首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infection of above-ground tissues of Brassica napus by Leptosphaeria maculans is well understood. However, root infection (root rot) under field conditions, the development of root rot over time and its relationship to other disease symptoms caused by L. maculans has not been described. A survey of B. napus crops was conducted in Australia to investigate the incidence and severity of root rot. Additionally, the pathway of root infection was examined in field experiments. Root rot was present in 95% of the 127 crops surveyed. The severity and incidence of root rot was significantly correlated with that of crown canker; however, the strength of this relationship was dependent on the season. Root rot symptoms appeared before flowering and increased in severity during flowering and at maturity, a pattern similar to crown canker suggesting that the infection of the root is an extension of the crown canker phase of the L. maculans lifecycle. All isolates of L. maculans tested in glasshouse experiments caused root rot and crown canker in B. napus and Brassica juncea. In the field, the main pathway of root infection is via invasion of cotyledons or leaves by airborne ascospores, rather than from inoculum in the soil. Root rot was present in crops in fields that had never been sown to B. napus previously, in plants grown in fumigated fields, and in glasshouse-grown plants inoculated in the hypocotyl with L. maculans.  相似文献   

2.
Foliar wilt as well as crown and root rot with sclerotia formation has affected potted liver leaf (Hepatica nobilis var. japonica f. magna) in Ojiya, Niigata Prefecture, Japan, since 2006. Apothecia developed from the sclerotia on soil surface of pots with the diseased plants in March. A fungus forming the apothecia was identified as Dumontinia tuberosa (Sclerotiniaceae) based on its morphology and demonstrated to cause the disease. We coined the name “Dumontinia root rot (Dumontinia-negusare-byo in Japanese) of liver leaf” for the new disease.  相似文献   

3.
Cutting rot of chrysanthemum was found on cuttings of cv. Jimba No.2 in 2008. The cuttings were imported, then transplanted in Aichi Prefecture. Root development was not initiated in about 30% of the cuttings. The cut stem ends developed black discolouration and decay. When healthy cuttings were the fungus isolated from diseased cuttings, these cuttings developed the same disease symptoms. The characteristics and morphology of the fungal culture were identical to those of Plectosporium tabacinum. We propose that the new disease be named cutting rot of chrysanthemum.  相似文献   

4.
Trichoderma spp. are used as antagonists against different pathogens. Despite many possibilities of using Trichoderma as an antagonist, there are gaps in the knowledge of the interaction between Trichoderma, cassava and Scytalidium lignicola. This fungus causes cassava black root rot and is an inhabitant of the soil, so it is difficult to control. Antagonists may contribute to the possible induction of resistance of plants because, when exposed to such pathosystems, plants respond by producing antioxidative enzymes. The test for potential inhibition of growth of S. lignicola CMM 1098 in vitro was performed in potato-dextrose-agar with two Trichoderma strains T. harzianum URM3086 and T. aureoviride URM 5158. We evaluated the effect of the two selected Trichoderma to reduce the severity of cassava black root rot and shoots. Subsequently, the production of enzymes (ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase) was evaluated in cassava plants. All two Trichoderma strains show an inhibition of the growth of S. lignicola CMM 1098. The most efficient was T. harzianum URM 3086, with 80.78% of mycelial growth inhibition. T. aureoviride URM 5158 was considered the best chitinase producer. All treatments were effective in reducing severity, especially treatments using Trichoderma. Cassava plants treated with T. aureoviride URM 5158 had the highest enzyme activity, especially peroxidase and ascorbate peroxidase. Trichoderma harzianum URM3086 and Trichoderma aureoviride URM 5158 were effective in reducing the severity of cassava black root rot caused by S. lignicola CMM 1098.  相似文献   

5.
Severe rot of leaves, peduncles and flowers caused by Gibberella zeae (anamorph: Fusarium graminearum) was found on potted plants of hyacinth (Hyacinthus orientalis), a liliaceous ornamental, in greenhouses in Kagawa Prefecture, Japan, in January 2001. This disease was named “Fusarium rot of hyacinth” as a new disease because only the anamorph, F. graminearum, was identified on the diseased host plant. The authors contributed equally to this work. The fungal isolate and its nucleotide sequence data obtained in this study were deposited in the Genebank, National Institute of Agrobiological Sciences and the DDBJ/EMBL/GenBank databases under the accession numbers MAFF239499 and AB366161, respectively.  相似文献   

