首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
通过盆栽试验方法,在荧蒽污染的黄棕壤和潮土上种植水稻和小麦,分别设置空白(CK)、低(L)、中(M)、高(H)4个污染浓度水平,比较荧蒽对作物生长的影响和两种不同土壤中植物体荧蒽的分布情况。结果显示,在试验设置的荧蒽污染浓度下,荧蒽未对两种植物的生长造成抑制,相反还促进了植物某些部位的生长;水稻和小麦各部位的荧蒽含量随土壤荧蒽含量的增加而增大;植物体内荧蒽的传导系数随土壤荧蒽含量的增加而减小,且两种土壤的趋势一致。黄棕壤和潮土有机质、养分、阳离子交换量等性质影响植物体内荧蒽的运移和富集;水稻茎叶对荧蒽的富集能力强于小麦,而小麦籽粒富集荧蒽的能力强于水稻。  相似文献   

2.
PAHs生物降解程度受多种因素影响。通过筛选驯化PAHs降解菌,研究混合菌对土壤中菲、芘、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧蒽、茚并(1,2,3-cd)芘的生物降解性能,并考察污染时间对土壤中PAHs降解效果的影响。结果表明,筛选的混合菌具有很强的PAHs降解能力,缩短了PAHs生物降解的半衰期,且PAHs起始降解速率较快,之后趋于平缓。27d内土壤中的菲、芘、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧蒽、茚并(1,2,3-cd)芘的平均降解率分别为98.14%、89.97%、88.47%、63.55%、65.24%、60.49%,其中菲在5d之内的降解率高于93%。污染210d的土壤中各PAHs的起始降解速率高于污染50d的土壤,因此污染时间越长,PAHs生物降解的停滞期越短。  相似文献   

3.
产漆酶真菌筛选及其对PAHs污染土壤修复的初步研究   总被引:1,自引:0,他引:1  
潘澄  茆婷  吴宇澄  申卫收  钟文辉 《土壤学报》2011,48(6):1253-1259
真菌漆酶可以高效转化多环芳烃(PAHs),因此,产漆酶真菌在PAHs污染土壤修复中极具应用前景。根据漆酶可将愈创木酚氧化为红色物质的特性,成功从土壤中筛选出一株能够分泌漆酶的真菌菌株F-1,初步鉴定该菌为疣孢漆斑菌(Myrothecium verrucaria)。通过Plackett-Burman试验对菌株F-1的产酶能力进行了分析,发现特定培养条件组合可将其酶活提高近300倍,达5628 U L-1,表明F-1的漆酶活性受到环境条件的显著影响。应用菌株F-1对PAHs污染土壤进行了初步修复研究,结果表明,接种F-1对菲、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘、二苯并(a,h)蒽、苯并(g,h,i)苝、茚苯(1,2,3-cd)芘等11种PAHs均有不同程度的降解,提示产漆酶真菌在PAHs污染土壤修复中的应用潜力。  相似文献   

4.
多环芳烃(PAHs)是土壤中最常见的典型持久性有机污染物,蒽作为其典型代表,常被用作降解PAHs的模型化合物和检测PAHs污染的指示物。采集北京郊区受污染土样,通过驯化和富集,分离出185株具有蒽降解潜力的菌株,采用高效液相色谱法定量测定菌株的蒽降解效率,筛选获得一株可高效降解蒽的菌株R4004-2。经菌落形态观察、16SrRNA和gyrB基因系统发育分析、基因组框架图ANI、DDH和dDDH值分析,确定R4004-2为施氏假单胞菌(Pseudomonas stutzeri)。菌株R4004-2以蒽为唯一碳源,对蒽的降解率可达82.3%,在肉汤培养基中的生长速度最快。在蒽含量为0.25mg/kg的污染土壤中,施氏假单胞菌R4004-2可以有效定殖,具有修复污染土壤的潜力。基于转录组以及代谢组结果,施氏假单胞菌R4004-2通过双加氧酶进行对蒽的第一步氧化,后续分别通过蒽醌的氧化以及1-羟基-2-萘甲酸酯的分解两个途径完成对蒽的降解,初步解析了其降解机制。  相似文献   

