首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为掌握山东省日照市降雨侵蚀力时空分布特征,提高日照市水土保持规划与决策的科学性,利用日照市水利局雨量遥测系统61个雨量站点2005-2014年日降雨资料计算降雨侵蚀力,并运用Excel 2013、ArcGIS 10等工具分析日照市降雨侵蚀力的时空分布特征.结果表明:1)从年度变化来看,日照市站均年度降雨侵蚀力最大值(2008年)是最小值(2014年)的2.90倍,站均汛期降雨侵蚀力最大值(2007年)是最小值(2014年)的3.74倍.从月度变化来看,降雨侵蚀力主要集中在5-9月,尤其集中在7-8月.2)从空间分布来看,各站点年均降雨侵蚀力、汛期降雨侵蚀力呈现东南沿海地区较高、内陆地区较低、中部地区最低的特征,变化范围分别在2 942.07 ~4 921.45、2 694.36~3 921.78 MJ· mm/(hm2·h·a)之间,分区县看,岚山区最高,东港区次之,莒县和五莲县较低;各月的降雨侵蚀力重点也不尽相同.3)从时间变异来看,站均年度降雨侵蚀力变化范围在1 831.55 ~5 306.12 MJ·mm/(hm2·h·a)之间,均值、中值分别为3 826.01、4 053.62 MJ·mm/(hm2·h·a),标准差1 089.46MJ·mm/(hm2·h·a),变异系数28.48%;站均月度降雨侵蚀力变化范围在1.23 ~1 171.93 MJ·mm/(hm2·h·a)之间,均值、中值分别为318.83、61.51 MJ·mm/(hm2·h·a),标准差397.99 MJ· mm/(hm2·h·a),变异系数124.83%.4)从空间变异来看,各站年均降雨侵蚀力变化范围在2 755.23 ~5 061.15 MJ·mm/(hm2·h·a)之间,均值、中值分别为3 826.01、3 730.97 MJ·mm/(hm2·h·a),标准差512.81 MJ·mm/(hm2·h·a),变异系数13.40%.本研究结果可为日照市水土保持规划与决策、土壤侵蚀预报等提供参考.  相似文献   

2.
渭河流域降雨侵蚀力时空分布特征   总被引:2,自引:0,他引:2  
[目的]揭示渭河流域降雨侵蚀力的时空变化特征,为区域水土保持规划提供依据。[方法]根据渭河流域及其周边范围30个气象站点1957—2014年逐日降雨资料,采用章文波日降雨量侵蚀模型计算各站点的降雨侵蚀力,分析其空间分布规律和年内分布特征。[结果]渭河流域多年平均降雨侵蚀力值分布范围为806.25~3 510.81 MJ·mm/(hm2·h),平均值1 798.97 MJ·mm/(hm2·h),与多年平均侵蚀性降雨的空间分布基本一致,总体呈现西北低东南高的趋势。渭河流域降雨侵蚀力年内变化呈单峰型,主要集中在7—9月,占全年降雨侵蚀力的63.91%。北部黄土高原地区和关中平原发生水土流失的时期集中在7—9月,而秦岭北麓地区5—10月均有可能发生较大的水土流域,侵蚀风险由西北向东南递增。流域降雨侵蚀力年际波动较大,年际变率Cv值在34%~56%之间,整体而言,流域西北部地区的降雨侵蚀力年际变化幅度大于东南部地区。除洛川、长武、环县、平凉4个站点降雨侵蚀力在研究时段内有所增大外,其余地区降雨侵蚀侵蚀力呈不同速率的减小趋势。[结论]渭河流域降雨侵蚀力时空分布差异显著,尽管流域降雨侵蚀力呈减弱趋势,由于流域地处黄土高原,水土保持与水源涵养工作仍需高度重视。  相似文献   

3.
利用协同克里金空间内插法和半月降雨侵蚀力估算模型,结合2005—2021年日降雨量资料研究分析全省年均降雨侵蚀力时空分布特征。结果表明:(1)全省降雨侵蚀力平均值1 542.68 MJ·mm/(hm2·h·a),其变化范围为651.02~2 716.45 MJ·mm/(hm2·h·a)。(2)在时间变化上,年内降雨侵蚀力表现出先增大后减小的变化特征,其中6~9月降雨侵蚀力占全年80%以上;从空间分布上,自东南向西北降雨侵蚀力程递减的变化规律,即东南部>南部>中部>北部。(3)年侵蚀性降雨量、年降雨量与降雨侵蚀力之间具有极显著相关性,可以利用幂函数做简易估算,为区域土壤侵蚀治理、预报、评估和监测等提供决策依据。  相似文献   

