resulted in the increase in electrolyte leakage, the loss of chlorophyll, the decrease in sucrose content and the reduction in water status in leaves, which occurred to a greater extent in the macrocarpa type than in the microcarpa type. The total plant weight decreased to the same level in both the chickpea types, whereas the rate and duration of the seed filling, seed size, seed weight, pods per plant and harvest index decreased greatly in the macrocarpa type. The stressed seeds of both the chickpea types experienced marked reduction in the accumulation of starch, proteins, fats, crude fibre, protein fractions (albumins, globulins, prolamins and glutelins) with a larger decrease in the macrocarpa type. The accumulation of sucrose and the activity levels of the enzymes like starch synthase, sucrose synthase and invertase decreased significantly in the seeds because of the chilling, indicating impairment in sucrose import. Minerals such as calcium, phosphorous and iron as well as several amino acids (phenylalanine, tyrosine, threonine, tryptophan, valine and histidine) were lowered significantly in the stressed seeds. These components were limited to a higher extent in the macrocarpa type indicating higher cold sensitivity of this type.  相似文献   

9.
The effect of salinity on seed germination, plant yield parameters, and plant Na, Cl and K concentrations of chickpea and lentil varieties was studied. Results showed that in both crops percentage emergence was significantly reduced by increasing NaCl levels (0–8dSm?1). From the plant growth studies it was found that differences existed among chickpea and lentil varieties in their response to NaCl application. In chickpea, the variety Mariye showed the comparatively lowest germination percentage and the lowest seedling shoot dry weight in response to salinity and was also among the two varieties which had the lowest relative plant height, shoot and root dry weight and grain yield at maturity. Similarly, variety DZ-10-16-2, which was the second best in germination percentage and the highest in terms of seedling shoot dry weight, also had the highest relative plant height, shoot and root dry weights, and grain yield at maturity. In lentil, however, such relationships were less pronounced. Chloride concentration (mg g?1) in the plant parts at salt levels other than the control was about 2–5 times that of Na. K concentration in the plants was significantly reduced by increasing NaCl levels. Chickpea was generally more sensitive to NaCl salinity than lentil. While no seeds were produced at salinity levels beyond 2dSm?1 in chickpea (no seeds were produced at this salt level in the most sensitive variety, Mariye), most lentil varieties could produce some seeds up to the highest level of NaCl application. Overall, varieties R-186 (lentil) and Mariye (chickpea) were the most sensitive of all varieties. On the other hand, lentil variety NEL-2704 and chickpea variety DZ-10-16-2 gave comparatively higher mean relative shoot and root dry weights, and grain yield, thus showing some degree of superiority over the others. The observed variations among the varieties may be useful indications for screening varieties of both crops for salt tolerance.  相似文献   

10.
11.
Root systems of various chickpea genotypes were studied over time and in diverse environments, – varying in soil bulk density, phosphorus (P) levels and moisture regimes. In a pot study comparing a range of chickpea genotypes, ICC 4958 and ICCV 94916‐4 produced higher root length density (RLD) and root dry weight (RDW), which were better expressed under P stress conditions. In two field experiments in soils of intermediate and high soil bulk densities, ICC 4958 also had greater RLD and RDW, particularly under soil moisture stress conditions. The expression of greater rooting ability of ICC 4958 under a wide range of environmental conditions confirms its suitability as a parent for genetically enhancing drought resistance and P acquisition ability. The superiority of ICC 4958 over other genotypes was for root proliferation expressed through RLD. Thus, the variation in RLD can be the most relevant root trait that reflects chickpea's potential for soil moisture or P acquisition.  相似文献   

12.
Effect of Sodium Chloride Salinity on Seedling Emergence in Chickpea   总被引:5,自引:1,他引:5  
Although laboratory (Petri dish) germination as an estimate of seed viability is a standard practice, it may not give an accurate prediction of seedling emergence in the field, especially when saline irrigation water is used. Experiments were conducted to investigate seedling emergence in two chickpea cultivars (ILC 482 and Barka local) in response to varied salinity levels and sowing depths. Seeds were sown in potted soil at a depth of 2, 4 or 6 cm. The salinity treatments were 4.6, 8.4 and 12.2 dS m–1. Tap water (0.8 dS m–1) served as the control. Depth of sowing had a significant effect on seedling emergence. Seeds sown 6 cm deep showed the lowest seedling emergence. Similarly, salinity had an adverse effect on seedling emergence. The lowest seedling emergence percentages were obtained at the highest salinity treatment (12.2 dS m–1). The interaction between salinity treatment and seeding depth was significant. Hypocotyl injury was implicated as a possible cause of poor seedling emergence in chickpea under saline water irrigation and was less severe when pre-germinated seeds were used. ILC 482 appeared to be more tolerant to salinity than Barka local, suggesting that breeding programmes involving regional exchange of germplasm may be helpful.  相似文献   