5.
在温室盆栽实验条件下,研究接种AM(arbuscular mycorrhiza)真菌、蚯蚓(Eisenia fetida)对南瓜(Cucurbita moschata)修复3环以上多环芳烃(PAHs)污染农田土壤的影响,试验设置单接AM真菌、单接蚯蚓、双接AM真菌和蚯蚓、不接种的对照共4个处理,播种10周后收获。结果表明,接种AM真菌和蚯蚓促进AM真菌侵染南瓜,增加南瓜生物量;显著提高南瓜修复土壤中Phe(菲)、An(t蒽)、Py(r芘)、BkF(苯并(k)荧蒽)、BaP(苯并(a)芘)、BPe(r苯并(g,h,i)苝)等PAHs污染物的效率,促进南瓜高效地吸收3~5环PAHs,尤其是AM真菌和蚯蚓共同接种条件下对南瓜修复土壤效果最优;AM真菌利于南瓜转移根系吸收的高浓度PAHs化合物至地上部,降低PAHs对根系的胁迫,增强南瓜在高浓度PAHs污染土壤中存活,有利于南瓜应用于高浓度PAHs污染土壤的高效修复;蚯蚓对南瓜地下部吸持3~5环高分子量的PAHs化合物有积极作用。因此,选用的AM真菌和蚯蚓在土壤中具有协同作用,促进南瓜高效修复PAHs污染土壤。  相似文献   

6.
通过田间试验研究了玉米和向日葵两种植物对石油污染土壤的修复作用,考察了外源菌(OX-9)对植物修复的强化和协同效应,对“外源菌一植物”修复效果进行了初步评价。结果表明,在10000mg·k-1污染浓度下,150d玉米、向13葵试验区土壤中石油降解率分别为42.5%和46.4%,较对照区提高了100.5%和118.9%。外源节细菌的施加可使生物修复速度显著加快,150d“DX-9-玉米”和“DX-9-向日葵”试验区石油烃降解率分别达到72.8%和76.4%,较同期单独植物修复的降解率提高了71.3%和64.7%。500d各试验区土壤中石油烃降解率分别为95.5%、96.1%、97.6%和98.9%,土壤中石油烃含量均低于国家标准规定限量(〈500mg·kg-1);土壤主要理化性质、生物群落分布、呼吸强度及植物不同部位中石油烃的残留量与对照无显著差异。结果表明:玉米、向日葵与节细菌对石油污染土壤的联合生物修复效果显著;经过两年修复,污染土壤恢复健康状态。  相似文献   

7.
刘总堂  谷成刚  叶茂  卞永荣  蒋新 《土壤》2017,49(3):453-459
多溴联苯醚(PBDEs)是一类广泛使用的溴代阻燃剂,在大气、水体、土壤、生物体等环境介质中普遍检出,严重威胁环境安全和人体健康。本文以凹凸棒土负载铁/镍材料(A-Fe/Ni)为修复剂,以普遍检出的2,2′,4,4′-四溴联苯醚(BDE47)为模式化合物,开展了可溶性有机质(DOM)存在条件下,A-Fe/Ni对黄棕壤中BDE47的降解动力学过程研究,探讨了DOM对材料降解BDE47的影响机制。结果表明:A-Fe/Ni可高效地降解黄棕壤–甲醇/水体系中的BDE47,降解过程符合假二级动力学方程,BDE47可被降解成一溴~三溴联苯醚和联苯醚。体系中加入3种DOM(胡敏酸、柠檬酸和草酸)后,DOM在Fe/Ni颗粒表面形成钝化层,抑制了降解过程中的传质和电子传递作用,不同程度降低了A-Fe/Ni对黄棕壤–甲醇/水体系中BDE47的降解效率,并影响其降解产物物质的量的组成。实验结果为使用零价纳米铁及零价纳米铁基双金属材料修复污染土壤中PBDEs提供了理论依据和参考。  相似文献   

