首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 511 毫秒
1.
植被覆盖度是生态恢复的重要指示器,研究其变化特征可为资源合理利用、生态恢复提供科学参考。以贵州省开阳县为研究区,基于landsat4-5 TM,Landsat8 OLI遥感影像,获取2002年、2019年30 m分辨率植被覆盖度数据,从阴坡与阳坡视角研究山区植被覆盖度变化和地形分异特征。结果表明:(1)2002—2019年阴坡与阳坡植被覆盖度总体呈南高北低分布,期间阴坡与阳坡植被总体处于恢复趋势。(2)研究时段内阴坡与阳坡植被覆盖度随海拔上升表现为增加趋势; 海拔小于600 m的地区阳坡和阴坡植被覆盖度差距最大; 2019年二者植被覆盖度在海拔小于600 m的地区下降明显,高于800 m的地区均有较大提升。(3)阴坡和阳坡植被覆盖度随坡度增加总体呈上升趋势,坡度大于35°后二者差异增强; 植被覆盖度增量随坡度增加总体表现为上升—下降特点。(4)阴坡和阳坡植被覆盖度随地形起伏度增加呈上升趋势。2002年阳坡各等级地形起伏度的植被覆盖度总体高于阴坡,2019年二者植被覆盖度差异性随地形起伏度上升而增强。综上,阴坡和阳坡植被覆盖度与海拔、坡度、地形起伏度呈正相关关系,二者在不同等级地形梯度上具有较大差异性。地形因子对山区阴坡、阳坡植被覆盖度的影响是多方面的,不仅从海拔和坡向上影响水热组合条件,也从坡度和地形起伏度上影响人类对山区林地资源的开发利用。  相似文献   

2.
[目的]调查天山西部生态环境植被覆盖状况,为科学保护区域生态环境和管理提供科学依据。[方法]以天山西部林区—霍城林场为研究对象,基于1999,2007和2016年3个时期的Landsat TM遥感影像和DEM数据,运用归一化植被指数分析研究区植被覆盖情况和空时变化特征。[结果]时间变化上,1999—2016年期间霍城林场植被覆盖以Ⅱ和Ⅲ级为主,所占比重达到55%以上,总体上是呈现上升趋势;空间分布上,霍城林场因海拔、坡度和坡向等地形因子的不同而出现不同的分布和变化特征,当海拔在1 500~2 000 m和2 000~2 500 m或者坡度30°~45°的区域时,植被覆盖度相对较高;当海拔 < 1 500 m以及 > 2 500 m或坡度 < 30°的区域时,植被覆盖度相对较低;植被覆盖度随着坡向的变化而变化着,呈现出阴坡 > 半阴坡 > 半阳坡 > 阳坡的分布特征;当海拔 < 1 500m和坡度 < 30°的区域时,植被覆盖度变化较为明显,而当海拔 > 2 500 m和坡度 > 45°的区域时,因受人为社会活动影响小,植被覆盖变化不明显。[结论]1999—2016年期间,霍城林场植被覆盖在时间变化上总体呈现上升趋势,在空间分布上因海拔、坡度和坡向等地形因子的不同呈现不同的分布和变化特征。  相似文献   

3.
玛纳斯河流域植被覆盖度随地形因子的变化特征   总被引:1,自引:0,他引:1  
基于2000-2016年MODIS NDVI数据,利用像元二分模型和ArcGIS空间分析功能对玛纳斯河流域植被覆盖度分布格局及动态变化特征进行研究,并分析植被覆盖度变化在高程、坡度和坡向上的空间分布差异。结果表明:(1)玛纳斯河流域以低等级植被覆盖为主,高等级植被覆盖面积显著增加,其它各等级面积波动较小,研究期内植被覆盖改善的面积比例(31.17%)远大于退化的面积比例(16.1%),研究区总体植被覆盖度增加,生态环境有所好转。(2)在海拔<800m,坡度<8°区域内,植被覆盖度明显改善,植被显著退化区主要分布在海拔1300-3400m,坡度>25°区域内,植被覆盖度未发生变化的区域主要集中在海拔>3600m范围内。(3)当海拔>2100m时,植被覆盖度随海拔增加呈现持续减少的趋势,海拔低于2100m的地带,植被覆盖度随海拔增加波动较大。(4)随着坡度的增加,植被覆盖度呈逐渐减小的趋势,全流域0?5°坡度范围内植被覆盖度最大(42.69%)。(5)在各坡向上,植被覆盖度差异不明显。流域内平地上的植被覆盖度最大(44.21%);阴坡的植被覆盖度优于阳坡,植被变化趋势除在平地区域较显著外,其余坡向间差异不大。  相似文献   

