首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Genomic imprinting and DNA methylation play an important role in mammalian development. Many cloned animals showed heterogeneous DNA methylation profiles. However, there are fewer reports in cloned lambs because of a lack of genomic imprinting information. In this study, we investigated DNA methylation patterns in CpG islands and differentially methylated regions of putative imprinted gene Peg10 and imprinted genes Dlk1, Igf2R and H19 in cloned lambs. Five organs from two cloned lambs died shortly after birth and two normal controls were investigated. We observed normal DNA methylation profiles in cloned lambs. The imprinted genes Dlk1, Igf2R and H19 in livers, kidneys, hearts, muscles and lungs of the two cloned lambs exhibited relatively normal DNA methylation, except for Peg10 showing some differences between controls and cloned lambs. Our results indicate that somatic cell nuclear transfer-produced sheep exhibited relatively normal DNA methylation pattern and experienced normal DNA methylation reprogramming at imprinted loci.  相似文献   

4.
The presence of Bovine herpesvirus 4 (BoHV-4) was investigated by several methods in 24 aborted bovine fetuses. Polymerase chain reaction (PCR) and in situ DNA hybridization proved the presence of BoHV-4 DNA in 7 (29%) of the fetuses. The BoHV-4 genome was detected in the cytoplasm of splenic lymphocytes and monocytes, and sometimes in renal tubular epithelial cells or hepatic Kupffer cells, in all 7 PCR-positive fetuses. However, BoHV-4-specific monoclonal antibody failed to detect viral antigen in the formalin-fixed, paraffin-embedded tissue samples. No bacterial pathogens were found in the tissues of the BoHV-4-positive fetuses. Fungi were detected in 1 sample, and antibody to bovine viral diarrhea virus was detected in another. These results indicate that BoHV-4 could play a role in reproductive disorders of cattle, including abortion.  相似文献   

5.
Diagnosis of the causes of bovine and ovine abortion is difficult and frustrating and requires a systematic and thorough approach. Laboratory assistance is required in all cases. Herd and individual histories occasionally help, as does knowledge of the gestational age and autolytic condition of the fetus when aborted. Tissues from mummified fetuses should be cultured and examined by fluorescent antibody techniques for viruses. The placental tissue from mummified fetuses should be examined for fungi and lesions. Lung, liver, kidney, spleen, abomasal content, body cavity fluid or serum, and fetal placenta from all but completely mummified fetuses should be submitted to a diagnostic laboratory.  相似文献   

6.
Background: Tibetan pigs, which inhabit the Tibetan Plateau, exhibit distinct phenotypic and physiological characteristics from those of lowland pigs and have adapted well to the extreme conditions at high altitude.However, the genetic and epigenetic mechanisms of hypoxic adaptation in animals remain unclear.Methods: Whole-genome DNA methylation data were generated for heart tissues of Tibetan pigs grown in the highland(TH, n = 4) and lowland(TL, n = 4), as well as Yorkshire pigs grown in the highland(YH, n = 4) and lowland(YL, n = 4), using methylated DNA immunoprecipitation sequencing.Results: We obtained 480 million reads and detected 280679, 287224, 259066, and 332078 methylation enrichment peaks in TH, YH, TL, and YL, respectively. Pairwise TH vs. YH, TL vs. YL, TH vs. TL, and YH vs. YL comparisons revealed6829, 11997, 2828, and 1286 differentially methylated regions(DMRs), respectively. These DMRs contained 384, 619,192, and 92 differentially methylated genes(DMGs), respectively. DMGs that were enriched in the hypoxia-inducible factor 1 signaling pathway and pathways involved in cancer and hypoxia-related processes were considered to be important candidate genes for high-altitude adaptation in Tibetan pigs.Conclusions: This study elucidates the molecular and epigenetic mechanisms involved in hypoxic adaptation in pigs and may help further understand human hypoxia-related diseases.  相似文献   