4.
长江上游水蚀区降雨侵蚀力的时空分布特征   总被引:3,自引:1,他引:3  
降雨侵蚀力的时空分布特征对于分析和认识土壤侵蚀规律十分重要.根据长江上游7个省市的704个站点1981-2010年30 a的逐日降雨量资料计算了多年平均降雨侵蚀力R值,多年平均半月降雨侵蚀力及其占年降雨侵蚀力的比例,并分析了长江上游水蚀区降雨侵蚀力的空间分布规律.结果表明,长江上游水蚀区的降雨侵蚀力R值范围为273~11 394MJ·mm/(hm2·h· a);受地形的影响R值的空间分布有3个高值区,位于四川省峨眉山市、贵州省毕节地区和湖北省宜昌市附近;建立了多年平均降雨量和降雨侵蚀力R值的关系,相关系数R2达到0.80;研究区降雨侵蚀力的年内分布集中度较大,均值为69%,主要集中在5-10月.  相似文献   

5.
贵州省降雨侵蚀力时空变化特征研究   总被引:7,自引:0,他引:7  
降雨侵蚀力是区域土壤侵蚀状况定量化的首要因子,反映了区域降雨对土壤侵蚀的潜在作用.贵州省地处喀斯特强烈发育地区,水土流失极为严重.利用罗甸小区降雨过程资料及相应的土壤流失量资料,得出贵州省降雨侵蚀力指标的最佳组合为EI30;采用回归分析得出降雨侵蚀力的简易算法为:R=2.0354P1.2159+45.5649.利用264个站点1956-2000年的月降雨量、多年平均降雨量资料得出各站点降雨侵蚀力,并采用Kriging方法进行插值,得到降雨侵蚀力的空间分布图.结果表明:贵州省降雨侵蚀力的空间变化表现为由南向北递减的趋势.按照月降雨侵蚀力的分布状况,将贵州省全年划分为干季和湿季两个阶段,其中湿季降雨侵蚀力约占多年平均降雨侵蚀力的57%.总体而言,近年来贵州省的降雨侵蚀力变化不明显,但仍不能排除个别区域有增高的趋势.  相似文献   

6.
浙江省降雨侵蚀力时空分布规律分析   总被引:5,自引:1,他引:4  
以全省508个雨量站点的长系列逐日降雨资料,利用基于日降雨信息的月降雨侵蚀力模型,估算了浙江省的降雨侵蚀力,分析了其时空分布规律.结果表明:浙江省降雨侵蚀力总体趋势是自北向南递增;降雨侵蚀力年内分配主要集中在4-9月,占年均降雨侵蚀力的77.7 %,根据年降雨侵蚀力的季节分配特征,可以将浙江省划分为3个类型区;降雨侵蚀力的年际变化在空间上东南沿海及海岛地区明显高于其他地区.  相似文献   

7.
安徽大别山区降雨侵蚀力简化算法与时空分布规律   总被引:55,自引:3,他引:55  
安徽大别山区降雨侵蚀力简化算法与时空分布规律吴素业(安徽省岳西县水土保持科学试验站,246600)降雨侵蚀力是决定土壤侵蚀程度的重要指标,它的计算公式,依各地区的地理条件、降雨特征的不同而有所区别。在有完整的自记降雨过程线资料情况下,国内外许多水保工...  相似文献   

