首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
广西降雨侵蚀力时空变化分析   总被引:2,自引:0,他引:2  
利用GIS软件对广西进行降雨侵蚀力时空变化分析研究,根据广西1965—2010年的日降雨量变化数据,估算出年均降雨侵蚀力,计算其趋势系数和气候倾向率,并使用Kriging空间插值法生成空间分布图,结果发现:广西的多年平均降雨侵蚀力整体上呈现出从桂东南、桂东、桂东北向桂西北递减的趋势;46年间广西大部分地区降雨侵蚀力呈增加趋势,小部分地区呈减小趋势,减小区域分布呈双向弧状;广西年降雨侵蚀力变化情况只有4个气象站点通过了显著性为0.05的置信度水平检验,显著性气候变化站点较少。  相似文献   

2.
近60年来江西省各等级侵蚀性降雨与降雨侵蚀力的关系   总被引:3,自引:0,他引:3  
基于江西省具有典型代表性的5个气象站点1956-2015年共60 a逐日降雨量资料,研究了各等级侵蚀性降雨和降雨侵蚀力的特征,建立了利用各等级侵蚀性年降雨量估算年降雨侵蚀力的简易算法模型。结果表明:各等级侵蚀性降雨量、降雨日数和降雨侵蚀的时间分布规律不一。年暴雨量、年暴雨量比例、年暴雨日数、年暴雨侵蚀力、年降雨侵蚀力均在时间上呈不同程度的增长趋势,在空间表现为从南到北逐渐上升趋势。各等级侵蚀性年降雨量估算降雨侵蚀力模型的模拟值与精确值具有高度相关性,可用于估算江西地区年降雨侵蚀力。  相似文献   

3.
渭河流域降雨侵蚀力时空变化研究   总被引:1,自引:0,他引:1  
降雨侵蚀力是反映流域降雨侵蚀能力的重要指标。基于渭河流域及周边地区25站56年的日降雨量,分析了流域降雨侵蚀力及其时空变化。结果表明:渭河流域降雨侵蚀力与降雨量的空间分布趋势基本一致,由东南向西北递减,变化范围为1 000~3 600 MJ·mm/(hm~2·h·a);降雨侵蚀力在年内呈单峰型分布,8月最大,1月最小,但6—9月占年侵蚀力的70%左右;渭河流域各站降雨侵蚀力年际差异显著;降雨侵蚀力年际变率为0.40~0.54,尤其20世纪80年代以来随机波动大且表现出一定减小趋势,但整体并无显著增加或减少趋势。  相似文献   

4.
近61年四川省降雨侵蚀力的时空变化趋势   总被引:2,自引:0,他引:2  
降雨是导致土壤侵蚀的主要动力因子,估算降雨侵蚀力是进行水土流失定量评价的基础工作之一。利用1955—2015年四川省及其相邻5省(市)共22个气象站点的逐日降雨量数据,基于章文波的日雨量侵蚀力模型,通过普通Kriging空间插值以及变异系数、距平百分率、趋势系数和气候倾向率等分析方法,全面综合地分析了四川省降雨侵蚀力的时空变化趋势。结果表明:四川省降雨侵蚀力总体上从东南向西北呈阶梯状逐渐降低并与降雨量、侵蚀性降雨空间分布规律较为一致,其高低值空间分布表现出四川盆地川西南山地川西高原;四川省降雨侵蚀力与降雨量年际变化规律几乎一致,近61年来R值呈显著增加趋势,每年增值53.64 MJ·mm/(hm~2·h·a),地域上R值的年际变化呈北高南低的特点,属于中等变异(0.278C_v0.686);降雨侵蚀力年内变化是以7月为峰值的单峰型分布,主要集中在6—9月份,季节上降雨侵蚀力危害夏高冬低,春秋较平稳;四川省大部分区域R值变化趋势呈不显著上升趋势,主要集中在川西高原和盆东地区,但在盆西区域形成一个降雨侵蚀力的下降中心。  相似文献   

5.
以无锡市21处雨量站1992—2016年的日雨量数据等为基础,运用章文波等修订的日雨量侵蚀力模型计算降雨侵蚀力,分析了无锡市降水时空分布规律,并提出了基于年侵蚀性降雨量的降雨侵蚀力简化算法。结果表明,无锡市降雨侵蚀力随月份先增加后减小;随年份总体呈增加的变化规律,但不是单一增长,而是三段式变化;在空间分布上表现为西南部高于东北部,最高值是最低值的1.5倍。利用无锡市10个站点数据进行回归分析,得出年侵蚀性降雨量与年降雨侵蚀力之间的三次曲线拟合方程作为简化算法,经验证可以用于无锡市年降雨侵蚀力计算。  相似文献   

