首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The influence of three environmental factors on the incidence of arrested floral development (bud abortion) in different potato clones was studied. The first experiment measured flower production in growth chambers when a 12-h photoperiod was extended by 4 h dim light. The second experiment, also in growth chambers, contrasted flower production under night temperatures of 10°C and 20°C (day temperature 30°C, photoperiod 12 h). A third experiment examined bud abortion in plants grown in the greenhouse under shade cloths which reduced incoming irradiance to ca. 50% of normal. Both the longer photoperiod and warmer night temperature promoted flower production, in some of the clones tested, by reducing bud abortion. Reduced irradiance completely suppressed flower development (but not bud formation) in all clones. In all experiments, the number of flowers developing to anthesis was significantly correlated with shoot dry weight, indicating that treatments which promote shoot growth reduce the incidence of bud abortion. Paper No. 854, Department of Vegetable Crops, Cornell University.  相似文献   

2.
The productive potential of potatoes (Solanum tuberosum L. cvs. Norland, Superior, Norchip, and Kennebec) was assessed for life support systems being proposed for space stations and/or lunar colonies. Plants were grown in walk-in growth rooms for 15 weeks at 20 C under 12-, 16- and 20-h photoperiods of 400 μmol mt-2st-1 photosynthetic photon flux (PPF). Norland yielded the greatest tuber fresh weight, producing 2.3, 2.4, and 2.9 kg/plant under 12-, 16-, and 20-h photoperiods, respectively. The respective yields for the other cultivars under 12-, 16-, and 20-h were: Superior, 1.9, 1.5, and 1.8 kg/plant; Norchip, 1.8, 1.4, and 2.0 kg/plant; and Kennebec, 2.3, 0.2, and 0.8 kg/plant. Shoot and total plant biomass increased with lengthening photoperiods except for Kennebec, which showed increased shoot growth but no change in total growth with the longer photoperiods. Kennebec shoot growth under the 20-h photoperiod, and to some extent under 16-h, was noticeably stunted with shortened internodes. In addition, leaves of these plants showed mild chlorosis with rusty “flecking” of the surfaces. The harvest index (ratio of tuber yield/total biomass) was highest for all cultivars under the 12-h photoperiod, with a maximum of 0.69 for Norland. Similarly, the tuber yield per input of irradiant energy also was highest under 12-h for all cultivars. The tuber yield expressed on an area basis for the highest yielding treatment (Norland under 20-h) equaled 2.2 kg dry matter mt-2. Over 15 weeks this equates to a productivity of 20.7 g tuber dry matter mt-2 dayt-1. Assuming 3.73 kcal per g tuber dry matter and a daily human dietary requirement of 2800 kcal, then 36 m2 of potatoes could supply the daily energy requirement for one human. Potential for increasing productivity is discussed.  相似文献   