7.
为了探求新生克隆猪可能的死亡原因以及是否存在不完全的DNA甲基化重编程,本试验运用亚硫酸氢盐测序法分别检测了H19基因和IGF2R基因差异甲基化区(DMR)在新生死亡克隆猪和同期正常猪心脏、肝脏、脾脏、肺脏和肾脏中的甲基化状态。结果发现,H19基因DMR在克隆猪肺脏中表现为超甲基化,极显著高于正常猪(95.20%VS46.80%P〈0.01),且10个测序克隆中存在2处连续的全甲基化CpG位点(4-9位、12-S17位),而在其他组织中甲基化差异不显著(P〉0.05);IGF2R基因DMR在肝脏中处于超甲基化状态,显著高于正常猪(80.00%V839.41%P〈0.05),而在肺脏中为去甲基化状态,板显著低于正常猪(14.71%VS66.47%P〈0.01),在其他组织差异不显著(P〉0.05)。结果说明,在死亡克隆猪中,H19基因DMR在肺脏和IGF2R基因在肝脏与肺脏中存在不完全的DNA甲基化重编程,这可能是导致克隆动物死亡的因素之一。  相似文献   

8.
DNA methylation is an important factor for the regulation of gene expression in early embryos. It is well known that the satellite I sequence is more heavily methylated in bovine somatic cell nuclear transfer (NT-SC) embryos than in embryos derived from in vitro fertilization (IVF). However, the methylation status of bovine embryos obtained by other procedures is not well known. To clarify DNA methylation levels of bovine embryos obtained from various procedures, we examined satellite I sequences in bovine blastocyst (BC) embryos derived from NT-SC, NT using embryonic blastomeres (NT-EM), in vivo (Vivo), IVF and parthenogenetic treatment (PA). Furthermore, in order to evaluate the efficacy of DNA demethylation by the NT procedure, we determined the DNA methylation levels in bovine embryos in which NT was recapitulated (Re-NT). Although the DNA methylation levels in the NT-SC embryos were higher than those in the other embryos, the NT-EM embryos exhibited lower DNA methylation levels. The satellite I sequence in the NT-SC embryos was more demethylated than that in the donor cells. Although the DNA methylation level in the individual NT-SC embryos showed variation, the full-term developmental efficacy of these embryos were not different. These findings suggest that the methylation level of the satellite I sequence at the BC stage is not related to the abnormalities of bovine embryos produced by NT-SC. There was no difference in methylation levels between Re-NT and NT-SC embryos. Our results indicated that the DNA methylation status differed among embryos produced by various methods and that at least some of the demethylation of the donor cell genome occurred in the recipient cytoplast after NT-SC, but the demethylation ability of the NT procedure was noted in the first NT but not in the second NT.  相似文献   

9.
研究以牛体外受精卵作为供体、体外成熟卵子作为受体进行核移植。核移植后根据受体卵子的激活与否及细胞融合时间不同,分别观察了供体核在受体卵子内变化。  相似文献   

10.
The DNA methylation of imprinted genes is an important way to regulate epigenetic reprogramming of donor cells in somatic cell nuclear transfer (SCNT). However, the effects of sexual distinction on the DNA methylation of imprinted genes in cloned animals have seldom been reported. In this study, we analysed the DNA methylation status of three imprinted genes (Xist, IGF2 and H19) from liveborn cloned buffaloes (L group, three female and three male), stillborn cloned buffaloes (S group, three female and three male) and natural reproduction buffaloes (N group, three female and three male), using bisulphite sequencing polymerase chain reaction (BS‐PCR). The expression levels of these imprinted genes were also investigated by quantitative real‐time PCR (QRT‐PCR). The DNA methylation levels of H19 were not significantly different among the groups. However, the Xist in female and IGF2 in male of the S group were found to be significantly hypomethylated in comparison with the same sexual buffaloes in L group and N group (< .05). Furthermore, the expression levels of Xist, IGF2 and H19 in the stillborn female cloned buffaloes of S group were significantly higher than that of the female buffaloes in the L group and N group (< .05). The expression levels of IGF2 and H19 in the stillborn male cloned buffaloes in the S group were significantly higher than that of the male buffaloes in the L group and N group (< .05). These results indicate that Xist may be associated with the viability of female cloned buffaloes, and IGF2 may also be related to the viability of male cloned buffaloes.  相似文献   