8.
三峡库区香溪河流域降雨侵蚀力的时空分布特征   总被引:2,自引:0,他引:2  
为研究流域降雨侵蚀力变化规律,利用三峡库区香溪河流域内10个雨量站1971—2010年的日降雨资料,采用降雨侵蚀力日降雨简易模型,分析该流域降雨侵蚀力的年内分配和年际变化规律。在Arc GIS软件支持下,采用克里格插值研究流域降雨和降雨侵蚀力时空变化特征。结果表明:香溪河流域降雨侵蚀力多年变化范围为2 465.26~7 419.29 MJ·mm/(hm2·h),多年平均均值为4 535.63 MJ·mm/(hm2·h),降雨侵蚀力R值的年际分配差异明显,最大年R值为最小年R值的3倍;流域侵蚀力空间变化趋势为从西向东逐渐递减;流域近40多年的降雨和降雨侵蚀力系列比较平稳,经Mann-kendall检验无显著的变化趋势。流域降雨量、侵蚀性降雨量和降雨侵蚀力年内分布较集中,汛期降雨量、汛期侵蚀性降雨量、汛期降雨侵蚀力占全年的比例分别为85.4%、92.4%和94.0%。  相似文献   

9.
黄土高原降雨侵蚀力时空分布   总被引:10,自引:5,他引:10  
降雨侵蚀力时空分布规律定量研究是进行土壤侵蚀预报的基础。利用231个气象站多年平均年雨量资料估算了黄土高原地区多年平均降雨侵蚀力,并绘制了等值线图。利用17个气象站日雨量和日雨强资料估算了半月降雨侵蚀力及其年内分配特征。全区降雨侵蚀力变化于327~4416MJ.mm/(hm2.h.a)之间,等值线图显示降雨侵蚀力的空间分布与年降水量的空间分布规律十分相似,大致从东南向西北递减。半月降雨侵蚀力占年侵蚀力的累积频率表,为估算土壤侵蚀方程中土壤可蚀性因子和植被覆盖—管理因子提供了基础。侵蚀力年内分配集中度指标反映出黄土高原R值年内分配集中度很高,且多集中在6—9月,集中度最大的达96.4%,最小的也有66.9%。  相似文献   

10.
沂河流域1961-2010年降雨侵蚀力时空分布特征   总被引:2,自引:0,他引:2  
[目的]分析沂河流域近50 a的降雨量和降雨侵蚀力的时空变化特征,为流域水土流失防治及土地利用合理规划等工作提供参考.[方法]利用沂河流域及周边12个气象站1961-2010年的日降雨数据,基于日降雨信息的月降雨侵蚀力模型计算流域多年平均降雨侵蚀力,采用Mann-Kendall非参数检验法及析取Kriging内插法分析流域降雨量和降雨侵蚀力的时空变化特征.[结果]沂河流域降雨量和降雨侵蚀力空间分布上呈现出由西南向北逐级递减的变化趋势.多年平均降雨量为789.41 mm,多年平均降雨侵蚀力为2 626.09(MJ·mm)/(hm2·h·a),两者都在1965年产生突变;降雨量和降雨侵蚀力年内分布主要集中在夏季(6-8月),分别占全年比例的63.02%和71.22%,二者最大值都出现在7月,且秋季对流域多年降雨量的减少趋势贡献最多,夏季的降雨侵蚀力上升幅度最大.[结论]沂河流域的降雨量和降雨侵蚀力空间分布趋势相似,不同月份的降雨量与降雨侵蚀力差异不同.  相似文献   

11.
基于GIS的岷江流域降雨侵蚀力时空特征研究   总被引:1,自引:0,他引:1  
利用岷江及周边流域124个气象水文站1981-2010年的日降雨资料计算了该区域的降雨侵蚀力.通过克吕格插值法生成降雨侵蚀力的空间分布图,采用泰森多边形和K-Means聚类法将其划分为3个等级并得到各等级的空间分布格局.根据离差系数、趋势系数和倾向率指标分析了站点年际变化特征及不同等级的时空变化格局.结果显示:(1)年均降雨侵蚀力表现出东南部高,向西迅速降低的特征,且呈现以雅安乐山为中心向东北、西南递减缓慢,向西北递减迅速的环状空间分布格局;(2)岷江流域降雨侵蚀力聚类为侵蚀低、中、高值区,其聚类中心分别为1 054.73,4 594.50和7 153.75 MJ·mm/(hm·h·a),其中侵蚀低值区主要分布在岷江流域上游和大渡河支流流域,中值区主要分布在岷江中下游流域,高值区集中分布在岷江中游的雅安、乐山、眉山和都江堰地区;(3)降雨侵蚀力年际变化呈南北分异特征,以都江堰汶川小金—丹巴为界,北部变化大于南部,变化趋势呈东西分异特征,以茂县理县汶川宝兴—天全汉源—峨边沐川 宜宾一线以东呈下降趋势,以西呈上升趋势.不同地区的降雨侵蚀力变化趋势的显著程度也不同.  相似文献   