3.
A survey of genotypic responses to beneficial bacterium (Pseudomonas sp. strain PsJN) was conductedin vitro andex vitro, under two temperature conditions, using eighteen clones of potato of different heat stress tolerance: temperate adapted cultivars Kennebec and Russet Burbank; heat tolerant DTO-2, DTO-28, DTO-33, LT-1, LT-2, LT-5, LT-6, LT-7, LT-8, LT-9, Y84-02, NDD277-2, Désirée, and Maine-47; and heat sensitive abscissic acid (ABA)-deficient mutants 11401-01 and 9120-05. Nodal explants taken from 6-week-old bacterized and non-bacterized control plantlets were culturedin vitro on a hormone-free potato nodal cutting medium, and placed at either 20/15 C or 33/25 C day/night temperature, 12h photoperiod and 250 µE m?2 s?1 mixture of fluorescent and incandescent light, for six weeks. The tuberization response was studiedex vitro after two weeks acclimation of 2-week old plantlets at 33/25C. The acclimated plantlets were transplanted to 3L plastic nursery pots containing peat-based Pro-Mix growing medium and placed in growth chambers at either 20/15 or 33/25 C day/night temperature, 12 h photoperiod, 475 μE m?2 s?1 light and ≈80% RH, for 12 weeks. Compared to the non-bacterized controls, bacterization significantly increased stem length of 12, shoot biomass of 9, and root biomass of 2 clones at 20/15C; and stem length of 14, shoot biomass of 15, and root biomass of 13 clones at 33/25C. High temperature increased length of internodes and had either no effect or slightly decreased node number. Temperature increase had the most dramatic effect on root development. An average shoot to root ratio decreased from 3.7 at 20/15 C to 1.7 at 33/25 C for non-bacterized plantlets and, respectively, from 4.3 to 1.5 for bacterized. The beneficial effect of bacterization on root biomass was the most pronounced in LT-1 and Maine-47 at 20/15 C and LT-8, Maine 47, DTO-2, Kennebec, NDD277-2 and 11401-01 at 33/25C. The temperature elevation did not significantly affect root biomass of LT-6, DTO-28 and Désirée. Temperature stress caused severe reduction in tuber number and tuber fresh weight. ABA-deficient mutants did not produce any tubers and LT-8, LT-9, Y84-027 and DTO-28 tuberized very poorly at 33/25C. DTO-33, Désirée, LT-1 and Kennebec gave the highest number of tubers per pot and Kennebec, LT-1, Désirée and LT-7 the highest yields at this temperature. There was no significant effect of bacterization on tuberization at 20/15 C but at 33/25 C bacterization significantly enhanced tuber number and weight in LT-7 and reduced tuber weight in DTO-2. Although there was no clear link between thein vitro response of particular clones to bacterization and their heat stress tolerance, improvement ofex vitro performance of heat tolerant LT-7 indicates that rhizosphere bacteria may play a role in clonal adaptation of potato to heat stress.  相似文献   

4.
Potatoes are among several crops under consideration for use in controlled ecological life support systems (CELSS) being proposed for space colonies. Efficient crop production for such life support systems will require nearoptimal growing conditions with harvests taken when production per unit area per unit time is maximum. To determine this maximum for potato, cv. Norland plants were grown in walk-in growth rooms under 12-h and 24-h photoperiods at 16 C and harvested at 42,63, 84,105,126 and 148 days from planting. At 42 days, plants were encaged in wire fence cylinders with a cross-sectional area of 0.2 m2. The dry weights (dwt) of tubers and of the entire plants increased under both photoperiods until the final harvest date (148 days), reaching 572 g tuber dwt and 704 g total dwt under 12-h, and 791 g tuber dwt and 972 g total dwt under 24-h. At a spacing of 0.2 m2 per plant, the 148-day tuber production from plants under continuous light would equate to nearly 40t ha-1 dry matter (200t fresh weight), approximately twice that of exceptionally high field yields. Tuber productivity (g m-2 day-1) under the 24-h photoperiod reached a maximum of 29.4 g dwt m-2 day-1 at 126 days, but continued to rise throughout the experiment under the 12-h photoperiod, reaching 19.5 g dwt m-2 day-1 at 148 days. With a productivity of 29.4 g tuber dwt m-2 day-1, approximately 25 m2 would continuously provide the daily dietary energy requirements for one human.  相似文献   

5.
In two field experiments acetylene (C2H2) reduction by white clover in mixed swards was compared to N2-fixed measured by 15N dilution. In both experiments, samples for C2H2 reduction were 7.5 cm diameter turves taken from plots within which microplots of 24 cm diameter were delimited and to which 15N was applied as ammonium sulphate (15NH4)2SO4). C2H2 reduction was assayed every 6–7 d. The rate of C2H2 reduction per unit length of stolon was applied to the estimated stolon length within the appropriate microplot at the time of assay, and the amount of C2H2 that would have been reduced within the microplot was estimated by integration. In experiment 1, turves taken from grass/clover swards to which 0, 1·5, 3·0, 4·5 or 6·0 g N m?2 had been applied were incubated in sealed chambers (10% C2H2, 90% air). The mean ratio of C2H2 reduced to N2 fixed during 5 weeks was 0.74:1. Application of N fertilizer lowered the proportion of assimilated N derived from N2 fixation from 95% in unfertilized swards to 83% in those receiving 6 g N m?2 (60 kg N ha?1). In experiment 2, clover roots and stolons from plots that previously had been grazed were dissected from turves and incubated in a stream of C2H2 and air (i.e. the open system). The maximum rate of ethylene (C2H4) produced during the first 12 min was taken as a measure of true nitrogenase activity. The relationship between C2H2 reduced and N2 fixed was significant (r=0.80**). The mole ratio was 0.55:1 for the 6 weeks duration of the experiment, the low ratio possibly being due to disturbance of the nodules adversely affecting acetylene reduction. Mole ratios from both experiments were well short of the theoretical 4·3:1. Using the open system does not, therefore, overcome the shortcomings of the acetylene reduction technique for measuring N2 fixation of white clover in mixed swards.  相似文献   