6.
基于日降雨的沂蒙山区降雨侵蚀力时空变化研究   总被引:3,自引:0,他引:3  
降雨侵蚀力是水土流失最为重要的外部驱动力,是土壤侵蚀相关领域的研究重点。以沂蒙山区及周边38个气象台站1971—2008年逐日降雨量资料为数据源,利用基于日降雨信息的月降雨侵蚀力模型,估算了研究区多年月、年降雨侵蚀力,并初步分析了降雨侵蚀力的时空分布规律。结果表明:沂蒙山区降雨侵蚀力总体趋势为西北、中南高,北部低,泗水县、曲阜市东部一带是研究区降雨侵蚀力的高值中心;R值与年降雨量和年侵蚀性降雨量的年际变化趋势基本一致,但也有部分异常年份;沂蒙山区降雨侵蚀力年内主要集中分布在6—9月份,占全年的97.07%,其中最大月降雨侵蚀力出现在7月份,占年降雨侵蚀力的51%。研究结果可为该区域水土流失预报、农业面源污染状况预报等提供理论依据。  相似文献   

7.
湖北省侵蚀性降雨时空分布特征   总被引:1,自引:0,他引:1  
侵蚀性降雨是南方红壤区剧烈水蚀的原动力,因此分析其时空分布特征对于区域内水土保持相关研究有十分重要的意义。选取国家气象数据网站数据(2014—2020年)、结合水土保持监测站点人工观测数据(2016—2019年),对湖北省4个水土保持分区24个监测站点的侵蚀性降雨标准及降雨侵蚀力进行了分析、计算,并用克里格模型进行插值。结果表明:湖北省整体的降雨侵蚀力从西北到东南逐渐增加,与降雨量的空间分布表现出相同特征,同时降雨量与侵蚀性降雨量表现出高度协同性。全省年平均降雨量813.88~1 590.15 mm(2014—2020年),多年平均年降雨量为1 201.98 mm,多年平均侵蚀性年降雨量为603.53 mm。多年平均侵蚀性年降雨量占多年平均年降雨量的50.21%,多年平均侵蚀性降雨频次(天数)为14次,平均次侵蚀性降雨量为46.88 mm。根据多年平均半月侵蚀力计算结果分析可知,湖北省全省多年平均年降雨侵蚀力值为6 650.10 MJ·mm/(hm2·h·a)。省内年内降雨侵蚀力时间分布基本符合正态分布。4—10月总降雨侵蚀力值为6 202.10 MJ·mm/(h...  相似文献   

8.
沂河流域1961-2010年降雨侵蚀力时空分布特征   总被引:2,自引:0,他引:2  
[目的]分析沂河流域近50 a的降雨量和降雨侵蚀力的时空变化特征,为流域水土流失防治及土地利用合理规划等工作提供参考.[方法]利用沂河流域及周边12个气象站1961-2010年的日降雨数据,基于日降雨信息的月降雨侵蚀力模型计算流域多年平均降雨侵蚀力,采用Mann-Kendall非参数检验法及析取Kriging内插法分析流域降雨量和降雨侵蚀力的时空变化特征.[结果]沂河流域降雨量和降雨侵蚀力空间分布上呈现出由西南向北逐级递减的变化趋势.多年平均降雨量为789.41 mm,多年平均降雨侵蚀力为2 626.09(MJ·mm)/(hm2·h·a),两者都在1965年产生突变;降雨量和降雨侵蚀力年内分布主要集中在夏季(6-8月),分别占全年比例的63.02%和71.22%,二者最大值都出现在7月,且秋季对流域多年降雨量的减少趋势贡献最多,夏季的降雨侵蚀力上升幅度最大.[结论]沂河流域的降雨量和降雨侵蚀力空间分布趋势相似,不同月份的降雨量与降雨侵蚀力差异不同.  相似文献   

9.
为给流域水土流失风险评估和防治等提供可靠有效的参考依据,根据2016—2020年罗玉沟流域内的17个雨量站的日连续实测降雨数据,运用日降雨量数据进行了降雨侵蚀力风险评估,分析了该区域降雨量及降雨侵蚀力的变化规律。结果表明:罗玉沟流域降雨侵蚀力与降雨量关系呈现出较为显著的正向相关性,决定系数R2=0.852 1;罗玉沟流域及各雨量站的年内降雨侵蚀力和降水量分布不均,呈现单峰型趋势,8月是峰值拐点,过8月后逐渐下降;流域侵蚀性降雨量占总降雨量的比例总体呈上升趋势,且降雨量、侵蚀性雨量和降雨侵蚀力年际总体呈波动上升趋势,三者之间保持一定的相关性。  相似文献   