6.
Phytophthora cinnamomi is an aggressive pathogen on Lupinus luteus (yellow lupin), causing root rot, wilting and death of this crop, common in oak-rangeland ecosystems ('dehesas') in south-western Spain. The oomycete, the main cause of Quercus decline in the region, was isolated from roots of wilted lupins in the field. Artificial inoculations on four cultivars of L. luteus reproduced the symptoms of the disease, both in pre- and post-emergence stages, recovering the pathogen from necrotic roots. These results suggest the potential of yellow lupin as inoculum reservoir for the infection of Quercus roots. This is the first report of P. cinnamomi as root pathogen of L. luteus.  相似文献   

7.
In summer 2007, leaf and stem rot of ice plants was found in a hydroponic greenhouse in Japan. The causal agent was a fungus identified as Choanephora cucurbitarum (Berkeley & Ravenel) Thaxter, based on pathogenicity, morphology, mating tests, and sequence analysis of the ribosomal DNA ITS region.  相似文献   

8.
A severe rot of postharvest fruits of sweet pepper, a variety of Capsicum annuum, was found in Kagawa Prefecture in southwestern Japan in August 1999. A fungus, isolated repeatedly from the diseased fruits and identified as Stemphylium lycopersici, was demonstrated to be pathogenic to fruits of sweet pepper. The disease was new to Japan, and the fungus was added to the pathogens causing fruit rot of C. annuum.  相似文献   

9.
Pleiochaeta root rot (PRR) caused by Pleiochaeta setosa is a serious, widespread fungal disease in lupin crops, especially in Lupinus albus (broad-leaf lupin, or white lupin). PRR resistance is common in the gene pool of L. albus with various landraces from the Mediterranean region being the most resistant, and suitable for use in breeding new cultivars. Heritability of resistance is sufficient to make good gains from selection but only when controlled-environment (CE) screening is used. Field disease nurseries on loamy soil gave much lower heritability of resistance. Field disease nurseries had spatially variable spore counts despite continuous lupin cropping, and this was partly responsible (along with climatic conditions) for their reduced precision compared to tests conducted in a CE. Giving infected L. albus roots a single, most-severe-lesion score on a 0–9 scale was adequate for CE screening but not as precise or discriminating as the more time-consuming method of six scores per root. Replication in CE experiments was reduced to two pots of 16 seedlings each without sacrificing genotype discrimination.  相似文献   

10.
Hot water was dripped into the rhizosphere of Japanese pear trees (Pyrus serotina Rehd. grafted on P. betulifolia Bunge.) infested with the white root rot fungus Rosellinia necatrix Prillieux, to destroy the fungus. Isolates of R. necatrix from diseased roots of Japanese pear were vulnerable to water at temperatures above 35°C, and the fungus was eradicated from the colonized substrate when water at 35°C was provided for 3 days. The time required to eradicate R. necatrix decreased exponentially with increasing temperature. Japanese pear trees tolerated a temperature of 45°C without reduction in vigor. Field experiments demonstrated the practical use of hot water drip irrigation (HWD). HWD at 50°C completely destroyed white root rot mycelia on diseased roots, and many rootlets grew after the treatment. HWD at this temperature caused no injury to the trees. HWD of diseased orchard trees was assessed in Takamori and Iida in southern Nagano, Japan. The fungus recurred in two of four trees 28 months after treatment in Takamori and in two of ten trees 16 months after treatment in Iida. The new mycelia emerged on thick roots deep within the soil. Although there is a possibility of recurrence, HWD treatment is a practical control measure for white root rot.  相似文献   

11.
A new leaf rot disease was found on the leaves of figmarigold (Lampranthus spectabile). The causal organism, identified as Pythium aphanidermatum was found to cause the same symptoms after artificial inoculation and was then reisolated from the inoculated plants. We propose to name the disease Pythium rot of figmarigold.  相似文献   