11.
Epigenetic reprogramming confers totipotency even during somatic cell nuclear transfer (SCNT), which has been used to clone various animal species. However, as even apparently healthy cloned animals sometimes have aberrant epigenetic status, the harmful effects of these defects could be passed onto their offspring. This is one of the biggest obstacles for the application of cloned animals for livestock production. Here, we investigated the DNA methylation status of four developmentally regulated genes (PEG3, XIST, OCT4, and NANOG) in sperms from a cloned and a non‐cloned bull, and blastocysts obtained by in vitro fertilization using those sperms and SCNT. We found no differences in the methylation status of the above genes between cloned and non‐cloned bull sperms. Moreover, the methylation status was also similar in blastocysts obtained with cloned and non‐cloned bull sperms. In contrast, the methylation status was compromised in the SCNT blastocysts. These results indicate that sperm from cloned bulls would be adequately reprogrammed during spermatogenesis and, thus, could be used to produce epigenetically normal embryos. This study highlights the normality of cloned bull offspring and supports the application of cloned cattle for calf production.  相似文献   

12.
We have evaluated 24 cytopathic (CP) and 37 noncytopathic (NCP) strains of bovine viral diarrhea virus (BVDV) with a dot blot assay using four different genome segments of the NADL strain as hybridization probes (p80, p54, gp53, and gp62). The p80 and p54 probes hybridized to 23/24 (96%) and 22/24 (92%), respectively, of CP strains examined. In contrast, these same two probes only detected 16/37 (43%) and 5/37 (13%), respectively, of the NCP strains examined. The gp53 probe detected 18/24 (75%) and the gp62 probe detected 19/24 (79%) of the CP strains. In contrast, these latter two probes only detected 9/37 (24%) and 7/37 (20%), respectively, of NCP strains. This low detection rate of NCP strains suggests a need for developing a probe based on NCP sequences for identification of NCP strains.  相似文献   

13.
14.
Many observations have been made on cloned embryos and on adult clones by somatic cell nuclear transfer (SCNT), but it is still unclear whether the progeny of cloned animals is presenting normal epigenetic status. Here, in order to accumulate the information for evaluating the normality of cloned cattle, we analyzed the DNA methylation status on satellite I region in blastocysts obtained from cloned cattle. Embryos were produced by artificial insemination (AI) to non‐cloned or cloned dams using semen from non‐cloned or cloned sires. After 7 days of AI, embryos at blastocyst stage were collected by uterine flushing. The DNA methylation levels in embryos obtained by using semen and/or oocytes from cloned cattle were similar to those in in vivo embryos from non‐cloned cattle. In contrast, the DNA methylation levels in SCNT embryos were significantly higher (P < 0.01) than those in in vivo embryos from non‐cloned and cloned cattle, approximately similar to those in somatic cells used as donor cells. Thus, this study provides useful information that epigenetic status may be normal in the progeny of cloned cattle, suggesting the normality of germline cells in cloned cattle.  相似文献   

15.
Tissue specimens obtained from equine herpesvirus-1 (EHV-1), subtype 1-infected aborted foetuses were analysed for the presence of virus DNA by means of Southern blot and dot blot hybridisations. The specificity of the methods was confirmed although the sensitivity was inferior to classical techniques such as virus isolation. However, the possibility of detecting the state of the virus DNA and the ability to distinguish between subtypes were important features, and the dot blot method was shown to have potential for a rapid diagnostic test. This report demonstrates some potential practical applications of hybridisation methods for studying the pathogenesis and epidemiology of EHV-1 but also reveals limitations of the techniques.  相似文献   

16.
Genomic DNA extracted from bovine mummified tissue is valuable material for detection of some genes that may contribute to fetal abnormalities. In this study bovine genomic DNA was extracted from the hardened tissue samples of ten bovine mummified fetuses. The amount of genomic DNA extracted from 2 g of the mummified tissues by the phenol/chloroform-ethanol method was low (less than 4 microg/ml) for all samples. The extracted DNA was then amplified by the GenomiPhi DNA amplification system. After amplification, the amount of DNA was increased to more than 100 microg/ml for all samples. This amplification system was shown to be a good tool for amplifying the genomic DNA of the mummified fetuses. The amplified genomic DNA was used for testing the mummies for Factor XI gene deficiency, an autosomal recessive deficiency involved in the early stages of the intrinsic blood coagulation pathway. Exon 12 of the Factor XI gene of the mummies was amplified by PCR. Two of the ten mummified fetuses were heterozygous for the Factor XI gene as indicated by the presence of two amplified DNA fragments of 320 bp and 244 bp. Factor XI deficiency has already been described in Holstein cattle. However, no report is available for bovine fetus. In this study, DNA was extracted and amplified from the bovine mummified fetuses, and the samples were successfully tested for Factor XI gene deficiency in the mummies.  相似文献   