8.
多环芳烃污染土壤的植物-微生物联合修复初探   总被引:4,自引:1,他引:3  
在温室盆栽条件下,通过种植紫花苜蓿单独或联合接种菌根真菌(Glomus caledonium L.)(AM)和多环芳烃专性降解菌(DB),研究了利用植物-微生物强化修复多环芳烃(PAHs)长期污染土壤的效果。试验结果表明,接种菌根真菌和PAHs专性降解菌能促进紫花苜蓿的生长和土壤中PAHs的降解。经过90天修复试验,种植紫花苜蓿接种AM、DB和DB+AM处理的PAHs的降解率分别为47.9%、49.6%、60.1%,均高于只种植紫花苜蓿的对照处理(CK)(21.7%)。另外,随着PAHs苯环数的增加,其平均降解率逐渐降低,但是接种PAHs专性降解菌能够提高4环和5环PAHs的降解率。同时也发现土壤中脱氢酶活性和PAHs降解菌数量越高的处理,土壤PAHs的降解率也越高,这也是种植紫花苜蓿接种微生物能够有效促进土壤PAHs降解的原因。  相似文献   

9.
降解菌HQ-C-01对克百威污染土壤的生物修复   总被引:1,自引:0,他引:1  
杨柳  陈少华  胡美英  郝卫宁 《土壤》2011,43(5):798-803
在室内模拟条件下,研究了降解菌HQ-C-01(Pichia anomala)对克百威污染土壤的修复作用及其影响因素,同时研究了克百威及该菌株对土壤微生物的影响。结果表明,克百威降解率与降解菌HQ-C-01接种量呈正相关,降解菌接种量为2.09×108 CFU/g干土时,对土壤中50 mg/kg克百威10天降解率达82.89%;当降解菌接种量低于106 CFU/g干土时,降解菌对克百威的降解效果较弱。土壤含水量显著影响降解菌对克百威的降解率,含水量为600 g/kg时降解效果最好,降解率达85.32%,而当含水量低于200 g/kg时降解效果较差。在温度范围25℃~35℃降解菌对克百威都具有较好的降解效果。不同土壤pH值对降解菌的降解作用有显著影响,在pH值为7时,降解菌对土壤中50 mg/kg克百威10天降解率达85.62%,在较低和较高pH值下,降解效果较差。克百威使用对土壤菌落结构有一定的影响,对土壤真菌具有强烈刺激作用,从而使土壤微生物群落结构发生改变,而降解菌的使用可缓解克百威对土壤微生物的影响,修复受污染土壤。  相似文献   

10.
石油污染土壤的生物修复技术研究   总被引:2,自引:1,他引:1  
李春荣  王文科  柴丽红 《土壤》2008,40(5):824-827
从炼油厂污水池底泥中驯化、分离、筛选,得到4种优势石油降解菌。采用摇床培养,研究了各优势菌和混合菌对石油烃的降解性能;采用黄豆、苜蓿和混合菌对石油污染土壤进行了植物-微生物联合修复试验。结果表明,4种菌和混合菌25天可将初始质量浓度为10000mg/L的石油烃依次降解74.36%、54.36%、78.19%、62.17%和83.73%;运行120天,苜蓿、黄豆试验田污染土壤中的石油烃减少46.83%和41.27%;外源混合菌的施加使两种植物的降解率分别提高到67.14%和56.92%。苜蓿或黄豆-土著微生物-外源混合菌联合修复石油污染土壤效果显著。  相似文献   