12.
Floral rot of Egyptian henbane (Hyoscyamus muticus L.) was found on potted plants in a greenhouse in Yamaguchi city, Japan, in the late summer of 2008 and 2009. The symptoms were identical to those of rots caused by Choanephora species. The pathogen was isolated and identified as C. cucurbitarum (Berkeley and Ravenel) Thaxter. This new disease was named Choanephora rot (Kougai-kabi-byo) of Egyptian henbane.  相似文献   

13.
Nonpathogenic isolates of Fusarium oxysporum can be successful antagonists of pathogenic forms of the same fungal species that commonly attacks crop plants. The characteristics that distinguish nonpathogenic from pathogenic forms are not well understood. In this study, the mode of root colonization of Eucalyptus viminalis seedlings by a nonpathogenic F. oxysporum strain is described at the ultrastructural level. Root systems of E. viminalis plants were inoculated with nonpathogenic F. oxysporum strain Fo47 in an in vitro model system. Changes in the occurrence of nonesterified and methyl-esterified pectins in colonized E. viminalis roots were evaluated by in situ immunolabeling using two monoclonal antibodies, JIM 5 and JIM 7. Modes of penetration and root colonization patterns in E. viminalis seedlings by the nonpathogenic fungus were similar to those described for pathogenic forms of F. oxysporum. However, root interactions differed in that the nonpathogenic fungus did not induce host tissue damage. No papilla-like appositions were observed in host cells in response to invading hyphae, which did not disrupt the host plasma membrane in many cases, suggesting that a biotrophic relationship was established. Root colonization by the nonpathogenic strain did not induce alteration in JIM 7 labeling of methyl-esterified pectin in E. viminalis cell walls, whereas nonesterified pectin was detected to a significantly greater extent in cell walls of roots colonized by the fungus. Pectin components decreased slightly only at points of hyphal contact with host cells. Because nonpathogenic strains utilize pectin in pure culture, host control over enzyme activity or production by the fungi may at least partly explain their compatible interactions with host tissues.  相似文献   

14.
Sixteen isolates belonging to 11 species of Trichoderma (T. asperellum, T. ceramicum, T. andinensis, T. orientalis, T. atroviride, T. viridescens, T. brevicompactum, T. harzianum, T. virens, T. koningii and T. koningiopsis) were evaluated for biological control of potato (Solanum tuberosum) stem rot caused by Sclerotinia sclerotiorum. In dual culture tests, all antagonists significantly reduced sclerotia formation, and were able to inhibit radial growth of the pathogen. Growth inhibition by production of volatile and non-volatile inhibitors was also measured in in vitro tests. In screening the most efficient species of Trichoderma, establishment of mycelium on sclerotia and sclerotia lysis were also considered as important biocontrol qualities. Excluding T. asperellum, T. brevicompactum, T. andinensis and T. harzianum, all tested Trichoderma species were able to lyse sclerotia. The sclerotia-destroying species of Trichoderma and one isolate of Talaromyces flavus were tested in greenhouse tests and during 2 years of field experimentation during the 2007 and 2008 cropping seasons. After one aerial application of spore suspension in greenhouse trials, T. koningii, T. virens, T. ceramicum and T. viridescens were the most effective bio-agents and reduced significantly disease severity, and the least biocontrol efficacy was observed in T. flavus. Under field conditions and after five soil and foliar applications of spore suspension, all tested antagonists reduced significantly disease incidence. T. viridescens followed by T. ceramicum showed the best results. T. flavus and T. orientalis were less effective than other tested antagonists in both field trials.  相似文献   

15.
Results of a greenhouse Armillaria ostoyae inoculation experiment, designed for screening resistant Pinus pinaster genotypes and for exploring the role of different phenotypic traits in seedling susceptibility, are reported. The experiment included 39 open-pollinated pine families that comprised a random subset of the breeding population of P. pinaster in Galicia (NW Spain). We employed a non-parametric survival-time analysis to analyze patterns of survival times during 14 months after inoculation with a local A. ostoyae strain. Results indicate (i) a significant correlation between seed weight and tree susceptibility, with seedlings originating from large seeds being more susceptible, (ii) a positive family mean correlation between secondary root weight and size and median life expectancy, and (iii) genetic variation of tree tolerance to A. ostoyae, with some families surviving significantly longer than others. Less susceptible families could be used in breeding programmes or directly in forest plantations to reduce the losses caused by A. ostoyae. Large within-family variation in tolerance to the disease was also observed, suggesting that non additive genetic variance was also important. Although being infected, 32 out of the 1200 inoculated trees survived the fungus infection. These tolerant genotypes comprise an attractive collection to further investigate genetic, phenotypic and environmental factors affecting pine susceptibility to Armillaria root rot.  相似文献   