17.
18.
BackgroundSomatic cell nuclear transfer (SCNT) is used widely in cloning, stem cell research, and regenerative medicine. The type of donor cells is a key factor affecting the SCNT efficiency.ObjectivesThis study examined whether urine-derived somatic cells could be used as donors for SCNT in pigs.MethodsThe viability of cells isolated from urine was assessed using trypan blue and propidium iodide staining. The H3K9me3/H3K27me3 level of the cells was analyzed by immunofluorescence. The in vitro developmental ability of SCNT embryos was evaluated by the blastocyst rate and the expression levels of the core pluripotency factor. Blastocyst cell apoptosis was examined using a terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. The in vivo developmental ability of SCNT embryos was evaluated after embryo transfer.ResultsMost sow urine-derived cells were viable and could be cultured and propagated easily. On the other hand, most of the somatic cells isolated from the boar urine exhibited poor cellular activity. The in vitro development efficiency between the embryos produced by SCNT using porcine embryonic fibroblasts (PEFs) and urine-derived cells were similar. Moreover, The H3K9me3 in SCNT embryos produced from sow urine-derived cells and PEFs at the four-cell stage showed similar intensity. The levels of Oct4, Nanog, and Sox2 expression in blastocysts were similar in the two groups. Furthermore, there is a similar apoptotic level of cloned embryos produced by the two types of cells. Finally, the full-term development ability of the cloned embryos was evaluated, and the cloned fetuses from the urine-derived cells showed absorption.ConclusionsSow urine-derived cells could be used to produce SCNT embryos.  相似文献   

19.
Although interspecies/intergeneric somatic cell nuclear transfer (iSCNT) has been proposed as a tool to produce offspring of endangered species, conflict between donor nucleus and recipient cytoplasm in iSCNT embryos has been identified as an impediment to implementation for agricultural production. To investigate the nuclear–mitochondrial interactions on the developmental potential of iSCNT embryos, we analyzed the mtDNA copy numbers in iSCNT embryos reconstructed with water buffalo (swamp type) fibroblasts and bovine enucleated oocytes (buffalo iSCNT). As controls, SCNT embryos were derived from bovine fibroblasts (bovine SCNT). Buffalo iSCNT and bovine SCNT embryos showed similar rates of cleavage and development to the 8‐cell stage (P > 0.05). However, buffalo iSCNT embryos did not develop beyond the 16‐cell stage. Both bovine and buffalo mtDNA content in buffalo iSCNT embryos was stable throughout the nuclear transfer process, and arrested at the 8‐ to 16‐cell stage (P > 0.05). In bovine SCNT embryos that developed to the blastocyst stage, mtDNA copy number was increased (P < 0.05). In conclusion, both the donor cell and recipient cytoplast mtDNAs of buffalo iSCNT embryos were identified and maintained through the iSCNT process until the 8–16‐cell stage. In addition, the copy number of mtDNA per embryo was a useful monitor to investigate nuclear–mitochondrial interactions.  相似文献   

20.
Fifty-nine bovine fetuses naturally and experimentally infected with Brucella abortus were studied. Lymphoid hyperplasia in multiple lymph nodes, lymphoid depletion in the thymic cortex, adrenal cortical hyperplasia, and disseminated inflammatory foci composed mainly of large mononuclear leukocytes were present in infected fetuses. Histopathologic changes in naturally infected fetuses were indistinguishable from those infected fetuses inoculated in utero. Fetuses inoculated with 1.0 X 10(3) to 1.0 X 10(5) colony-forming units of strain 2308 B abortus were aborted on postinoculation day (PID) 7 to 19. Fetuses obtained by PID 9 and 10 had increased immunoglobulin concentrations and antibody. Increased cortisol values were present in fetuses obtained as early as PID 6. The initial fetal inflammatory response was composed of large mononuclear leukocytes. In fetuses obtained by PID 9 to 10, moderate numbers of neutrophils mixed with mononuclear leukocytes were present in the inflammatory foci. This shift in the initial inflammatory reaction coincided with the appearance of agglutinating antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号