首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isolates of Pseudomonas syringae pv. pisi from the UK and overseas were categorized into six races on the basis of their reactions to a range of differential pea (Pisum sativum) cultivars. Race 2 was predominant among the isolates examined and this probably reflects its relative international importance. A previously uncharacterized race (race 6) was virulent on all cultivars tested. Resistance to races 1-5 was widespread in commercial cultivars and breeding lines with more than 75% showing resistance to one or more races. A preliminary study of the inheritance of resistance indicated that for races 1, 2 and 3, resistance was controlled by different dominant genes. The genetic basis for the relationship between races of P. syringae pv. pisi and pea cultivars was explained in terms of a gene-for-gene relationship involving five matching gene pairs. With further clarification of the genetics of resistance this host-pathogen association will meet most of the requirements of a model system for the study of the genetic and molecular basis of pathogenicity and host specificity.  相似文献   

2.
The inheritance of specific virulence in Bremia lactucae was studied in crosses involving 12 heterothallic isolates of the fungus. In one cross, virulence to eight of the II specific resistance factors examined segregated in the F1 generation. Although there were exceptions, most of the data were consistent with the hypothesis that pathogenicity was controlled by independent single loci with avirulence dominant to virulence. Linkage between loci determining virulence on R2 and R11 was confirmed. Loci controlling virulence on R5 and R8 also appeared to be linked but these may be identical R-factors. Contrary to a previous suggestion, the locus determining virulence to R10 was independent of that for R5/R8. The expression of virulence to three R-factors (Rl, R4 and R5/R8) was influenced by independent second loci. The presence of a dominant allele at the second locus inhibited avirulence. The expression of avirulence on R6 seemed to be influenced by modifier genes and environment in some isolates. Although the cultivars Mildura, Bourguignonne, Sucrine and Captain were originally thought to contain a single resistance factor, these data suggest that Sucrine carries R5/R8 in addition to R10 whilst Mildura may carry Rl in addition to R3. The stock of Bourguignonne appeared to be a mixture of resistance genotypes. The data add additional support to the suggestion that Capitan (Rll) may carry two resistance factors.  相似文献   

3.
The inheritance of specific virulence in Bremia lactucae was studied by hybridizing two isolates which differed in their virulence on host cultivars carrying the resistance factors R1, R2, R4, R6 and R11. Avirulence on R1, R2, R4 and R11 was dominant to virulence and the segregation conformed to that expected for alleles at single loci, although reactions on R4 were not always dearly defined. The loci conditioning avirulence on R2 and R11 were probably linked. It was difficult to classify the reactions of isolates on R6 and the ratios obtained could not readily be interpreted in Mendelian terms. Since no segregation was observed for reaction on R3, R5, R7, R8, R9 and R10 it was concluded that the genes determining virulence on these factors occurred at the same loci in both isolates, Sexual compatibility type (B1 and B2) segregated with a ratio of 1:1.  相似文献   

4.
Inheritance of resistance to bacterial blight in 21 cultivars of rice   总被引:1,自引:0,他引:1  
ABSTRACT Genetic analysis for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) of 21 rice (Oryza sativa L.) cultivars was carried out. These cultivars were divided into two groups based on their reactions to Philippine races of bacterial blight. Cultivars of group 1 were resistant to race 1 and those of group 2 were susceptible to race 1 but resistant to race 2. All the cultivars were crossed with TN1, which is susceptible to all the Philippine races of X. oryzae pv. oryzae. F(1) and F(2) populations of hybrids of group 1 cultivars were evaluated using race 1 and F(1) and F(2) populations of hybrids of group 2 cultivars were evaluated using race 2. All the cultivars showed monogenic inheritance of resistance. Allelic relationships of the genes were investigated by crossing these cultivars with different testers having single genes for resistance. Three cultivars have Xa4, another three have xa5, one has xa8, two have Xa3, eight have Xa10, and one has Xa4 as well as Xa10. Three cultivars have new, as yet undescribed, genes. Nep Bha Bong To has a new recessive gene for moderate resistance to races 1, 2, and 3 and resistance to race 5. This gene is designated xa26(t). Arai Raj has a dominant gene for resistance to race 2 which segregates independently of Xa10. This gene is designated as Xa27(t). Lota Sail has a recessive gene for resistance to race 2 which segregates independently of Xa10. This gene is designated as xa28(t).  相似文献   