11.
Background, Aim and Scope   Polycyclic aromatic hydrocarbons (PAHs) are formed as a result of incomplete combustion and are among the most frequently occurring contaminants in soils and sediments. PAHs are of great environmental concern due to their ubiquitous nature and toxicological properties. Consequently, extensive research has been conducted into the development of methods to remediate soils contaminated with PAHs. Fenton's reagent or ozone is the most commonly studied chemical oxidation methods. However, the majority of remediation studies use soils that have been artificially contaminated with either one or a limited number of PAH compounds in the laboratory. Hence, it is essential to extend such studies to soils contaminated with multiple PAHs under field conditions. Objectives   The objective of this study is to investigate the capacity of Fenton's reagent and ozone to degrade PAHs in soils. The soils have been collected from a number of different industrial sites and, therefore, will have been exposed to different PAH compounds in varying concentrations over a range of time periods. The capacity of Fenton's reagent and ozone to degrade PAHs in industrially contaminated soils is compared to results obtained in studies using soils artificially contaminated with PAHs in the laboratory. Materials and Methods: Nine soil samples, contaminated with PAHs, were collected from five different industrial sites in Sweden. For the Fenton's reagent procedure, the pH of the soil slurry samples was adjusted to pH 3 and they were kept at a constant temperature of 70oC whilst H2O2 was added. For the ozone procedure, soil samples were mixed with 50% water and 50% ethanol and kept at a constant temperature of 45 oC. Ozone was then continually introduced to each soil sample over a period of four hours. Following the Fenton's reagent and ozone oxidation procedures, the samples were filtered to isolate the solid phase, which was then extracted using pressurized liquid extraction (PLE). The sample extracts were cleaned up using open columns and then analysed by gas chromatography-mass spectrometry (GC-MS). Results: The relative abundance of the detected PAHs varied between soils, associated with different industries. For example, low molecular weight (LMW) PAHs were more abundant in soil samples collected from wood impregnation sites and high overall PAH degradation efficiencies were observed in soils originating from these sites. In the contaminated soils studied, PAHs were more effectively degraded using Fenton's reagent (PAH degradation efficiency of 40-86%) as opposed to ozone (PAH degradation efficiency of 10-70%). LMW PAHs were more efficiently degraded, using ozone as the oxidizing agent, whereas the use of Fenton's reagent resulted in a more even degradation pattern for PAHs with two through six fused aromatic rings. Discussion: The degradation efficiency for both methods was largely dependent on the initial PAH concentration in the soil sample, with higher degradation observed in highly polluted soils. LMW PAHs are more susceptible to degradation than high molecular weight (HMW) PAHs. As a result of this the relative abundance of large (often carcinogenic) PAHs increased after chemical oxidation treatment, particularly after ozone treatment. Repeated Fenton's reagent treatment did not result in any further degradation of soil PAHs, indicating that residual soil PAHs are strongly sorbed. The effectiveness of the two oxidation treatment approaches differed between industrial sites, thus highlighting the importance of further research into the influence of soil properties on the sorption capacity of PAHs. Conclusions: This study demonstrates that the degree to which chemical oxidation techniques can degrade soil bound PAHs chemical degradation is highly dependent on both the concentration of PAHs in the soils and the compounds present, i.e. the various PAH profiles. Therefore, similarities in the PAH degradation efficiencies in the nine soil samples studied were observed with the two chemical oxidation methods used. However, the degradation performance of Fenton's reagent and ozone differed between the two methods. Overall, Fenton's reagent achieved the highest total PAH degradation due to stronger oxidation conditions. LMW PAHs showed higher susceptibility to oxidation, whereas high molecular weight (HMW) PAHs appear to be strongly sorbed to the soils and therefore less chemically available for oxidation. This study highlights the importance of including soils collected from a range of contaminated sites in remediation studies. Such soil samples will contain PAH contaminants of varying concentrations, chemical and physical properties, and have been aged under field conditions. In addition to the chemical and physical properties of the soils, these factors will all influence the chemical availability of PAHs to oxidation. Recommendations and Perspectives: We recommend including aged contaminated soils in chemical degradation studies. In future chemical remediation work, we intend to investigate the potential influence of the chemical and physical properties of PAHs and soil parameters potential influence on the chemical oxidation efficiency in aged contaminated soils. Due to the vast number of contaminated sites there is a great need of efficient remediation methods throughout the world. This study shows the difficulties which may be experienced when applying remediation methods to a variation of contaminated sites.  相似文献   