6.
Germination of annual pasture species was studied under controlled‐environment conditions in south‐western Australia at temperatures in the range from 4°C to 35°C. Subterranean clover (Trifolium subterraneum) and Wimmera ryegrass (Lolium rigidum) had a germination of 90% between 12°C and 29°C, whereas capeweed (Arctotheca calendula) had a high germination percentage in a much narrower temperature range with an optimum of 25°C. Growth of subterranean clover, capeweed and Wimmera ryegrass between 28 and 49 days after sowing (DAS) was also studied at two photon flux densities, 13 and 30 mol m?2 d?1, and at diel temperatures in the range from 15/10°C to 33/28°C. Pasture species grown at a density of 1000 plants m?2 accumulated at least twice the amount of shoot dry matter when subjected to temperatures of 21/16°C and 27/22°C, compared with a lower temperature of 15/10°C and a higher temperature of 33/28°C. Except at the highest temperature and at high photon flux density, capeweed had lower green area indices (GAI) than the other two species at 28 DAS. Crop growth rates between 28 and 49 DAS were higher in Wimmera ryegrass than in the other two species, whereas subterranean clover had a lower relative growth rate than the other two species at all temperatures and both photon flux densities. Subterranean clover and capeweed intercepted a greater proportion of the incident radiation compared with Wimmera ryegrass. The values of radiation interception and GAI were used to estimate the number of DAS to reach 75% radiation interception [f(0·75)]. The number of days to reach f(0·75) decreased with increasing temperature from 15/10°C to reach a minimum at 27/22°C. The time taken to achieve f(0·75) was always shorter by about 10 d when the photon flux density was 30 mol m?2 d?1 in the autumn compared with 13 mol m?2 d?1 in the winter. These results are discussed in relation to the early growth of annual pasture in the field.  相似文献   

7.
The growth and tuberization of Norland potatoes were studied under five different temperatures and two photoperiods. Treatment levels included 12, 16, 20, 24, and 28 C with either a 24-h (continuous light) or a 12-h photoperiod at 400 μmol m-2 s-1 PPF. Plants were grown in 6-liter containers and harvested at 56-days-age. Stem length increased with increasing temperature under both photoperiods. The highest tuber yield occurred at 16 C under the 24-h photoperiod (755 g/plant) and at 20 C under the 12-h photoperiod (460 g/plant). Little or no tuber formation occurred at 28 C under either photoperiod or at 24 C under continuous light. As with tuber yield, the highest total plant dry weights also occurred at 16 C under the 24-h photoperiod and at 20 C under the 12-h photoperiod. Harvest index (tuber dry weight to total dry weight ratio) decreased with increasing temperatures and with continuous light. Results indicate that good growth and tuberization can occur under continuous light, and that increasing the photoperiod from 12 to 24 h effectively decreased the optimal temperature for tuber formation from near 20 C to 16 C. Alternatively, the results imply that at cooler temperatures, the potato becomes less obligate for dark period stimulation of tuberization.  相似文献   

8.
In controlled environment cabinets, root growth relative to shoot growth varied directly with the temperature within the range 50·–80·F. Increasing the photoperiod from 6 to 12 hours increased the root growth relative to shoot growth; additional hours of light had no further influence on this ratio. These results are discussed in relation to the maintenance of a balance between photosynthesis and the absorption of water and minerals.  相似文献   