10.
基于黑龙江省32个气象台站近40 a的日降雨量数据计算半月降雨侵蚀力,构建了GIS基础数据库。通过Kriging方法对平均降雨侵蚀力进行插值,运用趋势分析法,从时间和空间上对黑龙江省降雨侵蚀力演变特征进行了分析。结果表明:(1)各气象台站半月平均降雨侵蚀力在时间分布上呈单峰型集中于4月下半月至10月上半月,先逐渐增加,7-8月达到最大值,随后逐渐降低。(2)半月平均降雨侵蚀力在空间分布上存在较大差异,7-8月差异最为显著,7月下半月平均降雨侵蚀力呈全年最大值。(3)该省范围内平均降雨侵蚀力1972-1981年最小,1982-1991年最大,1992-2001年、2002-2011年较1982-1991年平均降雨侵蚀力呈持续递减趋势。(4)该省近40 a平均降雨侵蚀力具有较强的空间相关性,多年平均降雨侵蚀力自西向东、由北至南呈明显的抛物线状分布趋势,伊勒呼里山向北、松嫩平原自东向西、三江平原自西向东、小兴安岭由南至北、张广才岭、老爷岭由北至南,呈明显递减趋势分布。  相似文献   

11.
1980-2013年闽西地区降雨侵蚀力时空变化特征   总被引:2,自引:0,他引:2  
闽西地区是福建省土壤侵蚀重点防治区,为研究闽西地区降雨侵蚀力的时空分布格局,根据1980-2013年闽西地区9个站点的逐日降雨数据,利用日雨量模型来计算降雨侵蚀力,采用线性回归、气候倾向率、Mann-Kendall检验和反距离加权插值法(IDW)等方法对区域降雨侵蚀力的时空变化进行分析.结果表明:1)闽西地区多年平均降雨侵蚀力为9 504 MJ·mm/(hm2·h),与降雨量呈极显著正相关(P<0.o1);2)空间上西高东低,与降雨量分布规律基本一致;3)降雨侵蚀力的年内分布主要集中在3-8月,占到全年的80.12%;4)1980-2013年期间研究区降雨量呈微下降趋势,而整体上降雨侵蚀力呈略微增加趋势,但未达到显著水平(P>0.05),其中其在夏季呈现上升趋势,而在春秋冬3季呈现下降趋势;5)34年内降雨侵蚀力分别在1995和2002年发生突变.该研究可为该区域土壤侵蚀危险性评估和土壤侵蚀治理工作提供依据.  相似文献   

12.
湖北三峡库区降雨侵蚀力的计算及其特征分析   总被引:5,自引:0,他引:5  
以湖北三峡库区及其周边地区16个县市区1994~2003年逐日降雨量资料为基础,利用日降雨量模型计算了观测站点的半月平均和年均降雨侵蚀力值,并采用Kriging插值方法生成连续年均降雨侵蚀力值表面。研究区内年均降雨侵蚀力值变化在2 828.14~8 505.90 M J.mm/(hm2.h.a)之间,其空间分布具有北低南高、东西无明显变化的特征,其8~20个半月的降雨侵蚀力的集中程度和最大半月降雨侵蚀力值占全年的比例,总体上表现为北高南低、由北向南年内分配更为均匀的趋势。  相似文献   

13.
紫色丘陵区侵蚀性降雨与降雨侵蚀力特征   总被引:8,自引:0,他引:8  
降雨侵蚀力(R值)的空间分布反映了区域气候对土壤侵蚀的作用。利用四川盆地紫色丘陵区多年实测降雨资料,应用频率分析法,推求该地区侵蚀性降雨的一般雨量标准,揭示该地区侵蚀性降雨及其侵蚀特征,进而运用降雨侵蚀力日降雨量计算方法,分析紫色丘陵区降雨侵蚀力时空分布特征。结果表明:1)紫色丘陵区顺坡休闲农耕地的侵蚀性降雨的一般雨量标准为11.3mm;2)紫色丘陵区多年平均总降雨量中有60%以上属于侵蚀性降雨,侵蚀性降雨主要集中于5—9月,其中7、8月年均侵蚀性降雨量和土壤侵蚀量最大,空间分布上表现为丘陵区边缘地区大于中部地区;3)紫色丘陵区年均R值介于5000~6500MJ/(mm·hm^2·h)之间,由丘陵区周边向中心逐渐减小,研究区北部的巴中、达县、阆中3站的年均降雨侵蚀力形成高值区,中部的遂宁站形成低值中心,北部大于南部,西部大于东部;4)紫色丘陵区R值主要由≥15mm的降雨构成,占76.9%-82.1%,年内集中度较高,主要分布在汛期5—10月份,占年R值的89%以上;5)R值的年际变化较大,达到中等程度变异,不同地区的R值年际变化差异较大,但并未表现出明显的随时间变化的增减趋势。  相似文献   