4.
岷江上游流域植被覆盖度及其与地形因子的相关性   总被引:5,自引:3,他引:2  
[目的]研究岷江上游流域植被覆盖度随不同高程带、坡度带、坡向分布变化的特征及相关性,为该地区利用有利地形加强生态环境建设和防治水土流失提供依据。[方法]在GIS和RS技术支持下,利用Landsat-8OLI遥感影像和DEM数据提取植被覆盖度和地形因子进行叠加分析,构建统计样本定量分析植被覆盖度与地形因子间的相关关系。[结果]研究区总体植被覆盖情况良好,中度以上植被覆盖区占研究区面积75.0%,低植被覆盖区仅占15.2%。植被覆盖度随海拔高度和坡度的增加呈先增加后降低的趋势,在海拔2 500~3 000m和坡度25°~45°达到最大值;阳坡的植被覆盖度略大于阴坡。各地形因子对不同植被覆盖度的影响程度不同,低植被覆盖区受坡度影响较显著,极高度植被覆盖区受海拔高度影响较显著,其他植被覆盖区与地形因子的相关性无明显规律。[结论]岷江上游流域植被覆盖度与地形因子关系紧密,地形因子变化对生态环境有重要影响。  相似文献   

5.
以延河流域为研究区,综合运用GIS和RS技术,基于Landsat TM影像,运用改进的像元二分模型估算了延河流域2000年和2010年的植被覆盖度,结合DEM数据提取的高程,坡度、坡向地形数据,分析了植被覆盖度与地形因子的相关性,以期为延河流域植被恢复和生态建设提供依据。结果表明:(1)延河流域植被覆盖度从2000年的29.18%增加到2010年的52.42%,呈上升趋势。(2)2000年植被覆盖度随高程的增加呈减小的趋势,2010年植被覆盖度随高程的增加呈先增加后减少的趋势。2000年和2010年植被覆盖度随坡度的升高,大致呈现先升高后降低的趋势,在30°~35°范围内最高。2000年和2010年植被覆盖度总体表现为阴坡(北、东北)半阳坡(东南、西)=半阴坡(东、西北)阳坡(南、西南)平地,其中阴坡的植被覆盖度最高,平地的植被覆盖度最低。(3)在高程1 000~1 500m,坡度在25°~45°范围内,植被覆盖度增加的值最大。  相似文献   

6.
随着黄土高原地区退耕还林政策的实施,近十几年西安市植被覆盖情况变化发生了显著变化。为了对西安市植被覆盖变化进行深入的研究,利用Mann-Kendall趋势检验法及Hurst指数、Pettitt检验法分析了2000-2013年来西安市植被覆盖度变化特征,并利用重心转移模型和相对发展率分析了西安市植被覆盖度变化的空间变化差异。结果表明:(1)西安市植被覆盖度中等程度变异面积占总面积10.02%;(2)西安市植被覆盖度呈增加趋势的面积占区域总面积86.54%,具有正向持续性的面积占区域总面积72.62%,35.30%面积植被覆盖度呈持续改善;(3)西安市植被覆盖度突变年份均显著发生在2004年、2005年、2006年、2007年、2008年,发生显著突变年份的面积占总面积的17.58%;(4)西安市植被覆盖度相对发展率空间变化范围为-9.07~7.49,相对发展率的负值占区域总面积的20.77%,西安市植被覆盖度空间重心呈现由西南逐渐向东北方向转移的趋势;(5)西安市降雨量与植被覆盖度均值均呈现增加趋势,相关系数为0.47(p<0.09),空间分布重心呈现从东北向西南转移的趋势,与植被变化呈现相反的趋势。研究成果有助于进一步深化对西安市植被恢复状况及其影响因素的认识,为西安市植被恢复等生态建设工程提供一定的科学依据。  相似文献   

