首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virulence factors of the yellow rust, Puccinia striiformis, populations in bread wheat were studied in Ecuador between 1973 and 2004. The number of virulence factors has increased markedly from very few in the early seventies to 16 at the end of the 90s. Isolates belonging to race 0E0 seem to be the ancestor of a rapid virulence evolution of yellow rust in Ecuador. This evolution can be explained by a single step mutation pattern. Virulence to the resistance genes Yr1, Yr2, Yr2+, Yr3V, Yr3ND, Yr4+, Yr6, Yr6+, Yr7, Yr7+, Yr9, Yr9+, Yr11, Yr12, Yr18, Yr24, Yr26 and those in the cultivars Carstens V (YrCV) Strubes Dickkopf (YrSD), Suwon92/Omar (YrSU), Spaldings Prolific (YrSP), Anza (YrA+) and Selkirk (YrSK). was identified. Virulence to Yr5, Yr8, Yr10, and Yr15 was not found. Postulation of resistance genes at the seedling stage of 14 Ecuadorian wheat cultivars indicated that these cultivars carry alone or in combinations the resistance factors Yr1, Yr2, Yr3, Yr6, Yr9 and/or other undesignated resistance factors. Yellow rust evolution in Ecuador has been associated with deployment of these resistance genes. None of these deployed Yr resistance genes are effective to the present yellow rust population in Ecuador.  相似文献   

2.
A set of 105 European wheat cultivars was assessed for seedling resistance and adult plant resistance (APR) to stripe (yellow) rust in greenhouse and field tests with selected Australian isolates of Puccinia striiformis f. sp. tritici (Pst). Twelve cultivars were susceptible to all pathotypes, and among the remainder, 11 designated seedling genes (Yr1, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr27, Yr32, YrHVII and YrSP) and a range of unidentified seedling resistances were detected either singly or in combination. The identity of seedling resistance in 43 cultivars could not be determined with the available Pst pathotypes, and it is considered possible that at least some of these may carry uncharacterised seedling resistance genes. The gene Yr9 occurred with the highest frequency, present in 19 cultivars (18%), followed by Yr17, present in 10 cultivars (10%). Twenty four cultivars lacked seedling resistance that was effective against the pathotype used in field nurseries, and all but two of these displayed very high levels of APR. While the genetic identity of this APR is currently unknown, it is potentially a very useful source of resistance to Pst. Genetic studies are now needed to characterise this resistance to expedite its use in efforts to breed for resistance to stripe rust. Colin R. Wellings seconded from NSW Department of Primary Industries.  相似文献   

3.
Summary Virulence patterns of yellow rust isolates collected in Kenya between 1986–1989 were compared with earlier results. The number of virulence factors per race and the range in virulence factors both increased considerably. Before 1976 races carried on average 4.5 to 5.0 virulence factors, whereas the races after 1986 had a mean of 6.5 virulence factors. The range in the number of virulence factors increased from some seven to eight in the first period to 12 in the second out of the 17 evaluated. In the period 1986–1989 another three virulence factors (2, 9 and A) were assessed. All three occurred at a high frequency.Virulence neutralizing the resistance genes Yr2, Yr2+, Yr6, Yr6+, Yr7, Yr7+, Yr8, Yr9, Yr9+ and those in the cultivars Anza (A), Strubes Dickkopf (SD) and Suwon92/Omar (SU) occurred at a high frequency, while virulence for Yr3V, Yr4+, Yr5, CV and SP (resistance in Carstens V and Spaldings Prolific resp.) were not found. The remaining three virulence factors for Yr1, 10 and 3N were rare.In the past ten years the resistance of most released cultivars became ineffective in less than six years. They were shown to carry race-specific major resistance genes such as Yr7+, Yr9+, SD and A. However, in the field, the resistance of the cultivars was not completely neutralized. A residual resistance, ranging from moderate to fairly high, was observed in all cultivars in which the major gene resistances were neutralized by corresponding virulence genes.Other wheat cultivars such as Africa Mayo, Kenya Kudu, Enkoy, Kenya Leopard, Bounty, Frontatch, Bonny and Kenya Plume appeared to keep their resistance over a condiserable period of time. They are considered to be durably resistant to the Kenyan yellow rust populations. This form of resistance, together with the residual resistance, can be recommended for use in breeding programmes.  相似文献   