14.
贵州省降雨侵蚀力时空变化特征研究   总被引:7,自引:0,他引:7  
降雨侵蚀力是区域土壤侵蚀状况定量化的首要因子,反映了区域降雨对土壤侵蚀的潜在作用.贵州省地处喀斯特强烈发育地区,水土流失极为严重.利用罗甸小区降雨过程资料及相应的土壤流失量资料,得出贵州省降雨侵蚀力指标的最佳组合为EI30;采用回归分析得出降雨侵蚀力的简易算法为:R=2.0354P1.2159+45.5649.利用264个站点1956-2000年的月降雨量、多年平均降雨量资料得出各站点降雨侵蚀力,并采用Kriging方法进行插值,得到降雨侵蚀力的空间分布图.结果表明:贵州省降雨侵蚀力的空间变化表现为由南向北递减的趋势.按照月降雨侵蚀力的分布状况,将贵州省全年划分为干季和湿季两个阶段,其中湿季降雨侵蚀力约占多年平均降雨侵蚀力的57%.总体而言,近年来贵州省的降雨侵蚀力变化不明显,但仍不能排除个别区域有增高的趋势.  相似文献   

15.
武汉降雨侵蚀力特征与日降雨侵蚀力模型研究   总被引:9,自引:0,他引:9  
本研究利用武汉市蔡店水保试验站25年的降雨过程资料分析了该市降雨侵蚀力的季节、年际和次分布特征,建立了一个基于日降雨量的降雨侵蚀力预测模型。研究表明:武汉市降雨侵蚀力集中分布在4~9月,高峰值出现在7月;不同年份的降雨侵蚀力差异很大,变异系数达到0.43,且降雨侵蚀力年际变化呈现负趋势,年倾向率达-253.3 M J.mm/(hm2.h)。次降雨的Ri值分布振幅很大,年降雨侵蚀力主要集中在几次降雨过程中。本研究提出的日降雨侵蚀力预测模型能反映降雨侵蚀力的季节分布,模型的决定系数f为0.86,偏差系数σ为2.2%。  相似文献   

16.
利用协同克里金空间内插法和半月降雨侵蚀力估算模型,结合2005—2021年日降雨量资料研究分析全省年均降雨侵蚀力时空分布特征。结果表明:(1)全省降雨侵蚀力平均值1 542.68 MJ·mm/(hm2·h·a),其变化范围为651.02~2 716.45 MJ·mm/(hm2·h·a)。(2)在时间变化上,年内降雨侵蚀力表现出先增大后减小的变化特征,其中6~9月降雨侵蚀力占全年80%以上;从空间分布上,自东南向西北降雨侵蚀力程递减的变化规律,即东南部>南部>中部>北部。(3)年侵蚀性降雨量、年降雨量与降雨侵蚀力之间具有极显著相关性,可以利用幂函数做简易估算,为区域土壤侵蚀治理、预报、评估和监测等提供决策依据。  相似文献   

17.
为了分析海南省降雨量、侵蚀性降雨量及降雨侵蚀力在不同时间尺度上的变化趋势及其相关性,根据该地区1952~2015年的日降雨量数据资料,采用变异系数、趋势系数和气候趋势率等方法分析不同时间尺度的降雨、侵蚀性降雨和降雨侵蚀力的变化趋势。结果表明:①1952~2015年海南省年平均降雨侵蚀力和降雨量分别为514.96 MJ·mm/(hm~2·h)和1 751.50 mm。降雨侵蚀力和降雨总量年际波动显著,年均侵蚀性降雨量、年均降雨量、年均降雨侵蚀力变异系数分别为24.43%、24.14%、21.71%。且年内变化较大,均主要集中在5~10月。②总体上春冬降雨侵蚀力呈减少趋势,趋势系数分别为-0.008、-0.002,夏秋降雨侵蚀力呈增加趋势,趋势系数分别为0.21、0.14。③月降雨量和降雨侵蚀力的变化趋势基本一致,5、7、8、10月降雨量呈增加趋势,趋势系数分别为0.08、0.22、0.04、0.30;5、7、8、10、12月降雨侵蚀力呈增加趋势,趋势系数分别为0.07、0.34、0.16、0.44、0.10。④相关分析表明,年降雨量、年侵蚀性降雨量和年降雨侵蚀力这三者之间呈极显著正相关,相关系数均大于0.99。本研究结果可为该地区及海南省水土流失防治及土壤侵蚀机理研究提供数据和理论支撑。  相似文献   