7.
针对区域流域尺度上土壤水分在地形、植被等要素协同作用下的空间异质性规律以及响应机制研究较少,以青海大通典型人工林小流域为研究对象,自坡脚向上延3个坡向(阴坡、半阴坡、阳坡)呈放射状选取3条样线带布设样点,采用统计学分析、主成分分析和冗余分析等方法研究生长季初末时期0—20,20—40,40—60,60—80,80—100 cm各层土壤水分空间变异特征,以及各环境因子(海拔、植被高度、植被冠幅、地上生物量、草本丰富度、草本盖度、枯落物干重)对其影响规律。结果表明:生长季末水分均值、最值均大于生长季初,各坡向体积含水率最值、均值均表现为阴坡>半阴坡>阳坡,各土层呈中等变异(10%阳坡>阴坡,在末期表现为阳坡>半阴坡>阴坡;水分采样点间隔在初期应在36.50~448.90 m,末期应在18.30~552.40 m;冗余分析结果显示,海拔是影响青海高寒区土壤水分异质性的主控因素,解释率为35.3%(p<0.01),草本丰富度次之,解释率为26.1%(p<0.01),植被高度与植被冠幅也有显著影响。研究结果可为青海黄土高寒区退耕还林小流域生态水文过程研究以及后续植被恢复提供数据与理论参考。  相似文献   

8.
《土壤通报》2017,(5):1047-1054
地处极端干旱区的敦煌市绿洲在气候条件干旱和人类活动加剧的双重压迫下,土壤资源可持续发展面临着严峻的挑战。本研究基于实地调查数据、MODIS-NDVI和DEM数据,在综合分析土壤理化性质的基础上,选取了14项理化指标,利用最小数据集(MDS)方法,从坡向、植被覆盖度和高程3个方面对研究区的土壤质量进行了评价。研究结果表明:不同坡度条件下,土壤质量为阳坡高于阴坡,而阳坡与半阳坡间,阴坡与半阴坡间差异不大;植被覆盖度对土壤质量影响显著,即土壤质量随着植被覆盖度增高而变好;高程对土壤质量的影响具有两面性,随着海拔升高,土壤盐分降低的同时养分含量也在减少;而干旱气候导致土壤盐分偏高,含水量、有效氮和有机质含量显著偏低。此外,研究中基于MDS的方法,引入Norm值以避免仅用因子载荷作为唯一选择标准而导致的部分因子信息被忽略的缺点,在对MDS的可靠性进行验证显示,相关系数检验说明该方法具有很好的可行性。  相似文献   

9.
官渡河流域植被覆盖变化与地形因子相关性   总被引:2,自引:0,他引:2  
以南水北调中线水源区源头之一的官渡河流域为研究区域,区域内以山地为主,生态环境脆弱。基于GIS和RS技术,利用1990年、1999年、2004年、2007年、2010年Landsat TM遥感影像,基于像元二分模型和变化斜率法,从数理统计角度定量估算了研究区各时期植被覆盖度及其时空分布特征。结果表明:(1)植被覆盖度在不同河段呈现明显的规律性,上、中、下游植被覆盖度5期平均值分别为94.52%,87%,81.69%。(2)植被覆盖变化受地形因子影响比较明显,植被覆盖度与不同地形因子响应程度不同,对不同时期植被覆盖度,高程和坡度对其影响明显高于坡向。随着坡度的不断增加,植被覆盖度也随着增大;整体上向阳区植被覆盖度要大于同区域的背阳区;官渡河流域不同时期植被覆盖度随着高程的增加均出现先增加后减少的趋势。(3)不同地质单元组植被覆盖变化各不相同。  相似文献   