4.
Summary A set of 21 monosomics of Novosadska Rana-1 was used to locate the rust resistance genes of Lüqiyu, a stripe rust resistant line developed by BAU and Yantar, a leaf rust resistant wheat introduced from Bulgaria. The resistance of the former to p. striiformis race C25 was conditioned by a dominant gene located on chromosome 2B, whereas that of the latter to P. recondita race CL3 was controlled by two complementary dominant genes located on chromosomes 5A and 1D, respectively. The relationship of the stripe rust resistance gene in Lüqiyu to Yr5, Yr7 or Yr Suwon' all located on chromosome 2B is unknown. The two complementary leaf rust resistance factors in Yantar appear to be new.  相似文献   

5.
Yellow rust (stripe rust), caused by Puccinia striiformis Westend f. sp. tritici, is one of the most devastating diseases of wheat throughout the world. Wheat-Haynaldia villosa 6AL.6VS translocation lines R43, R55, R64 and R77, derived from the cross of three species, carry resistance to both yellow rust and powdery mildew. An F2 population was established by crossing R55 with the susceptible cultivar Yumai 18. The yellow rust resistance in R55 was controlled by a single dominant gene, which segregated independently of the powdery mildew resistance gene Pm21 located in the chromosome 6VS segment, indicating that the yellow rust resistance gene and Pm21 are unlikely to be carried by the same alien segment. This yellow rust resistance gene was considered to beYr26, originally thought to be also located in chromosome arm 6VS. Bulked Segregation Analysis and microsatellite primer screens of the population F2 of Yumai 18 × R55 identified three chromosome 1B microsatellite locus markers, Xgwm11, Xgwm18 and Xgwm413, closely linked to Yr26. Yr26 was placed 1.9 cM distal of Xgwm11/Xgwml8, which in turn were 3.2 cM from Xgwm413. The respective LOD values were 21 and 36.5. Therefore, Yr26 was located in the short arm of chromosome 1B. The origin and distribution of Yr26 was investigated by pedigree, inheritance of resistance and molecular marker analysis. The results indicated that Yr26 came from Triticum turgidum L. Three other 6AL.6VS translocation lines, R43, R64 and R77, also carried Yr26. These PCR-based microsatellite markers were shown to be very effective for the detection of the Yr26 gene in segregating populations and therefore can be applied in wheat breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Gert H. J. Kema 《Euphytica》1992,63(3):207-217
Summary Seven spelt wheat accessions of different origin were hybridized with the susceptible bread wheat cultivar Taichung 29 in order to study the genetics of their resistance to yellow rust (Puccinia striiformis Westend. f. sp. tritici). One Iranian and five European accessions were found to carry Yr5 of Triticum aestivum ssp. spelta var. album, whereas a factor for resistance in the Iranian accession 415 was confirmed to be genetically distinct from Yr5. The alleles for resistance in each of the accessions studied showed a monogenic dominant mode of inheritance. Twenty-eight spelt wheat accessions, including those studied for their resistance to yellow rust, were subjected to polyacrylamide-gel-electrophoresis to study variation for gliadin storage protein patterns. Thirteen distinct patterns were revealed, implying the presence of duplicates within the studied spelt wheat collection.  相似文献   

7.
The stripe (yellow) rust resistance gene Yr27 was located in wheat (Triticum aestivum L.) chromosome 2B and shown to be closely linked to the leaf (brown) rust resistance genes Lr13 and Lr23 in the proximal region of the short arm. Gene Yr27 was genetically independent of Lr16, which is distally located in the same arm. While Yr27 was often difficult to score in segregating seedling populations, it is apparently quite effective in conferring resistance to avirulent cultures under field conditions. The occurrence of Yr27 in Mexican wheat germplasm and the current over-dependence on Yr27 for crop protection in Asia are discussed.  相似文献   