9.
Carbon dioxide concentration can exert a strong influence on plant growth, but this influence can vary depending on irradiance. To study this, potato plants (Solanum tuberosum L.) cultivars Norland', Russet Burbank', and Denali' were grown in controlled-environment rooms at different levels of CO2 and irradiance. Carbon dioxide levels were maintained either at 350 or 1000 micromoles mol-1 and applied in combination with 12- or 24-h photoperiods at 400 or 800 micromoles m-2 s-1 photosynthetic photon flux. Air temperatures and relative humidity were held constant at 16 degrees C and 70%, respectively, and plants were harvested 90 d after planting. When averaged across all cultivars, CO2 enrichment increased tuber yield and total plant dry weight by 39 and 34%, respectively, under a 12-h photoperiod at 400 micromoles m-2 s-1; 27 and 19% under 12 h at 800 micromoles m-2 s-1; 9 and 9% under 24h at 400 micromoles m-2 s-1. It decreased dry weights by 9 and 9% under 24 h at 800 micromoles m-2 s-1. Tuber yield of Denali showed the greatest increase (21%) in response to increased CO2 across all irradiance treatments, while tuber yields of Russet Burbank and Norland were increased 18 and 9%, respectively. The results show a pattern of greater plant growth from CO2 enrichment under lower PPF and a short photoperiod.  相似文献   

10.
The effects of defoliation upon root and shoot systems of prairie grass (Bromus catharticus Vahl) were examined in both field and pot studies. The varieties used were 78–32 (HY), a high-yielding variety; 79–42 (LY), a low-yielding variety; and the commercial variety Grasslands Matua. In the field, the presence of roots in early and late spring was estimated by measuring uptake of [32P]phosphate by roots; herbage yields and tiller numbers were recorded. In a pot study, root and shoot dry-matter (DM) yields were analysed. In the field, roots were detected to a depth of 1·2 m. After defoliation to a height of 0·1 m, root presence decreased more than 50% at depths of 0·6 m for LY and 1·0 m for Matua in early spring and at several depths for each variety in late spring. After a second defoliation, the apparent growth rate of shoots decreased by 35% in relation to the first regrowth period. In pots, shoot DM and root DM of control plants (undefoliated) had the following allometric relationship of the form: In (shoot DM) = 0·61 + 1·14 ln (root DM) (r2= 0·81). After defoliation, compared with undefoliated controls, the relative growth rate of shoots and total herbage yields were higher, but root and stubble DM were lower in all three varieties. Pooled root DM means were 10·3 and 6·8 g plant?1 and pooled stubble DM means were 12·7 and 7·6 g plant?1 for control and defoliated plants respectively. HY produced heavier tillers than LY, pooled means being 0·94 and 0·53 g DM tiller?1 (field study) and 3·44 and 2·05 g DM tiller?1 (pot study) for HY and LY respectively. HY had 5–6 green leaves per tiller, whereas LY had 3–4. Developed green leaves were heavier in HY (58 g m?2) than in LY (48 g m?2). It is suggested that differences in both leaf parameters may be related to higher herbage yields for HY than LY.  相似文献   

11.
Abstract

The temperature coefficient (Q10) of dark respiration in rice gradually decreased in continuous darkness, fluctuating as the circadian rhythmic variation in dark respiration. The solar radiation (MJ m-2) on the day of measurement and the nitrogen concentration in the culture solution hardly affected the Q10 value. However, the plants exposed to high-intensity light (260W m-2) for two weeks showed a higher Q10 of dark respiration than those exposed to low-intensity light (70W m-2). The seasonal variation in Q10 value was not observed. The average Q10 value during the growth stage measured at 15 to 25°C, 20 to 30°C, and 25 to 35°C was 2.14, 1.76, and 1.56, respectively. High crop yield in the regions where the day/night temperature difference is large may be partly explained by the high Q10 at low night temperature. Thus, the Q10 may be an important physiological factor determining high crop yield.  相似文献   