5.
ABSTRACT The inheritance of resistance to three Xanthomonas campestris pv. campestris races was studied in crosses between resistant and susceptible lines of Brassica oleracea (C genome), B. carinata (BC genome), and B. napus (AC genome). Resistance to race 3 in the B. oleracea doubled haploid line BOH 85c and in PI 436606 was controlled by a single dominant locus (Xca3). Resistance to races 1 and 3 in the B. oleracea line Badger Inbred-16 was quantitative and recessive. Strong resistance to races 1 and 4 was controlled by a single dominant locus (Xca1) in the B. carinata line PI 199947. This resistance probably originates from the B genome. Resistance to race 4 in three B. napus lines, cv. Cobra, the rapid cycling line CrGC5, and the doubled haploid line N-o-1, was controlled by a single dominant locus (Xca4). A set of doubled haploid lines, selected from a population used previously to develop a restriction fragment length polymorphism map, was used to map this locus. Xca4 was positioned on linkage group N5 of the B. napus A genome, indicating that this resistance originated from B. rapa. Xca4 is the first major locus to be mapped that controls race-specific resistance to X. campestris pv. campestris in Brassica spp.  相似文献   

6.
ABSTRACT Leptosphaeria maculans, the causal agent of stem canker of oilseed rape, develops gene-for-gene interactions with its hosts. To date, eight L. maculans avirulence (Avr) genes, AvrLm1 to AvrLm8, have been genetically characterized. An additional Avr gene, AvrLm9, that interacts with the resistance gene Rlm9, was genetically characterized here following in vitro crosses of the pathogen. A worldwide collection of 63 isolates, including the International Blackleg of Crucifers Network collection, was genotyped at these nine Avr loci. In a first step, isolates were classified into pathogenicity groups (PGs) using two published differential sets. This analysis revealed geographical disparities as regards the proportion of each PG. Genotyping of isolates at all Avr loci confirmed the disparities between continents, in terms of Avr allele frequencies, particularly for AvrLm2, AvrLm3, AvrLm7, AvrLm8, and AvrLm9, or in terms of race structure, diversity, and complexity. Twenty-six distinct races were identified in the collection. A larger number of races (n = 18) was found in Australia than in Europe (n = 8). Mean number of virulence alleles per isolate was also higher in Australia (5.11 virulence alleles) than in Europe (4.33) and Canada (3.46). Due to the diversity of populations of L. maculans evidenced here at the race level, a new, open terminology is proposed for L. maculans race designation, indicating all Avr loci for which the isolate is avirulent.  相似文献   

7.
ABSTRACT Twenty-five Xanthomonas isolates, including some isolates received as either X. campestris pv. armoraciae or pv. raphani, caused discrete leaf spot symptoms when spray-inoculated onto at least one Brassica oleracea cultivar. Twelve of these isolates and four other Xanthomonas isolates were spray- and pin-inoculated onto 21 different plant species/cultivars including horseradish (Armoracia rusticana), radish (Raphanus sativus), and tomato (Lycopersicon esculentum). The remaining 13 leaf spot isolates were spray-inoculated onto a subset of 10 plant species/cultivars. The leaf spot isolates were very aggressive on several Brassica spp., radish, and tomato causing leaf spots and dark sunken lesions on the middle vein, petiole, and stem. Based on the differential reactions of several Brassica spp. and radish cultivars, the leaf spot isolates were divided into three races, with races 1 and 3 predominating. A differential series was established to determine the race-type of isolates and a gene-for-gene model based on the interaction of two avirulence genes in the pathogen races and two matching resistance genes in the differential hosts is proposed. Repetitive-DNA polymerase chain reaction-based fingerprinting was used to assess the genetic diversity of the leaf spot isolates and isolates of closely related Xanthomonas pathovars. Although there was variability within each race, the leaf spot isolates were clustered separately from the X. campestris pv. campestris isolates. We propose that X. campestris isolates that cause a nonvascular leaf spot disease on Brassica spp. should be identified as pv. raphani and not pv. armoraciae. Race-type strains and a neopathotype strain for X. campestris pv. raphani are proposed.  相似文献   