10.
以凌海市大羊河源头小流域为例,按放射状自坡脚向上沿阳坡、半阴坡、阴坡的坡向选择样线带布设样点,通过冗余、主成分和统计分析揭示不同深度土壤水分空间变异特征及其各环境因子影响规律。结果表明:(1)生长季初大于生长季末水分,各坡向体积含水率排序为阳坡<半阴坡<阴坡,各土层变异系数处于10%~100%之间,达到中等水平;(2)初期各坡向变异系数排序为阴坡<阳坡<半阴坡,末期为阴坡<半阴坡<阳坡;在初期、末期水分采样点间隔处于35.2~445.8 m和17.6~520.5 m;(3)海拔和草本丰富度对土壤水分异质性的贡献率为36.1%、27.0%,海拔属于主控因素,植被冠幅和高度的影响也较大,可为凌海市低山丘陵区植被恢复及小流域水文生态过程研究提供参考依据。  相似文献   

11.
[目的]分析西干渠黄旗坝段边坡生态恢复效果,为调控植被演替速率和预期植被恢复效果提供依据。[方法]对渠道开挖造成的阴坡、阳坡和渠道边坡坡顶上的自然生境下对照样地的土壤、植被状况进行了调查和分析。[结果](1)经过生态恢复后的阴坡、阳坡植物的多度、盖度、均匀度指数Pielou、多样性指数Shannon-Wiener和丰富度指数Margalef均有所提高,阴坡高于阳坡,但仍低于自然生境下的水平。(2)在土壤氮、磷、钾养分特性方面,阴坡、阳坡的土壤氮、磷、钾养分均有所提高,但仍低于自然生境下的水平,呈现出自然生境阴坡阳坡的分布差异。(3)阴坡、阳坡经过生态恢复后植物群落指数仍偏低,群落演替仍处于灌草植物群落阶段。[结论]边坡生态恢复技术能改善西干渠地区边坡的土壤养分状况,促进边坡植被的生长,但鉴于西干渠地区特殊的环境条件,短时间内生态恢复措施效果尚不明显,需加大长期的修复力度。另外,北疆地区边坡生态恢复中植物的选择应以当地乡土植物为主。  相似文献   

12.
以青海省境内黄河上游茨哈峡为例,运用GIS空间分析方法,对该地区的地形因子(高程、坡度和坡向)进行提取,并与植被类型图进行叠加,运用多样性指数、均匀度等植被指数分析该区植被空间分布格局与地形因子的关系,研究了植被指数随地形的变化趋势。结果表明,植被空间分布与地形因子关系密切,亚高山暗针叶林最优生长区间为海拔3290~3880 m,坡度25°~45°的阴坡;山地圆柏林则适宜生长在同样坡度,海拔3880~4470 m的阳坡;针阔混交林、高山落叶阔叶林最优生长区间分别为15°~25°,2700~3290 m的阴坡和2995~3290 m的(半)阴坡;高寒灌丛和高寒草原在各坡度和坡向分布范围都比较广。  相似文献   

13.
改性纤维素类聚合物固沙剂的吸附力学及崩解特性试验   总被引:3,自引:1,他引:2  
山地植被信息在气候变化研究和生态环境保护等方面发挥着重要作用,遥感技术能够快速获取山地植被信息,但是存在山地地形阴影的影响以及山地植被信息混淆问题。该文以山地植被为研究对象,基于Landsat卫星遥感影像多光谱数据,分析山地植被的主要特点,借鉴阴影消除植被指数(SEVI)的构造原理及形式,提出了一种适用于山地植被覆盖遥感监测的植被指数算法--植被区分阴影消除植被指数(VDSEVI)。研究结果表明:相对于已有的其他植被指数,VDSEVI较好地消除了地形阴影的影响;VDSEVI的信息量大,植被覆盖的识别能力较强,较好地解决了植被信息混淆问题,能够更好地反映山地植被覆盖情况。不同土地覆盖类型的VDSEVI存在显著差异;阴影稀疏林地和相邻非阴影稀疏林地的相对误差较小,为3.428%;各土地覆盖类型样本VDSEVI标准差均小于0.06;植被覆盖样本VDSEVI与太阳入射角的余弦值(cosi)的相关系数为?0.800。为验证VDSEVI在其他地区的适用性,将VDSEVI应用于内蒙古阿尔山和福州市闽侯县,结果表明VDSEVI同样适用。新疆那拉提、内蒙古阿尔山和福州市闽侯县3个区域基于VDSEVI阈值法的植被信息提取总体精度分别为84.136%、87.339%、86.709%,Kappa系数分别为0.799、0.788、0.791。  相似文献   