12.
A sulphur (S)‐deficient top soil was used in a pot experiment to investigate the effect of S supply on shoot and root growth and development in alfalfa (Medicago sativa L.). The treatments consisted of three rates of addition of S: 0, 20 and 40 mg kg?1 soil and each was replicated four times. Alfalfa was harvested at 15, 30, 45, 60 and 75 d after seedling emergence. By the end of the experiment, plants with S supply had a significantly larger leaf area, heavier leaf, shoot and root dry weight per pot than controls. The effects of adding S also significantly increased plant height, basal stem diameter, chlorophyll concentration of young leaves, root length and root surface area compared with controls. The effects of S were greater on shoots than on roots. The ratio of root to shoot dry weight was 0·47 when S was supplied and 0·88 without added S, indicating that c. 0·32 and 0·47 of the total net photosynthate, produced with or without S supply, respectively, were used for the development of roots. Overall, overcoming S deficiency resulted in a significant increase in shoot and root growth.  相似文献   

13.
《Field Crops Research》1987,17(1):25-36
The effects of light quality, as used in photoperiod extension, on vegetative growth and floral development of pigeonpea [Cajanus cajan (L.) Millsp.] were studied using three photoperiod-insensitive lines, QPL2, Prabhat, and Hunt, and one photoperiod-sensitive line, Royes. Plants were grown in controlled-environment cabinets under day/night temperature regimes of 24/16°C (low) and 28/24°C (high) for 72 days after emergence (DAE). The five light treatments consisted of 12 and 16-h photoperiods and a 12-h photoperiod extended to 16 h with low-intensity lighting from either incandescent (I), fluorescent (F), or incandescent plus fluorescent (I+F) lamps.Little genetic variation occurred in vegetative response (main stem length and node number, leaf area and shoot dry weight) to extension light source. Response varied with temperature, plant age and growth stage. Main stem node appearance and stem extension tended to decline following floral initiation (FI), whereas leaf area and shoot dry weight accumulation increased rapidly after 35 or 42 DAE, irrespective of whether plants were vegetative or floral. Plants were larger under the high-temperature regime. Temperature altered plant response to extension light source. I-extension promoted growth under both temperature regimes, whilst I+F promoted growth under high temperatures but was unexpectedly inhibitory under low. Under high temperatures F extension was inhibitory prior to FI, but promoted later growth during floral bud development (FBD). Under low temperatures, F-extension was not inhibitory during the pre-initiation phase.The four genotypes differed in their floral response to extension light source, the effect on initiation and development of floral primordia varying dependent upon temperature. Low temperatures resulted in sensitivity to extension light source, delaying FI and FBD. In Royes, failure to initiate under low temperatures was associated with small plant size (≤3.5 g shoot dry weight). High temperatures tended to negate the delaying effects of extension light source, but resulted in photoperiod sensitivity, delaying FI in the early-flowering lines QPL-2 and Prabhat. Under high temperatures, Royes was insensitive (FI and FBD) to extensions containing incandescent light (I, I+F). Under high temperatures, time of flowering was least affected by incandescent extensions (I, I+F), and most by F-extension, which delayed FBD in all lines. Under low temperatures, I+F extensions resulted in the greatest variation in flowering time.It was concluded that where heterogeneity exists in floral response to the intensity and/or quality of light, use of artificial lighting to select for photoperiod sensitivity may lead to misclassification.  相似文献   