13.
Genetic control of seed weight and calcium concentration in chickpea seed   总被引:1,自引:0,他引:1  
S. Abbo    M. A. Grusak    T. Tzuk  R. Reifen 《Plant Breeding》2000,119(5):427-431
Chickpea, Cicer arietinum L., is a staple protein source in many Asian and Middle Eastern countries. Hence, the mineral content of its seed, especially that of calcium, is of nutritional importance. Calcium is transported through plants and to legume pods almost exclusively via the xylem stream, with Ca accretion in developing seeds resulting primarily from diffusion of Ca from the adjoining pod wall. Thus, for seeds of differing surface‐to‐mass ratios, Ca concentration is expected to correlate inversely with seed weight. The relationship between seed weight and Ca concentration in chickpea seeds was studied using a range of germplasm and derivatives from crosses between types differing in seed Ca concentration. Among the cultivars tested, low seed mass was associated with high Ca concentration. However, the study of hybrid progeny indicated that seed Ca content was mainly determined by genetic factors other than grain weight genes. This finding may assist in future breeding of high nutritional quality chickpea cultivars.  相似文献   

14.
15.
The number of seeds and seed yield per plant were higher in chickpea crops raised from water and mannitol (4 %) primed seeds in comparison with the control non-primed crops. In primed plants, an enhanced acid invertase activity in the apical part of the main stem and the part immediately below it at 100 and 130 days after sowing (DAS) might result in an increased availability of hexoses to these plant parts. In addition, decreased acid invertase activity at the point of initiation of branches and in the internodes of stem observed in primed plants indicated restricted hydrolysis of sucrose during its transport through the stem, resulting in its more supply to the actively growing sinks. The activities of sucrose-cleaving enzymes, i.e. invertase and sucrose synthase (SS) in podwall of primed plants were higher at 110 DAS. At 140 DAS, a stage of rapid seed filling, increased activities of SS and sucrose phosphate synthase (SPS) were observed in seeds of primed plants. Increased SPS activity in seeds of primed crop could meet the increased assimilate requirements of the developing seeds. Higher activity of SS in seeds of primed crop may facilitate seed filling. These data suggest that enzymes of sucrose metabolism play an important role in increasing the yield of chickpea crops raised from primed seeds.  相似文献   

16.
The inheritance of resistance to dry root rot of chickpea caused by Rhizoctonia bataticola was studied. Parental F1 and F2 populations of two resistant and two susceptible parents, along with 49 F1 progenies of one of the resistant × susceptible crosses were rested for their reaction to dry root rot using the blotting-paper technique. All F, plants of the resistant × susceptible crosses were resistant; the F2 generation fitted a 3 resistant: 1 susceptible ratio indicating monogenic inheritance, with resistance dominant over susceptibility. F3 family segregation data confirmed the results. No segregation occurred among the progeny of resistant × resistant and susceptible × susceptible crosses.  相似文献   

17.
Seed yield in chickpea (Cicer arietinum L.) is substantially increased by advancing sowing date from the traditional spring to early winter at low to medium elevation areas around the Mediterranean Sea. This shift, however, increases the probability of the exposure to subzero temperatures as low as -10 °C for up to 60 days in a year. These low temperatures often reduce seed yield of cold-susceptible cultivars. Yield losses from cold were estimated in two experiments conducted at Tel Hadya, Syria. In experiment 1, of 96 genotypes sown on nine dates ranging from autumn to spring during the 1981–82 season, those lacking tolerance to cold were killed and produced no yield in autumn sowing, whereas lines with cold tolerance produced nearly 4 t/ha which corresponds to a four-fold increase over spring sowing. Moderately cold-tolerant genotypes sown during early winter produced substantially more seed yield than the normal spring-sown crop. Seedlings were more cold tolerant than the plants in early or late vegetative stages. In experiment 2, in which yield loss due to cold in the field was estimated in 12 yield trials comprising 288 newly bred lines in the 1989–90 season, the regression of cold susceptibility on seed yield in each of the trials was highly significant and negative. On average, winter-sown trials produced 67 % more seed yield than spring-sown trials, but 125 out of 288 genotypes produced yield more than double in winter sowing. Early maturing lines suffered severe cold damage and many lines produced no seed.  相似文献   

18.
Chickpea (Cicer arietinum L.), is an important grain legume crop throughout the world especially in developing countries. However the average yield worldwide is considered to be lower than its potential yield (Singh et al., 1994). The average yield of chickpea is much lower in Pakistan, which is about 5500-650 kg/hm^2 due to various abiotic and biotic stresses (Shah et al., 2005).  相似文献   

19.
J. Gil  J. I. Cubero 《Plant Breeding》1993,111(3):257-260
The desi and kabuli chickpeas are characterized, among other things, by their seed coats being thicker in the desi than in the kabuli type. The inheritance of seed coat thickness, and its relation to flower colour and seed size, was studied. Seed coat thickness exhibits monogenic inheritance, the thin kabuli seed coat being the recessive character. Linkage was found between seed coat thickness and flower colour, the recombinant fraction being 0.19. No relationship was found between seed coat thickness and seed size. The role of these characters in the evolution of the chickpea is discussed.  相似文献   

20.
R.P.S. Pundir  G.V. Reddy 《Euphytica》1998,102(3):357-361
Two new traits – open flower and small leaf in chickpea are discussed. Open flower, a natural mutant in a good agronomic background is reported for the first time, small leaf trait has been reported earlier, and has now been studied by breeders. Both useful traits were found to be monogenic recessive. The joint F2 segregation data revealed no linkage between flower colour and flower type, but flower type and leaf size showed some linkage. Open flower could contribute to a higher rate of cross pollination and utilization of heterosis. The small leaf allows light to penetrate the crop canopy, and could be useful in designing a physiologically efficient plant type in chickpea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号