8.
J. A. Kolmer 《Euphytica》1992,61(2):123-130
Summary Leaf rust resistance gene Lr13 is present in many North American hard red spring wheat cultivars that have shown durable resistance to leaf rust. Fifteen pair-wise combinations of Lr13 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests, homozygous paired combinations of specific resistance genes with Lr13 had enhanced resistance relative to either parent to rust isolates that had intermediate avirulent infection types to the additional genes. In field tests, homozygous lines were more resistant than either parent if the additional leaf rust gene conditioned an effective level of resistance when present singly.  相似文献   

9.
Summary Hexaploid and octoploid tritordeums and their parents Hordeum chilense and Triticum spp. were screened for resistance to isolates of wheat and barley yellow and brown rusts. All H. chilense lines were highly resistant to both wheat and barley brown rust, few lines were susceptible to wheat yellow rust while susceptibility to barley yellow rust was common. In general the resistance of tritordeum is predominantly contributed by the wheat parent and apparently the genes for resistance in H. chilense are inhibited in their expression by the presence of the wheat genome.Abbreviations WYR wheat yellow rust - WBR wheat brown rust - BYR barley yellow rust - BBR barley brown rust  相似文献   

10.
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating wheat diseases worldwide. Triticum aestivum-Haynaldia villosa 6VS/6AL translocation lines carrying the Yr26 gene on chromosome 1B, are resistant to most races of Pst used in virulence tests. In order to better utilize Yr26 for wheat improvement, we attempted to screen SSR and EST-based STS markers closely linked with Yr26. A total of 500 F2 plants and the F2:3 progenies derived from a cross between 92R137 and susceptible cultivar Yangmai 5 were inoculated with race CYR32. The analysis confirmed that stripe rust resistance was controlled by a single dominant gene, Yr26. Among 35 pairs of genomic SSR markers and 81 pairs of STS markers derived from EST sequences located on chromosome 1B, Yr26 was flanked by 5 SSR and 7 STS markers. The markers were mapped in deletion bins using CS aneuploid and deletion lines. The closest flanking marker loci, Xwe173 and Xbarc181, mapped in 1BL and the genetic distances from Yr26 were 1.4 cM and 6.7 cM, respectively. Some of these markers were previously reported on 1BS. Eight common wheat cultivars and lines developed from the T. aestivum-H. villosa 6VS/6AL translocation lines by different research groups were tested for presence of the markers. Five lines with Yr26 carried the flanking markers whereas three lines without Yr26 did not. The results indicated that the flanking markers should be useful in marker-assisted selection for incorporating Yr26 into wheat cultivars.  相似文献   

11.
Summary The expression of rust resistances conferred by closely linked genes derived from VPM1 varied with environmental conditions and with genetic backgrounds. Under low light and low temperature conditions seedlings carrying Yr17 showed susceptible responses. Stem rust and leaf rust resistance genes Sr38 and Lr37 tended to confer more resistance at 17±2° C than at normal temperatures above > 20° C. These studies supported the hypothesis that Yr17, Lr37 and Sr38 were derived from Aegilops ventricosa, whereas Pm4b was probably derived from T. persicum. Studies on certain addition lines and parental stocks indicated that wheat cytoplasm may enhance the expression of Sr38.  相似文献   