14.
Potato (Solanum tuberosum L.) plantlets were conditioned in tissue culture to produce more minitubers when planted in a greenhouse. Tissue-cultured potato plantlets, varieties Coliban and Russet Burbank, were grown for 4, 10, or 12 weeks under three temperature regimes (22/18 °C, 16/10 °C, and 10/2 °C day/night) and a photoperiod of 16, 12, or 8 h in different stages of growth. Duration, temperature, and photoperiod of the in vitro period affected plantlet morphology and the total number of minitubers produced per plant in a greenhouse. Extending the growing period and introducing a hardening period with low temperatures (16/10 °C) during the in vitro production stage resulted in 97% more minitubers (4.94 vs 2.50 minitubers per plant for the control) in variety Coliban and up to 71% (6.50 vs 3.80 minitubers per plant for the control) in variety Russet Burbank. The total number of minitubers produced per plant did not change significantly for both varieties when a shorter photoperiod was used instead of the standard 16-h day during the growing period in vitro. Results presented in this experiment demonstrate that the number of minitubers can be substantially increased through the introduction of an induction period as an interstage between the in vitro stages of potato plantlet production and minituber production.  相似文献   

15.
Summary Cultivars Bintje and Désirée were grown in a set-up that allowed temperatures of the shoot, root, and stolon environments to be separately varied. Shoot and root temperatures were either low, 18°C, or high, 28°C. Stolon temperatures were either ‘normal’, i.e. allowed to equilibrate at an ambient that depended on the temperatures of the shoot and root compartments, or ‘in-creased’ by fixed supplementary heating units in the stolon chambers. Haulm longevity was increased by the combination high shoot temperature and low root temperature, but greatly decreased by high shoot temperature combined with high root temperature. The increased stolon temperature also advanced senescence. The number of branches per stem (and thereby the number of leaves) was increased by an increase in stolon temperature, but the interaction with air temperature was significant. A high root temperature reduced the number of leaves significantly. The effects on stem yield were complex; several interactions proved significant. The total drymatter yield was affected by all single factors except shoot temperature.  相似文献   

16.
An experiment is described in which the amount of nitrogen fixed by the white clover component of a surface-sown hill sward was determined using small quantities of 15N-labelled ammonium sulphate. Between 11 July and 22 August 1974 25 kg ha?1 N was fixed. No evidence of a transfer of N from clover to the associated perennial ryegrass was detectable over this period although the N content of the grass growing with the clover was higher. The relative advantages of the isotope technique and the acetylene reduction assay are discussed.  相似文献   

17.
Water logging and salinity often occur together because rising water table brings salt to the surface. We studied the effects of a range of low soil matric suctions (or nearly paddy condition) (2–33 kPa) and salinity (EC = 0.7–8 dS m?1 for bean and 2–20 dS m?1 for wheat) on the root respiration (Rr) in two sandy loam and clay loam soils at greenhouse condition. Results showed that the aeration porosity mainly controls Rr especially at 2 kPa matric suction. As matric suction increases, soil aeration rises and consequently the Rr reaches maximum values (7.9 μmol m?3 s?1 for bean and wheat) at 6 and 10 kPa suctions in clay loam and sandy loam soils, respectively. Using a mechanistic soil respiration model reveals that these matric suctions, h, are corresponded to the aeration porosities of 0.18 m3 m?3 in sandy loam and 0.16 m3 m?3 in clay loam soils. Bean and wheat Rr remains nearly constant at higher suctions (h > 10 kPa) in sandy loam and decreases slightly in clay loam soil. Gas diffusivity and the root surface area may explain the variation of the Rr between the sandy loam and the clay loam soils. Results showed that the salinity (EC = 6–8 dS m?1 for bean and EC = 16–20 dS m?1 for wheat) amplifies the effect of aeration stress at 2 kPa matric suction in both soils. We also observed a strong correlation between root surface area, Rs, and the Rr for all experiments. We concluded that the aeration deficit is not only major factor determining differential plant respiration under adverse stress conditions, and the salinity has a pronounced impact on differences in crop physiological responses.  相似文献   