12.
Contents of polycyclic aromatic hydrocarbons (PAH) and their distribution pattern in soils with different contamination levels In order to study the PAH-contamination of soils in North Rhine Westfalia, soil samples were taken at different sites and analysed for six PAH. The sites were selected with regard to different forms of land use such as arable land and pastures in rural areas and gardens in urban areas and with regard to varying immission situations. The results are valued according to reference (RW) and test values (PW) of the Netherlands Guidelines for soil restoration. The reference values of these guidelines characterizing normal contents are regularly and in part distinctly exceeded for fluoranthene and benzo(a)pyrene at some sites (coking plant, alluvial meadow soils, allotment gardens, close to a highway). The check values which imply more exact investigations are only exceeded at the most contaminated site, a coking plant. The PAH patterns at the different sites investigated depend on the number and kind of PAH sources. PAH typical for motor vehicle emission (benzo(b)fluoranthene, benzo(g,h,i)perylene) are dominating in soils close to a highway, whereas at the cokery site fluoranthene can be found in higher concentrations than the other PAH. In alluvial river soils and in soils of allotment gardens the pattern is more uniform because of diffuse sources with decreasing contents in the order fluoranthene > benzo(a)anthracene > benzo(b) fluoranthene > benzo(g,h,i)perylene > benzo(a)pyrene > benzo(k)fluoranthene. As a guide substance for a first risk assessment benzo(a)pyrene is suitable, since its content shows a strong correlation to the sum of five other PAH. In order to characterize the background contamination of soils with PAH new reference values are proposed.  相似文献   

13.
以小麦秸秆为原材料,在300℃下缺氧裂解3、6、8 h制备生物炭,比较了3种生物炭的产率、pH值、灰分以及C、H、N元素含量,表征了300℃、6 h生物炭的表面形态,并用其作为修复材料,对大港油田的石油污染土壤进行修复。结果表明,随裂解时间的延长,生物炭产率下降,pH值升高,灰分含量增加,H/C值下降,但产率、pH值、灰分和H/C值都是从3 h到6 h差异显著,6 h到8 h差异不显著。C元素含量先升高后下降。石油污染土壤经生物炭修复14 d和28d后,总石油烃降解率分别为45.48%和46.88%,均显著高于对照组。修复14 d后土壤中的萘、苊、苯并[a]蒽、屈、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、茚并[1,2,3-cd]芘也都有不同程度的下降,其中苯并[a]芘含量下降幅度达98.18%,其他几种PAH的降解率也都高于对照组,28 d后这些PAH的含量又有上升趋势。这说明小麦秸秆裂解时间对生物炭的性质有影响;300℃、6h生物炭可以用来修复石油污染的土壤。  相似文献   

14.
Inoculating soil with an adapted microbial community is a more effective bioaugmentation approach than inoculation with pure strains in bioremediation.However,information on the potential of different inocula from sites with varying contamination levels and pollution histories in soil remediation is lacking.The objective of the study was to investigate the potential of adapted microorganisms in soil inocula,with different contamination levels and pollution histories,to degrade 1,2,4-trichlorobenzene (1,2,4-TCB).Three different soils from chlorobenzene-contaminated sites were inoculated into agricultural soils and soil suspension cultures spiked with 1,2,4-TCB.The results showed that 36.52% of the initially applied 1,2,4-TCB was present in the non-inoculated soil,whereas about 19.00% of 1,2,4-TCB was present in the agricultural soils inoculated with contaminated soils after 28 days of incubation.The soils inoculated with adapted microbial biomass (in the soil inocula) showed higher respiration and lower 1,2,4-TCB volatilization than the non-inoculated soils,suggesting the existence of 1,2,4-TCB adapted degraders in the contaminated soils used for inoculation.It was further confirmed in the contaminated soil suspension cultures that the concentration of inorganic chloride ions increased continuously over the entire experimental period.Higher contamination of the inocula led not only to higher degradation potential but also to higher residue formation.However,even inocula of low-level contamination were effective in enhancing the degradation of 1,2,4-TCB.Therefore,applying adapted microorganisms in the form of soil inocula,especially with lower contamination levels,could be an effective and environment-friendly strategy for soil remediation.  相似文献   