18.
1951-2018年韶关不同量级降雨侵蚀力变化   总被引:2,自引:2,他引:2       下载免费PDF全文
降雨是引起土壤水蚀的主要动力因子之一,为探讨韶关市不同量级降雨对土壤水蚀特征造成的影响,选取1951—2018年韶关市逐日降雨量数据,采用日降雨侵蚀力模型计算降雨侵蚀力,利用变异系数、趋势系数分析不同时间尺度各量级降雨侵蚀力的变化。结果表明:(1)68年来韶关市年均降雨侵蚀力为9 314(MJ·mm)/(hm~2·h·a),变异系数为0.29,属于中等变异;(2)年降雨量、降雨日数、侵蚀性降雨量和降雨日数均呈上升趋势,而非侵蚀性降雨量和降雨日数则呈下降趋势,且暴雨量和暴雨侵蚀力呈较明显上升趋势,说明韶关市降雨更为集中,降雨侵蚀力增加;(3)大雨以上量级的降雨日数和降雨量占总降雨日数和总降雨量的比例分别为43.91%,51.15%,而其引起的降雨侵蚀力占总降雨侵蚀力比例却高达77.05%。研究结果为韶关市的土壤侵蚀的监测和水土保持工作提供参考。  相似文献   

19.
赣北第四纪红壤坡地降雨侵蚀力的计算与分析   总被引:2,自引:1,他引:1  
 降雨侵蚀力是建立土壤侵蚀预报模型的基础。为探讨赣北第四纪红壤坡地降雨侵蚀力的最佳组合形式、时间变异特征及其简易估算方法,通过赣北典型的第四纪红壤坡地区2001—2005年的实测资料,对各种降雨参数的单因子、复合因子与土壤流失量进行统计分析,对降雨侵蚀力的时间变异特征进行初步探讨,并对降雨侵蚀力和降雨量进行相关分析。结果表明:∑EI30可作为试验区降雨侵蚀力的最佳组合形式;降雨侵蚀力年际分布不均匀,年内分配主要集中在4—9月(占91.66%),总体上降雨侵蚀力与降雨量的年际和月际变化基本一致;次降雨的降雨侵蚀力与降雨量之间的相关系数为0.838,达到极显著水平。据此可建立基于降雨量的降雨侵蚀力简易模型,对无降雨过程资料地区的降雨侵蚀力计算具有参考价值。  相似文献   

20.
赣江上游平江流域降雨侵蚀力的时空分布特征   总被引:1,自引:0,他引:1  
[目的]研究赣江上游平江流域降雨侵蚀力的时空变化规律,为流域治理措施的制定提供参考。[方法]利用平江流域内10个雨量站点1989—2018年共30 a的日降雨量数据,采用降雨侵蚀力日降雨简易计算模型和Mann-Kendall趋势检验等方法,对平江流域降雨侵蚀力的时间分布规律进行研究;借助ArcGIS 10.1中的克里金插值法对平江流域的降雨侵蚀力进行空间分析。[结果]平江流域降雨侵蚀力在1989—2018年间平均值为4 233 MJ·mm/(hm~2·h·a),最大值为6 766.5 MJ·mm/(hm~2·h)(2015年),最小值为2 191 MJ·mm/(hm~2·h)(2003年);流域内30 a降雨侵蚀力变化较为平稳,年际间呈现出不显著的增加趋势,年内分布同降水量一致,表现为双峰型,分别在6月和8月。降雨侵蚀力在空间上表现为由东北向中南方向递减,而后向西南方向递增,最大值出现在北部城冈站附近,最小值出现在中南部龙口站附近。[结论]平江流域降雨侵蚀力的时空分布特征与流域内降水时空分布基本一致。对流域水土流失防治工作而言,春季应尤其注意降雨侵蚀力较大且出现上升趋势的流域北部地区,夏季和冬季应更加注意流域西南部。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号