8.
ABSTRACT The inheritance of avirulence and polymorphic molecular markers in Albugo candida, the cause of white rust of crucifers, was studied in crosses of race 2 (Ac2), using isolates MiAc2-B1 or MiAc2-B5 (metalaxyl-insensitive and virulent to Brassica juncea cv. Burgonde) with race 7 (Ac7), using isolate MsAc7-A1 (metalaxyl-sensitive and virulent to B. rapa cv. Torch). Hybrids were obtained via co-inoculation onto a common susceptible host. Putative F(1) progeny were selfed to produce F(2) progeny. The parents and F(1) progeny were examined for virulence on the differential cultivars B. juncea cv. Burgonde and B. rapa cv. Torch. Segregation of avirulence or virulence of F(2) populations was analyzed on cv. Torch. Putative F(1) hybrids were confirmed by random amplified polymorphic DNA markers specific for each parent. Avirulence or virulence of F (2) progeny to B. rapa cv. Torch suggested 3:1 in each of three populations, supporting the hypothesis of a single dominant avirulence gene. Amplified fragment length polymorphism markers also segregated in regular Mendelian fashion among F(2) progeny derived from two F(1) hybrids (Cr2-5 and Cr2-7) of Cross-2. This first putative avirulence gene in A. candida was designated AvrAc1. These results suggest that a single dominant gene controls avirulence in race Ac2 to B. rapa cv. Torch and provides further evidence for the gene-for-gene relationship in the Albugo-Brassica pathosystem.  相似文献   

9.
Kousik CS  Ritchie DF 《Phytopathology》1999,89(11):1066-1072
ABSTRACT Disease severity caused by races 1 through 6 of Xanthomonas campestris pv. vesicatoria on eight near-isogenic lines (isolines) of Early Calwonder (ECW) with three major resistance genes (Bs1, Bs2, and Bs3) in different combinations was evaluated in the greenhouse and field. Strains representing races 1, 3, 4, and 6 caused similar high levels of disease severity, followed by races 2 and 5 on susceptible ECW. Race 3 caused severe disease on all isolines lacking resistance gene Bs2. Race 4, which defeats Bs1 and Bs2, caused less disease on isoline ECW-12R (carries Bs1 + Bs2), than on isolines ECW, ECW-10R (carries Bs1), and ECW-20R (carries Bs2). Similar results were obtained with race 4 strains in field studies conducted during 1997 and 1998. In greenhouse studies, race 6, which defeats all three major genes, caused less disease on isoline ECW-13R (carries Bs1 + Bs3) and ECW-123R (carries Bs1 + Bs2 + Bs3) than on isolines ECW, ECW-10R, ECW-20R, and ECW-30R (carries Bs3), but not on ECW-23R (carries Bs2 + Bs3). In greenhouse studies with commercial hybrids, strains of races 4 and 6 caused less disease on Boynton Bell (carries Bs1 + Bs2) than on Camelot (carries no known resistance genes), King Arthur (carries Bs1), and X3R Camelot (carries Bs2). Race 6 caused less disease on hybrid R6015 (carries Bs1 + Bs2 + Bs3) and Sentinel (carries Bs1 + Bs3) than on Camelot. Residual effects were not as evident in field studies with race 6 strains. Defeated major resistance genes deployed in specific gene combinations (i.e., gene pyramids) were associated with less area under the disease progress curve than when genes were deployed individually in isolines of ECW or commercial hybrids. Successful management of bacterial spot of pepper is achieved incrementally by integrating multiple tactics. Although there is evidence of residual effects from defeated genes, these effects alone likely will not provide acceptable bacterial spot control in commercial production fields. However, when combined with sanitation practices and a judicious spray program, pyramids of defeated resistance genes may aid in reducing the risk of major losses due to bacterial spot.  相似文献   