15.
Traditional exhaustive extraction methods often overestimate the risk of polycyclic aromatic hydrocarbon(PAH) bioaccessibility to biota. Therefore, reliable assessment methods need to be established. In this study, a composite extraction with hydroxypropyl-β-cyclodextrin(HPCD) and three low-molecular-weight organic acids, oxalic acid(OA), malic acid(MA), and citric acid(CA), was used to predict the PAH bioaccessibility to earthworms, subjecting to two soils(red soil and yellow soil) spiked with selected PAHs,phenanthrene, pyrene, chrysene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene. For both soils,concentrations of PAHs by composite extraction using HPCD-OA(R~2= 0.89–0.92, slope = 1.89–2.03; n = 35), HPCD-MA(R~2=0.92–0.96, slope = 1.43–1.67; n = 35), and HPCD-CA(R~2= 0.92–0.96, slope = 1.26–1.56; n = 35) were significantly correlated with PAH accumulation in the Eisenia fetida earthworms. Moreover, the HPCD-CA-and HPCD-MA-extracted PAH concentrations were closer to the earthworm-accumulated PAH concentration than the extraction using just HPCD. The results indicated that the composite extraction could improve the prediction of PAH bioaccessibility, and therefore can serve as a reliable chemical method to predict PAH bioaccessibility to earthworms in contaminated soils.  相似文献   

16.
利用人工污染土壤,研究了高锰酸钾对4种不同土壤中菲和芘的氧化修复效果。结果表明,当高锰酸钾浓度为33.33mmol·L^-1时,土壤中菲和芘的氧化去除率达到最大。高锰酸钾氧化去除率不仅与高锰酸钾浓度有关,还与土壤性质和老化时间有关。土壤有机质含量的增加会降低高锰酸钾对土壤中菲和芘的氧化去除率;随着老化时间的增加,高锰酸钾的氧化去除率逐渐降低。老化40d后,4种土壤中菲和芘的氧化去除率显著降低,菲的氧化去除率在14%~67%之间,芘的氧化去除率在61%~84%之间。高锰酸钾氧化前后,4种土壤中有机质含量下降范围为0.77%~9.21%。从土壤有机质含量来看,高锰酸钾氧化修复多环芳烃污染土壤对土壤质量影响较小,具有较好的应用前景。  相似文献   

17.
Background. Due to spills, discharges and leakage, the gaswork site at Husarviken in Stockholm is today the largest (36 ha) creosote-contaminated site in Sweden. The main pollutants are creosote, lead and mercury. The remediation costs are estimated to be as high as US $125 million. It is thus of great interest to find more cost effective remediation methods. Objectives. The aim of this study was to investigate i) if the addition of NTA, EDTA, nitrate, iron and dry yeast would enhance the bioremediation rate of a complex organic pollutant like PAH and, if so, at what concentrations they would be most efficient, ii) the effect on PAH reduction when larger dimensions of the column is used to diminish the effect of water passing along the sides of the column, iii) long-term effects on the reduction of PAH in field-contaminated soil with high concentrations. Materials and Methods  Creosote-contaminated soil from the Husarviken gaswork site was treated with aerated water in column experiments at room temperature. Three column experiments were performed in 2 and 100 L of homogenised soil samples percolated by recircula ting flushing water. Fluoranthene was analysed as a representative of the overall degradation of PAH in the columns. Results and Discussion  The PAH concentration (total 16 Priority USEPA PAH) was reduced from 129 mg/kg to at most 33 mg/kg in the 2-litre columns. A total of four PAH in the soil were reduced from 1330 mg/kg to about 400 mg/kg in the 100-litre columns. Generally, a 70% reduction of PAH concentration can be achieved by bioremediation technology. The transformation and/or degradation of fluoranthene were fast at the beginning of the experiment and then gradually slowed down. This mirrors the impact of the bioavailable fluoranthene, which is initially large, but reaches zero after 200 days. Conclusions  A simulation model using the fluoranthene data shows that the effectiveness of PAH degradation is, above all, dependent on the bioavailability of PAH. A reduction of 70% of PAH in the soil is applicable to soil containing <200 mg/kg to meet the Swedish recommendations of 60 mg/kg. At Husarviken, soil with <200 mg/kg corresponds to 80% of the polluted area.  相似文献   