16.
The mechanism by which Fusarium diseases of cymbidium plants are suppressed by a weakly virulent strain HPF-1 of Fusarium sp. was studied. Strain HPF-1 produced microscopic, necrotic local lesions on cymbidium leaves, causing minor damage to palisade tissues at the infection sites. This weakly virulent strain remained near the site of infection and did not develop further. It systemically and nonselectively suppressed some diseases of cymbidium such as yellow spot of leaves caused by Fusarium proliferatum and F. fractiflexum, bulb and root rot caused by F. oxysporum, and dry rot of bulbs and roots caused by F. solani. Because endogenous salicylic acid levels increased in cymbidium leaves inoculated with strain HPF-1, the mechanism of disease suppression is thought to be systemic acquired resistance.  相似文献   

17.
From the genome of a Japanese field isolate of the rice blast fungus, Magnaporthe oryzae, we newly identified Inago1 and Inago2 LTR retrotransposons. Both elements were found to be Ty3/gypsy-like elements whose copies were dispersed within the genome of Magnaporthe spp. isolates infecting rice and other monocot plants. Southern hybridization patterns of nine re-isolates derived from conidia of the strain Ina168 produced after a methyl viologen treatment were not changed, indicating that the insertion pattern of Inago elements is relatively stable.  相似文献   

18.
In September 2014, Phytophthora rot on wasabi plants [Wasabia japonica (Miq.) Matsum.] was found for the first time in the city of Okutama, Tokyo, Japan. A Phytophthora sp. strain was constantly isolated from brown stem bases and rhizomes of infected plants. The same symptoms as those observed in the field were produced in vitro through inoculation of test plants with the isolated Phytophthora sp. The fungus was identified as Phytophthora drechsleri based on morphological and DNA sequence comparison. Phytophthora rot, “eki-byo” in Japanese, is proposed for this disease common name.  相似文献   

19.
Black rot, caused by Xanthomonas campestris pv. campestris, (Xcc), is one of the most serious diseases of crucifers world-wide. Forty-nine genotypes were evaluated for resistance under field conditions in Tanzania after artificial inoculation with Xcc race 1. Open pollinated white cabbage cultivars were generally susceptible, while Portuguese and pointed cabbages exhibited partial resistance. Some F1 white cabbage cultivars were highly susceptible, whereas others exhibited a high level of partial resistance. The most promising of the hybrid cultivars were T-689 F1, Gianty F1, No. 9690 F1, N 66 F1, and SWR-02 F1. Breeding line Badger I-16 exhibited the highest level of resistance of all genotypes. The genotypes accounted for 72.9–75.5% of the variation of the disease severity when assessed on the leaves, and 71.4% of the variation when assessed as internal black rot in heads at harvest. High correlations (equal to or above 0.7) were found between disease severities assessed on leaves three times during the growing season and also with the amount of internal black rot in heads. Leaf loss also was correlated with disease severity. The high genetic determination of the trait and the high correlations between disease assessments indicate that selection for resistance to black rot will be efficient when field screenings are carried out. Evaluation of genotypes for disease severity on leaves during the growing season combined with evaluations of head resistance in the most promising genotypes may be a simple method to select resistant cultivars.  相似文献   

20.
In 2006, stem rot and blue-green crusty lesions were found on the stems of tomato plants in Chiba Prefecture, Japan. Penicillium oxalicum was isolated repeatedly from the diseased plants. The causal fungus reproduced natural symptoms after artificial inoculation of tomato plants and was re-isolated from symptomatic plant tissue. P. oxalicum is a new pathogen that causes blue mold on tomato plants in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号