10.
This paper describes the first large-scale Europe-wide survey of avirulence alleles and races of Leptosphaeria maculans. Isolates were collected from the spring rape cultivar Drakkar, with no known genes for resistance against L. maculans, at six experimental sites across the main oilseed rape growing regions of Europe, including the UK, Germany, Sweden and Poland. Additionally in Poland isolates were collected from cv. Darmor, which has resistance gene, Rlm9. In total, 603 isolates were collected during autumn in 2002 (287 isolates from Germany and the UK) and 2003 (316 isolates from Poland and Sweden). The identity of alleles at eight avirulence loci was determined for these isolates. No isolates had the virulence allele avrLm6 and three virulence alleles (avrLm2, avrLm3 and avrLm9) were present in all isolates. The isolates were polymorphic for AvrLm1, AvrLm4, AvrLm5 and AvrLm7 alleles, with virulence alleles at AvrLm1 and AvrLm4 loci and avirulence alleles at AvrLm7 and AvrLm5 loci predominant in populations. Virulent avrLm7 isolates were found at only one site in Sweden. Approximately 90% of all isolates belonged to one of two races (combinations of avirulence alleles), Av5-6-7 (77% of isolates) or Av6-7 (12%). Eight races were identified, with four races at frequencies less than 1%. The study suggested that Rlm6 and Rlm7 are still effective sources of resistance against L. maculans in oilseed rape in Europe. The results are comparable to those of a similar survey done in France in autumn 2000 and 2001.  相似文献   

11.
为明确安徽省白叶枯病菌小种组成及常用、备用品种对该病的抗性,用白叶枯病强毒性小种FuJ和YN24、中等致病力的安徽省优势小种AH以及弱致病小种YN7对安徽省常用及备用水稻品种进行人工接种鉴定;用鉴别品种IRBB5、IRBB13、IRBB3、IRBB14、IRBB2、R24对安徽的白叶枯病菌株进行鉴定.结果表明,有3.5%的品种抗FuJ,15.4%的品种抗YN24,29.8%的品种抗AH;安徽省白叶枯病菌小种有R2、R5和R8,其中R5为优势小种.抗AH的品种可以用于安徽的水稻生产;生产中应防止FuJ和YN24等毒性强的菌株传入.  相似文献   

12.
The inheritance of virulence in Bremia lactucae to match specific resistance factors in lettuce was studied by crossing heterothallic isolates of B. lactucae. Avirulence seemed to be dominant to virulence. Although virulence to some R-factors was inherited at a single locus, thus supporting the hypothesis of a gene-for-gene interaction between B. lactucae and L. sativa , inheritance of virulence to other R-factors was more complex. Two loci seemed to determine virulence to R11; the determinants of virulence to R5, R8 and R10 were either closely linked or allelic; virulence to these loci appeared to be epistatic to virulence to match R9. Virulence to R4 probably involved the interaction of two loci, one of which inhibited avirulence. Determinants of fitness of B. lactucae and possibly genes of minor effect modifying specific virulence factors also segregated. These studies emphasized the potential variability in B. lactucae and implied that isolates should not be assigned to distinct races.  相似文献   

13.
The genetic diversity of Xanthomonas campestris pv. campestris isolates from South Africa was evaluated using 28 isolates obtained from the Johannesburg Fresh Produce Market. Samples were collected from cabbage supplies from farms in Gauteng, Mpumalanga and North West Provinces. Strains were isolated from small sections of infected cabbage leaf samples and cultured on Yeast Dextrose Agar. Isolates identity was confirmed by ELISA and Pathogenicity test. Pathogenicity tests were performed by inoculating leaves of known susceptible cabbage seedlings. Infection symptoms induced could be categorized into three groups, ranging from typical to non-typical black rot symptoms. Four differential Brassica cultivars with known avirulence genes were used for race typing done by spray inoculation. Four races, namely 1, 3, 4 and 6, were identified. Of the 28 isolates, four were identified as race 1, two as race 3, 19 as race 4 and three as race 6. Repetitive DNA polymerase chain reaction-based fingerprinting using Eric- and Box-primers was used to assess the genetic diversity. Generated fingerprints of X. c pv. campestris were relatively similar. Cluster analysis could not strictly group isolates by their geographical origin, suggesting limited diversity of Xanthomonas campestris pv. campestris strains within cabbage producing regions in South Africa.  相似文献   