14.
山地植被信息在气候变化研究和生态环境保护等方面发挥着重要作用,遥感技术能够快速获取山地植被信息,但是存在山地地形阴影的影响以及山地植被信息混淆问题。该文以山地植被为研究对象,基于Landsat卫星遥感影像多光谱数据,分析山地植被的主要特点,借鉴阴影消除植被指数(shadow eliminated vegetation index,SEVI)的构造原理及形式,提出了一种适用于山地植被覆盖遥感监测的植被指数算法—植被区分阴影消除植被指数(vegetation distinguished and shadow eliminated vegetation index,VDSEVI)。研究结果表明:相对于已有的其他植被指数,VDSEVI较好地消除了地形阴影的影响;VDSEVI的信息量大,植被覆盖的识别能力较强,较好地解决了植被信息混淆问题,能够更好地反映山地植被覆盖情况。不同土地覆盖类型的VDSEVI存在显著差异;阴影稀疏林地和相邻非阴影稀疏林地的相对误差较小,为3.428%;各土地覆盖类型样本VDSEVI标准差均小于0.06;植被覆盖样本VDSEVI与太阳入射角余弦值(cosi)的相关系数为?0.800。为验证VDSEVI在其他地区的适用性,将VDSEVI应用于内蒙古阿尔山和福州市闽侯县,结果表明VDSEVI同样适用。新疆那拉提、内蒙古阿尔山和福州市闽侯县3个区域基于VDSEVI阈值法的植被信息提取总体精度分别为84.136%、87.339%、86.709%,Kappa系数分别为0.799、0.788、0.791。  相似文献   

15.
为探究不同海拔和坡向下高寒草甸土壤"固—液—气"三相组成变化特征,以东祁连山高寒草甸为研究对象,分析了不同海拔(2 800,3 000,3 200,3 400,3 600,3 800,4 000 m)、坡向(阳坡、阴坡)高寒草甸的植被特征和土壤物理特征,结合植被指标拟合探讨高寒草甸"固—液—气"三相的最佳组成比例。结果表明:植被盖度、草层高度和地上生物量均随海拔升高呈先升高后降低,在海拔3 200 m处达最大值,同一海拔的阴坡植被盖度、草层高度、地上生物量均高于阳坡;土壤容重随海拔和坡向的变化规律与植被盖度相反,而土壤含水量、孔隙度和持水性变化规律与植被盖度类似;经方程拟合发现,土壤"固—液—气"三相比例为31∶33∶36时,高寒草甸生产力最优。综上所述,在海拔3 200 m处是东祁连山高寒草甸分布的中心典型区域,海拔和坡向是影响高寒草甸土壤物理质量和"固—液—气"三相组成的重要环境因子,且该区域高寒草甸土壤"固—液—气"最佳比例为31∶33∶36。  相似文献   

16.
 为研究地形变化对水热状况的影响规律,分别于2004年和2005年的5—9月,定位观测河北省小坝子乡不同地形条件下的水热因子。结果表明:地形对水热因子的动态变化影响不显著,但对水热因子的空间分布影响显著。在生长季中,太阳直接辐射的空间分布规律为山顶>阳坡>阴坡;气温、≥0℃和≥10℃积温、地温(5、10和20cm)、≥0℃和≥10℃土壤积温的空间分布规律均为阳坡>山顶>阴坡;空气湿度的空间分布规律为阴坡>阳坡>山顶;土壤水分的空间分布规律为山顶>阴坡>阳坡。上述水热因子的空间分布规律可为该地区的植被恢复和重建提供重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号