首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of histone H3 lysine 27 methylation in Polycomb-group silencing   总被引:2,自引:0,他引:2  
Polycomb group (PcG) proteins play important roles in maintaining the silent state of HOX genes. Recent studies have implicated histone methylation in long-term gene silencing. However, a connection between PcG-mediated gene silencing and histone methylation has not been established. Here we report the purification and characterization of an EED-EZH2 complex, the human counterpart of the Drosophila ESC-E(Z) complex. We demonstrate that the complex specifically methylates nucleosomal histone H3 at lysine 27 (H3-K27). Using chromatin immunoprecipitation assays, we show that H3-K27 methylation colocalizes with, and is dependent on, E(Z) binding at an Ultrabithorax (Ubx) Polycomb response element (PRE), and that this methylation correlates with Ubx repression. Methylation on H3-K27 facilitates binding of Polycomb (PC), a component of the PRC1 complex, to histone H3 amino-terminal tail. Thus, these studies establish a link between histone methylation and PcG-mediated gene silencing.  相似文献   

2.
3.
4.
DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone chaperone Asf1 and MCM2-7, the putative replicative helicase, are connected through a histone H3-H4 bridge. Depletion of Asf1 by RNA interference impedes DNA unwinding at replication sites, and similar defects arise from overproduction of new histone H3-H4 that compromises Asf1 function. These data link Asf1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork progression and histone supply and demand.  相似文献   

5.
Role of histone H3 lysine 27 methylation in X inactivation   总被引:1,自引:0,他引:1  
The Polycomb group (PcG) protein Eed is implicated in regulation of imprinted X-chromosome inactivation in extraembryonic cells but not of random X inactivation in embryonic cells. The Drosophila homolog of the Eed-Ezh2 PcG protein complex achieves gene silencing through methylation of histone H3 on lysine 27 (H3-K27), which suggests a role for H3-K27 methylation in imprinted X inactivation. Here we demonstrate that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation. Recruitment of the complex and methylation on the Xi depend on Xist RNA but are independent of its silencing function. Together, our results suggest a role for Eed-Ezh2-mediated H3-K27 methylation during initiation of both imprinted and random X inactivation and demonstrate that H3-K27 methylation is not sufficient for silencing of the Xi.  相似文献   

6.
Differential cytosine methylation of repeats and genes is important for coordination of genome stability and proper gene expression. Through genetic screen of mutants showing ectopic cytosine methylation in a genic region, we identified a jmjC-domain gene, IBM1 (increase in bonsai methylation 1), in Arabidopsis thaliana. In addition to the ectopic cytosine methylation, the ibm1 mutations induced a variety of developmental phenotypes, which depend on methylation of histone H3 at lysine 9. Paradoxically, the developmental phenotypes of the ibm1 were enhanced by the mutation in the chromatin-remodeling gene DDM1 (decrease in DNA methylation 1), which is necessary for keeping methylation and silencing of repeated heterochromatin loci. Our results demonstrate the importance of chromatin remodeling and histone modifications in the differential epigenetic control of repeats and genes.  相似文献   

7.
8.
The organization of chromatin affects all aspects of nuclear DNA metabolism in eukaryotes. H3.3 is an evolutionarily conserved histone variant and a key substrate for replication-independent chromatin assembly. Elimination of chromatin remodeling factor CHD1 in Drosophila embryos abolishes incorporation of H3.3 into the male pronucleus, renders the paternal genome unable to participate in zygotic mitoses, and leads to the development of haploid embryos. Furthermore, CHD1, but not ISWI, interacts with HIRA in cytoplasmic extracts. Our findings establish CHD1 as a major factor in replacement histone metabolism in the nucleus and reveal a critical role for CHD1 in the earliest developmental instances of genome-scale, replication-independent nucleosome assembly. Furthermore, our results point to the general requirement of adenosine triphosphate (ATP)-utilizing motor proteins for histone deposition in vivo.  相似文献   

9.
10.
The chromodomain of the HP1 family of proteins recognizes histone tails with specifically methylated lysines. Here, we present structural, energetic, and mutational analyses of the complex between the Drosophila HP1 chromodomain and the histone H3 tail with a methyllysine at residue 9, a modification associated with epigenetic silencing. The histone tail inserts as a beta strand, completing the beta-sandwich architecture of the chromodomain. The methylammonium group is caged by three aromatic side chains, whereas adjacent residues form discerning contacts with one face of the chromodomain. Comparison of dimethyl- and trimethyllysine-containing complexes suggests a role for cation-pi and van der Waals interactions, with trimethylation slightly improving the binding affinity.  相似文献   

11.
12.
董强 《安徽农业科学》2009,37(20):9380-9383
组蛋白翻译后修饰包括乙酰化、磷酸化、甲基化、泛素化和糖基化等。其中,组蛋白泛素化可能与基因的转录调控、异染色质的基因沉默、DNA修复等有关。笔者介绍了组蛋白H2B的泛素化机制及其意义。  相似文献   