18.
The relationship of photosynthesis and dark respiration to reduced potato growth at temperatures above 20°C was determined. Ten potato clones were propagated in vitro from sterile plandets and grown in a growth chamber at 20/15°C and 30/25°C (day/night) with an 18 hr. daylength. Plants were harvested 26 to 30 days after transplanting. Daylength was decreased to 12 hrs. to induce tuberization and plants were harvested at 45-51 and 75-79 days after transplanting. At each harvest one plant from each cultivar was chosen from each of five blocks and selected growth (tuber number and dry weight of leaves, stems, roots and stolons, and tubers) and physiological variates [leaf area, net photosynthesis, maintenance dark respiration, and chlorophyll fluorescence parameters 0 (Initial), P (Peak), T (Terminal), P-O (Variable fluorescence) and P-T (Fluorescence quenching)] were measured. The high temperature decreased root and stolon, tuber and total dry weight and increased stem dry weight. Amongst physiological variates, the higher temperature decreased leaf area, net photosynthesis and maintenance dark respiration. The chlorophyll fluorescence parameter 0 significantly increased, which also increased the P and T parameters. Variable fluorescence (P-O) and fluorescence quenching (PT) were not significantly affected by the growth temperature. The analyses of covariance, in which physiological variates were used as covariates to remove significant differences in growth variates, indicated that the most effective covariate was the T chlorophyll fluorescence parameter. The least effective covariates were leaf dark respiration and the chlorophyll fluorescence parameters P-O and P-T. The changes in 0 fluorescence suggest that reduced photosynthetic efficiency, particularly in Photosystem II, plays a major role in reduced potato production at high temperatures.  相似文献   

19.
An investigation of the carbon economy of single S184 white clover plants nodulated with an effective strain of Rhizobium trifolii growing on N-free nutrient solution and supplied with 150 parts/106 N as NH4NO3 has shown that 10% more of the C fixed per day is available for growth in the plants supplied with combined N. The difference between the two groups of plants is a result of higher respiratory activity in the roots of plants growing exclusively on N2. In terms of shoot growth, however, the difference in growth rate is likely to be less than 10%, because the rate of root growth is greater in the plants supplied with a moderate level of combined N. There is no evidence that NO-3 and CO2 compete for photosynthetically produced reductant in the leaves of plants grown on N2+NH4NO3, since no reduction in net photosynthesis was observed in plants assimilating combined N. An experiment carried out on detached leaflets of white clover grown on N2 and on N2+ NH4NO3 has shown that NO-3 -reducing activity is present in the leaflets of plants grown on N2+ NH4NO3 but not in plants grown on N2 and that the activity is light-dependent. Measurements of 14CO2 respired in the light and dark by leaflets previously allowed to photosynthesize 14CO2 showed that the ratio of 14CO2 output in the light to 14CO2 output in the dark was no higher in plants grown on N2+ NH4NO3 than in plants grown on N2. This observation is consistent with the finding that N source does not affect net photosynthesis in whole plants.  相似文献   

20.
《Field Crops Research》1995,41(1):13-23
The objectives of this study were to evaluate effects of ambient and double ambient [CO2] at a range of growing temperatures on photosynthesis, respiration, transpiration, water-use efficiency and dry matter accumulation of cotton plants (Gossypium hirsutum L., cv. DPL 50). In Experiment I, plants were grown outdoors until first bloom, then transferred into naturally lit growth chambers and grown for 22 days at 30/18°C with five CO2 concentrations varying from 350 to 900 μl l−1. In Experiment II, air temperatures were maintained at 20/12, 25/17, 30/22, and 35/27°C day/night during a 70-day experimental period with [CO2] of 350 and 700 μl l−1 at each temperature. Photosynthesis increased with [CO2] from 350 to 700 μl l−1 and with temperature. Plants grown at 35/27°C produced fewer bolls due to abscission compared with plants grown at optimum temperatures (30/20°C). At higher [CO2], water-use efficiency increased at all temperatures due mainly to increased canopy photosynthesis but also to more limited extent to reduced canopy transpiration. Increased photosynthesis at higher [CO2] resulted in greater dry matter accumulation at all temperatures except at 20/12°C. Respiration increased as dry matter and temperature increased. Plants grown at higher [CO2] had less respiration per unit dry matter but more per unit area. These results indicate that future increases in [CO2] are likely to benefit cotton production by increasing carbon assimilation under temperatures favorable for cotton growth. Reduced fruit weights at higher temperatures indicate potential negative effects on production if air temperatures increase as projected in a high-CO2 world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号