12.
GIS支持下的长江上游降雨侵蚀力时空分布特征分析   总被引:8,自引:0,他引:8  
降雨侵蚀力是土壤侵蚀评估模型中的一个基本因子,利用长江上游361个测站1961-2004年日雨量资料估算降雨侵蚀力R值,利用GIS空间分析功能,获得长江上游降雨侵蚀力分布图、降雨侵蚀力年际变化趋势图、各区域R值平均年内分配曲线,在此基础上分析长江上游降雨侵蚀力时空分布特征。研究表明长江上游降雨侵蚀力的地域差异十分显著,与降雨量空间分布近似,由东向西减少,且降雨侵蚀力大的区域与多雨中心和暴雨中心分布基本一致。降雨侵蚀力年际变化存在明显的空间差异性,在一些地区年降雨侵蚀力的变化与年降雨量的变化趋势不一致。各区域降雨侵蚀力年内分配曲线为尖峰状分布,降雨侵蚀力十分集中。  相似文献   

13.
嘉陵江流域降雨侵蚀力时空变化分析   总被引:2,自引:1,他引:2  
降雨侵蚀力是降雨引起土壤侵蚀的潜在能力,对预测土壤侵蚀量具有重要意义。对嘉陵江流域12个气象站的日降雨量资料,利用章文波日降雨侵蚀力模型估算流域的降雨侵蚀力。结果表明:嘉陵江流域降雨侵蚀力的空间变异与降雨量的空间分布趋势基本一致,由东南向西北递减,变化于800~9 000MJ.mm/(hm2.h.a)之间;流域内降雨侵蚀力年际变率Cv在0.346~0.493之间,除平武站呈显著减少外并无显著变化趋势;年内降雨侵蚀力随季节变化,夏秋季降雨侵蚀力较大,冬春季降雨侵蚀力较小。降雨侵蚀力年内集中度高,6—9月份的降雨侵蚀力占全年降雨侵蚀力的80%以上。近50a降雨侵蚀力存在35a,21a的主周期变化,且对应不同的丰枯状态。研究结果表明,虽然年降雨侵蚀力无明显变化,但年内却相对集中于夏秋两季,因此仍要做好汛期的水土流失等灾害的防治。  相似文献   

14.
渭河流域降雨侵蚀力时空变化研究   总被引:1,自引:0,他引:1  
降雨侵蚀力是反映流域降雨侵蚀能力的重要指标。基于渭河流域及周边地区25站56年的日降雨量,分析了流域降雨侵蚀力及其时空变化。结果表明:渭河流域降雨侵蚀力与降雨量的空间分布趋势基本一致,由东南向西北递减,变化范围为1 000~3 600 MJ·mm/(hm~2·h·a);降雨侵蚀力在年内呈单峰型分布,8月最大,1月最小,但6—9月占年侵蚀力的70%左右;渭河流域各站降雨侵蚀力年际差异显著;降雨侵蚀力年际变率为0.40~0.54,尤其20世纪80年代以来随机波动大且表现出一定减小趋势,但整体并无显著增加或减少趋势。  相似文献   

15.
赣江上游平江流域降雨侵蚀力的时空分布特征   总被引:1,自引:0,他引:1  
[目的]研究赣江上游平江流域降雨侵蚀力的时空变化规律,为流域治理措施的制定提供参考。[方法]利用平江流域内10个雨量站点1989—2018年共30 a的日降雨量数据,采用降雨侵蚀力日降雨简易计算模型和Mann-Kendall趋势检验等方法,对平江流域降雨侵蚀力的时间分布规律进行研究;借助ArcGIS 10.1中的克里金插值法对平江流域的降雨侵蚀力进行空间分析。[结果]平江流域降雨侵蚀力在1989—2018年间平均值为4 233 MJ·mm/(hm~2·h·a),最大值为6 766.5 MJ·mm/(hm~2·h)(2015年),最小值为2 191 MJ·mm/(hm~2·h)(2003年);流域内30 a降雨侵蚀力变化较为平稳,年际间呈现出不显著的增加趋势,年内分布同降水量一致,表现为双峰型,分别在6月和8月。降雨侵蚀力在空间上表现为由东北向中南方向递减,而后向西南方向递增,最大值出现在北部城冈站附近,最小值出现在中南部龙口站附近。[结论]平江流域降雨侵蚀力的时空分布特征与流域内降水时空分布基本一致。对流域水土流失防治工作而言,春季应尤其注意降雨侵蚀力较大且出现上升趋势的流域北部地区,夏季和冬季应更加注意流域西南部。  相似文献   