14.
Several black rot-resistant varieties of Brassica oleracea showed a race-specific hypersensitive response (HR) to inoculation with Xanthomonas campestris pv. campestris isolates of different races. In progenies of cabbage line PI436606, Portuguese kale ISA454 and Chinese kale SR1 the HR to race 1 of the pathogen was controlled by a dominant gene named R1, when a recessive gene r5 was responsible for the HR to race 5. Genes with a similar race-specific reaction were assumed on the basis of gene-for-gene interaction in black rot-resistant Japanese cabbage cultivars and double haploid lines obtained from them. Homology of gene r5 in cabbage lines PI436606, Fujiwase 01 and kale ISA454 was postulated in crosses between those lines or their progenies. In a cross between SR1 and PI436606, interaction between resistance to race 1 and non-specific resistance localized in the stem vascular system was found. On the basis of pedigree information and homology of resistance genes in the cultivars of East-Asian cabbage and Portuguese kales, the probable origin of race-specific resistance to black rot of cole crops was suggested to be in heading Mediterranean kale. Some evidence was found for a gene conferring resistance to race 4 in B. oleracea.  相似文献   

15.
Resistance to the eight races (3, 7, 19, 31, 81, 449, 453, and 1545) of the pathogenic fungus Colletotrichum lindemuthianum (anthracnose) was evaluated in F(3) families derived from the cross between the anthracnose differential bean cultivars Kaboon and Michelite. Molecular marker analyses were carried out in the F(2) individuals in order to map and characterize the anthracnose resistance genes or gene clusters present in Kaboon. The analysis of the combined segregations indicates that the resistance present in Kaboon against these eight anthracnose races is determined by 13 different race-specific genes grouped in three clusters. One of these clusters, corresponding to locus Co-1 in linkage group (LG) 1, carries two dominant genes conferring specific resistance to races 81 and 1545, respectively, and a gene necessary (dominant complementary gene) for the specific resistance to race 31. A second cluster, corresponding to locus Co-3/9 in LG 4, carries six dominant genes conferring specific resistance to races 3, 7, 19, 449, 453, and 1545, respectively, and the second dominant complementary gene for the specific resistance to race 31. A third cluster of unknown location carries three dominant genes conferring specific resistance to races 449, 453, and 1545, respectively. This is the first time that two anthracnose resistance genes with a complementary mode of action have been mapped in common bean and their relationship with previously known Co- resistance genes established.  相似文献   

16.
ABSTRACT One hundred sixty-four isolates of Xanthomonas campestris pv. campestris and other X. campestris pathovars known to infect cruciferous hosts (X. campestris pvs. aberrans, raphani, armoraciae, and incanae) were inoculated onto a differential series of Brassica spp. to determine both pathogenicity to brassicas and race. Of these, 144 isolates were identified as X. campestris pv. campestris and grouped into six races, with races 1 (62%) and 4 (32%) being predominant. Other races were rare. The remaining 20 isolates from brassicas and other cruciferous hosts were either nonpathogenic or very weakly pathogenic on the differential series and could not be race-typed. Five of these isolates, from the ornamental crucifers wallflower (Cheiranthus cheiri), stock (Matthiola incana) and candytuft (Iberis sp.), showed clear evidence of pathovar-like specificity to the hosts of origin. A gene-for-gene model based on the interaction of four avirulence genes in X. campestris pv. campestris races and four matching resistance genes in the differential hosts is proposed. Knowledge of the race structure and worldwide distribution of races is fundamental to the search for sources of resistance and for the establishment of successful resistance breeding programs.  相似文献   

17.
During a survey of root diseases of pea in Denmark, a new genetic variant of Fusarium oxysporum f.sp. pisi was isolated from vining peas in two widely separated geographical regions. In terms of pathogenicity on a set of differential pea lines, the Danish isolated closely resembled a race 6 isolate from the United States, DNA extracts of the isolates, restricted with the endonuclease Hind III, then probed with a homologous repetitive genomic fragment from the plasmid pDG106 by the Southern hybridization technique, gave a unique'fingerprint'pattern distinctly different from the American race 6 and all other known races. When probed with pDG312, containing a homologous ribosomal repeat unit, the pattern obtained for the Danish isolates was indistinguishable from races 1, 5 and 6 but distinctly different from 2A and 2B. The Danish isolates represent a separate vegetative compatibility group because they are compatible with each other but incompatible with the other known races. In pigmentation the new variant resembled races 1, 5 and 6 for the first 8-12 days, after which it began to secrete a dark purple pigment resembling that of race 2A and 2B. Until an additional line in the host differentials can separate the new genetic variant it should be considered a subgroup of F. oxysporum f. sp. pisi race 6.  相似文献   