18.
针对某焦化厂内高浓度多环芳烃污染土壤,以烷基苷(APG)、十二烷基苯磺酸钠(SDBS)和曲拉通X-100(TX100)为表面活性剂代表物,采用静态平衡法和高效液相色谱分析,探索采用单一及混合表面活性剂清洗修复多环芳烃污染土壤,并考察生物柴油对多环芳烃去除效果的影响。结果表明,单一表面活性剂对土壤中多环芳烃去除率顺序为SDBS〉APG〉TX100。APG/SDBS混合处理及TX100/SDBS为9:1混合处理提高了土壤中多环芳烃去除率,而APG/TX100混合处理没能提高多环芳烃去除率。生物柴油对TX100及TX100/SDBS去除多环芳烃效果没有明显提高,对APG及APG/TX100去除多环芳烃略有提高。当APG/SDBS为9:1时,生物柴油可以使多环芳烃去除率从(63.3±2.0)%提高到(75.6±2.0)%。单一表面活性剂、混合表面活性剂、及表面活性剂-生物柴油乳液对多环芳烃各组分去除率比较类似,对菲的去除率最高,茚并[1,2,3-d]芘次之,其余相对较低。因此,建议采用APG/SDBS+生物柴油的混合体系对高浓度多环芳烃污染土壤进行修复。  相似文献   

19.
The research comprised of studying the effect composting sewage sludge with sawdust and vermicomposting with earthworm Eisenia fetida has on the degradation of 16 polycyclic aromatic hydrocarbons (PAHs). Raw rural sewage sludge prior composting was more contaminated with PAHs than urban sewage sludge, in both cases exceeding EU cutoff limits of 6 mg/kg established for land application. Dibenzo[a,h]anthracene (DBahAnt), acenaphtylene (Acy) and indeno[1,2,3-c,d]pyrene (IPyr) were predominant in rural sewage sludge, whilst the urban sewage sludge contained the highest concentrations of benzo[b]fluoranthene (BbFl), benzo[k]fluoranthene (BkFl) and indeno[1,2,3-c,d]pyrene (IPyr). Thirty days of composting with sawdust has caused a significant reduction of 16 PAHs on average from 26.07 to 4.01 mg/kg (84.6%). During vermicomposting, total PAH concentration decreased on average from 15.5 to 2.37 mg/kg (84.7%). Vermicomposting caused full degradation of hydrocarbons containing 2 and 6 rings and significant reduction of PAHs with 3 aromatic rings (94.4%) as well as with 5 aromatic rings (83.2%). The lowest rate of degradation (64.4%) was observed for hydrocarbons with 4 aromatic rings such as fluoranthene, benzo(a)anthracene, chrysene and pyrene. On the other hand, the highest level of degradation was determined for PAHs with 2 rings (100%), 3 rings (88%) and 6 aromatic rings in the molecule (86.9%) after composting with sawdust. Acenaphthene and pyrene were found to be the most resistant to biodegradation during both composting methods.  相似文献   

20.
左文建  胡顺磊  段伟  刘晓凤  吴敏  王志超 《土壤》2023,55(2):390-398
为了研究联合修复技术在有机物污染场地中的筛选方法以及修复效果,以山西某搬迁遗留场地土壤修复工程为案例,本文提出了采用层次分析法(AHP)对常用的物理、化学、生物修复技术方法进行优选,最终确定“常温解吸+异位热脱附+填埋场覆土利用+水泥窑协同处置”的新联合修复模式,并且研究了该联合修复模式的处理效果及其对环境造成的影响。结果表明,AHP可用于有机污染场地修复最佳方案的筛选;采用该联合修复模式费用低、效果良好且未对周围环境造成影响。可见该联合修复模式能够有效地处理此类型场地污染土体。该修复模式的成功实施为类似污染场地土壤修复项目提供了借鉴和参考价值,并在一定程度上控制了土壤资源的流失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号