13.
The structure of the (H2A-H2B-H3-H4)2 histone octamer has been determined by means of x-ray crystallographic techniques at a resolution of 3.3 angstroms. The octamer is a prolate ellipsoid 110 angstroms long and 65 to 70 angstroms in diameter, and its general shape is that of a rugby ball. The size and shape are radically different from those determined in earlier studies. The most striking feature of the histone octamer is its tripartite organization, that is, a central (H3-H4)2 tetramer flanked by two H2A-H2B dimers. The DNA helix, placed around the octamer in a path suggested by the features on the surface of the protein, appears like a spring holding the H2A-H2B dimers at either end of the (H3-H4)2 tetramer.  相似文献   

14.
Clustering of human H1 and core histone genes   总被引:9,自引:0,他引:9  
An H1 histone gene was isolated from a 15-kilobase human DNA genomic sequence. The presence of H2A, H2B, H3, and H4 genes in this same 15-kilobase fragment indicates that mammalian core and H1 histone genes are clustered.  相似文献   

15.
Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex   总被引:2,自引:0,他引:2  
The complex containing the Mre11, Rad50, and Nbs1 proteins (MRN) is essential for the cellular response to DNA double-strand breaks, integrating DNA repair with the activation of checkpoint signaling through the protein kinase ATM (ataxia telangiectasia mutated). We demonstrate that MRN stimulates the kinase activity of ATM in vitro toward its substrates p53, Chk2, and histone H2AX. MRN makes multiple contacts with ATM and appears to stimulate ATM activity by facilitating the stable binding of substrates. Phosphorylation of Nbs1 is critical for MRN stimulation of ATM activity toward Chk2, but not p53. Kinase-deficient ATM inhibits wild-type ATM phosphorylation of Chk2, consistent with the dominant-negative effect of kinase-deficient ATM in vivo.  相似文献   

16.
[目的]采用60Coγ射线辐照选育阿维链霉菌,筛选B1a产量提高的突变菌株。[方法]用60Coγ射线作为诱变源,在辐照剂量200~1 600 Gy、剂量率10 Gy/min的条件下对一株未经任何诱变的微生物农药阿维菌素菌株Av2进行了诱变改良;对该菌株的致死率、突变率、菌落形态变化与60Coγ射线辐照剂量的关系进行了探讨,其中初筛采用抑菌圈法,复筛采用摇瓶培养发酵,阿维菌素含量测定采用高效液相色谱法。[结果]在800 Gy辐射剂量下得到了Av2-m212、Av2-m245和Av2-m286 3株高效突变菌,其Bla产量分别比原始菌株提高了36%、41%和46%,均属于皱缩型菌株。高于30%的正突变菌均在800 Gy辐射剂量下产生,该剂量点是致死率和正突变率趋于平稳的交叉点。辐照后皱缩型和火山型突变菌有正突变菌,其他形态菌株均为负突变。[结论]60Coγ射线在阿维菌素产生菌的诱变筛选中起到了重要作用,是一种非常有效的微生物诱变育种方法。  相似文献   

17.
18.
Posttranslational modifications of the histone octamer play important roles in regulating responses to DNA damage. Here, we reveal that Saccharomyces cerevisiae Rtt109p promotes genome stability and resistance to DNA-damaging agents, and that it does this by functionally cooperating with the histone chaperone Asf1p to maintain normal chromatin structure. Furthermore, we show that, as for Asf1p, Rtt109p is required for histone H3 acetylation on lysine 56 (K56) in vivo. Moreover, we show that Rtt109p directly catalyzes this modification in vitro in a manner that is stimulated by Asf1p. These data establish Rtt109p as a member of a new class of histone acetyltransferases and show that its actions are critical for cell survival in the presence of DNA damage during S phase.  相似文献   

19.
The assembly of higher order chromatin structures has been linked to the covalent modifications of histone tails. We provide in vivo evidence that lysine 9 of histone H3 (H3 Lys9) is preferentially methylated by the Clr4 protein at heterochromatin-associated regions in fission yeast. Both the conserved chromo- and SET domains of Clr4 are required for H3 Lys9 methylation in vivo. Localization of Swi6, a homolog of Drosophila HP1, to heterochomatic regions is dependent on H3 Lys9 methylation. Moreover, an H3-specific deacetylase Clr3 and a beta-propeller domain protein Rik1 are required for H3 Lys9 methylation by Clr4 and Swi6 localization. These data define a conserved pathway wherein sequential histone modifications establish a "histone code" essential for the epigenetic inheritance of heterochromatin assembly.  相似文献   

20.
The Arabidopsis gene DDM1 is required to maintain DNA methylation levels and is responsible for transposon and transgene silencing. However, rather than encoding a DNA methyltransferase, DDM1 has similarity to the SWI/SNF family of adenosine triphosphate-dependent chromatin remodeling genes, suggesting an indirect role in DNA methylation. Here we show that DDM1 is also required to maintain histone H3 methylation patterns. In wild-type heterochromatin, transposons and silent genes are associated with histone H3 methylated at lysine 9, whereas known genes are preferentially associated with methylated lysine 4. In ddm1 heterochromatin, DNA methylation is lost, and methylation of lysine 9 is largely replaced by methylation of lysine 4. Because DNA methylation has recently been shown to depend on histone H3 lysine 9 methylation, our results suggest that transposon methylation may be guided by histone H3 methylation in plant genomes. This would account for the epigenetic inheritance of hypomethylated DNA once histone H3 methylation patterns are altered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号