18.
ABSTRACT Two strains of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, were crossed on barberry, and a single F(1) progeny strain was selfed. The parents, F(1), and 81 F(2) progeny were examined for virulence phenotypes on wheat differential cultivars carrying stem rust resistance (Sr) genes. For eight Sr differentials, phenotypic ratios are suggestive of single dominant avirulence genes AvrT6, AvrT8a, AvrT9a, AvrT10, AvrT21, AvrT28, AvrT30, and AvrTU. Avirulence on the Sr; (Sr 'fleck') differential showed phenotypic ratios of approximately 15:1, indicating epistatic interaction of two genes dominant for avirulence. Avirulence on Sr9d favored a 3:13 over a 1:3 ratio, possibly indicating two segregating genes-one dominant for avirulence and one dominant for avirulence inhibition. Linkage analysis of eight single dominant avirulence genes and 970 DNA markers identified DNA markers linked to each of these avirulence genes. The closest linkages between AvrT genes and DNA markers were between AvrT6 and the random amplified polymorphic DNA marker crl34-155 (6 centimorgans [cM]) AvrT8a and the amplified fragment length polymorphism marker eAC/mCT-197 (6 cM) and between AvrT9a and the amplified fragment length polymorphism marker eAC/mCT-184 (6 cM). AvrT10 and AvrTU are linked at distance of 9 cM.  相似文献   

19.
Resistance to pea bacterial blight (Pseudomonas syringae pv. pisi) in different plant parts was assessed in 19 Pisum sativum cultivars and landraces, carrying race-specific resistance genes (R-genes) and two Pisum abyssinicum accessions carrying race-nonspecific resistance. Stems, leaves and pods were inoculated with seven races of P. s. pv. pisi under glasshouse conditions. For both race-specific and nonspecific resistance, a resistant response in the stem was not always associated with resistance in leaf and pod. Race-specific genes conferred stem resistance consistently, however, there was variability in the responses of leaves and pods which depended on the matching R-gene and A-gene (avirulence gene in the pathogen) combination. R2 generally conferred resistance in all plant parts. R3 or R4 singly did not confer complete resistance in leaf and pod, however, R3 in combination with R2 or R4 enhanced leaf and pod resistance. Race-nonspecific resistance conferred stem resistance to all races, leaf and pod resistance to races 2, 5 and 7 and variable reactions in leaves and pods to races 1, 3, 4 and 6.Disease expression was also studied in the field under autumn/winter conditions. P. sativum cultivar, Kelvedon Wonder (with no R genes), and two P. abyssinicum accessions, were inoculated with the most frequent races in Europe under field conditions (2, 4 and 6). Kelvedon Wonder was very susceptible to all three races, whereas P. abyssinicum was much less affected. The combination of disease resistance with frost tolerance in P. abyssinicum enabled plants to survive through the winter. A breeding strategy combining race-nonspecific resistance derived from P. abyssinicum with race-specific R-genes should provide durable resistance under severe disease pressure.  相似文献   

20.
Isolates of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas were categorized into nine races on the basis of their reactions to eight differential cultivars following artificial inoculation. Eight hundred and ninety-three isolates representing 303 disease occurrences were initially identified as P.s. pv. phaseolicola by their pathogenicity to bean, cultural and serological characteristics and phage sensitivity. These tests also served to distinguish P.s. pv. phaseolicola from the closely related pathovars P.s . pv. glycinea and P.s. pv. syringae . Detailed race determinations were carried out on 175 selected isolates of p.s. pv. phaseolicola representative of the different geographical regions and hosts in which the pathogen was found and nine races were identified. A number of races (1,2,5,6 and 7) were distributed worldwide with race 6 predominant. Other races were found mainly in Africa; races 3 and 4 in East/Central Africa and races 8 and 9 in Southern Africa. Most isolates were obtained from the major host, Phaseolus vulgaris . Alternative natural hosts included 10 legume species representative of seven different genera ( Cajanus cajan, Desmodium sp., Lablab purpureus, Macroptilium atropurpureum, Neonotonia wightii, Phaseolus acutifolius, P. coccineus, P. lunatus, Vigna angularis and V. radiata ). Of these, Desmodium sp. constitutes a new host record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号