16.
贵州省降雨侵蚀力时空分布规律分析   总被引:9,自引:3,他引:9  
降水是导致土壤侵蚀的主要动力因素,降雨侵蚀力反映了降雨对土壤侵蚀的潜在能力。贵州省是我国典型的生态环境脆弱区之一,水土流失十分严重。以全省19个气象台站1951—2001年逐日降雨资料,利用日降雨侵蚀力模型,估算了贵州省降雨侵蚀力,分析了其时空分异规律。结果显示近50a来贵州省降雨侵蚀力呈增加趋势,即由降雨引起的土壤水蚀潜在能力增加。降雨侵蚀力年内分配主要集中在夏季,占年均降雨侵蚀力的68.48%。在空间分布上,降雨侵蚀力由南向北递减,并且在西南部和东南边缘形成侵蚀力高值中心,在西北部形成低值中心。根据年降雨侵蚀力的季节分配特征,可以将贵州省划分为3个类型区。  相似文献   

17.
[目的] 降雨侵蚀力可以反映降雨对土壤侵蚀的潜在作用,是评价区域土壤侵蚀风险的重要指标。分析北京市1981—2020年降雨侵蚀力时空变异特征,对科学评估和防治区域水土流失风险具有重要意义。[方法] 基于1981—2020年北京市及周边地区119个雨量站点逐日降水数据,采用Kriging插值、Mann-Kendall非参数检验、小波分析等方法对北京市年降雨侵蚀力和中雨(10~25 mm)、大雨(25~50 mm)、暴雨(≥50 mm)降雨侵蚀力的空间分布、趋势变化以及周期变化特征进行分析。[结果] 北京市1991—2020年年降雨侵蚀力范围为1 691.51~3 914.89 (MJ·mm)/(hm2·h·a),年降雨侵蚀力与大雨和暴雨的降雨侵蚀力的空间分布特征相似,与中雨的降雨侵蚀力的空间分布特征有所差异。空间整体上表现为从东北向周围递减的趋势。近40年来,北京中雨侵蚀力呈显著增加趋势,年降雨侵蚀力、大雨、暴雨以及夏季7,8月的降雨侵蚀力变化趋势均不显著,且均没有发生显著的突变。局部区域如密云、平谷一带的年降雨侵蚀力下降趋势相对较大。年降雨侵蚀力以及中、大、暴雨的降雨侵蚀力变化的主周期约为25年,且存在2~3次"低-高"交替变化。[结论] 研究结果可为北京开展水土保持工作、农业和生态保护等工作提供科学依据。  相似文献   

18.
浙江红壤区降雨侵蚀力季节分布与日雨量模型研究   总被引:16,自引:1,他引:16  
利用兰溪水保站的自记与常规雨量资料对降雨侵蚀力 R的季节分布进行了分析 ,并建立了一个降雨侵蚀力的日降雨量模型。结果表明 ,该地区降雨侵蚀力呈明显的单峰型季节分布 ,主要集中在 3~ 9月 ,其 R值占全年R值的累计百分比为 94 .5 % ,高峰期在 6月份 ,其 R值占全年 R值的 2 8.2 %。降雨侵蚀力的日雨量模型为 :Rj=0 .0 0 4 3 [1 4 8.13 sin(π/12 ( j- 1) ) ]ΣNk=1 P1 .0 9k 。本模型利用日降雨量计算降雨侵蚀力 ,有效系数为 0 .89,R值季节分布的预测值与实际值的平均偏差为 1.2 %。与国内现有模型相比 ,本模型能够较好地描述 R值的季节分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号