12.
A total of 105 European wheat cultivars were assessed for seedling and adult plant resistance (APR) to stem rust using an array of Australian isolates of Puccinia graminis f. sp. tritici. Twenty-seven cultivars were susceptible at both seedling and adult plant growth stages. Twelve catalogued seedling stem rust resistance genes (Sr7b, Sr8a, Sr8b, Sr9b, Sr9g, Sr11, Sr15, Sr17, Sr29, Sr31, Sr36 and Sr38) were detected in the remaining cultivars, and 13 cultivars carried additional seedling resistance genes that could not be postulated with the isolates used. Low levels of APR to stem rust were found in the cultivars Artaban, Forno, Mec, Mercia, Pandas and Vlada. Although the genetic identity of this APR was not determined, it was clear that the only designated stem rust APR gene Sr2 was not present in any of the cultivars tested based on the absence of the linked traits seedling chlorosis and pseudo black chaff. One of these cultivars, Forno, is believed to carry the leaf rust APR gene Lr34, previously reported to be associated with improved resistance to stem rust. A detailed genetic characterisation of the APRs in these cultivars will be needed to understand their modes of inheritance and relationships with catalogued stem rust resistance genes. Such knowledge may help in developing cultivars with effective gene combinations that confer higher levels of protection.  相似文献   

13.
P. L. Dyck  E. E. Sykes 《Euphytica》1995,81(3):291-297
Summary Common and durum wheat populations obtained from Sweden and originally collected in Ethiopia were screened for resistance to steum rust and leaf rust. Resistant selections of common wheat were crossed and backcrossed with either stem rust susceptible RL6071, or leaf rust susceptible Thatcher. Genetic studies, based largely on tests of backcross F2 families, showed that four of the selections had in common a recessive gene SrA. Plants with this gene were resistant (1+ infection type) to all stem rust races tested. This gene was neither Sr26 nor Sr29. The resistance of other selections, based on tests with an array of rust isolates, was due to various combinations of Sr6, 8a, 9a, 9d, 9c, 11, 13, 30, and 36. One of the selections had linked genes, Lr19/Sr25. Another selection had a dominant gene for resistance (;1 infection type) to all the races of leaf rust. With the possible exception of this gene for leaf rust resistance and SrA, no obviously new resistance was found.  相似文献   

14.
Yellow rust, caused by Puccinia striiformis f. sp. tritici, is one of the most severe wheat disease worldwide. Crop losses have ranged from 10% to 70% and up to 100% in extreme conditions. Eighty-two resistance genes, designated Yr, have been identified. Among them, Yr17 derived from Aegilops ventricosa and located on chromosome 2A has been widely used in wheat breeding. However, it had been overcome already. Through recombination of the Ae. ventricosa Yr17-carrying 6Nv chromosome with 2D of wheat, we introduced Yr17 onto chromosome 2D. Then, lines carrying Yr17 on both 2A and 2D were generated. Seedlings of the latter, as well as those carrying a single dose of Yr17 either on 2A or on 2D, were inoculated with virulent or avirulent strains on wheat seedlings. The different genotypes were fully susceptible for the two pathotypes that are virulent on Yr17. In the case of avirulent pathotypes, the Yr17 double dose lines were fully resistant, while those with the Yr17 gene only on either 2A or 2D had intermediate resistance reactions towards one or the other or both pathotypes.  相似文献   

15.
Q. Sun    Y. Wei    Z. Ni    C. Xie  T. Yang 《Plant Breeding》2002,121(6):539-541
Yellow rust of wheat caused by Puccinia striiformis f sp. tritici has been periodically epidemic and severely damaged wheat production in China and throughout the world. Breeding for resistant cultivars has been proved to be an effective way to resolve the problem. A yellow rust resistance gene, Yr5, derived from Triticum spelta shows immunity or high resistance to the most popular isolates Tiaozhong 30 and 31 in China. Establishment of DNA markers for the Yr5 gene will facilitate marker‐assisted selection and gene pyramiding in the breeding programme. Since the Yr5 gene was cytologically located on the long arm of chromosome 2B, By33, the donor of Yr5, was crossed and backcrossed with the susceptible line 441, and BC3F2 and BC3F3 segregating populations were screened for polymorphism by using 11 microsatellite primers mapped on chromosome 2B. A marker, Xgwm501‐195 bp/160 bp, was found to be linked to Yr5, with a genetic distance of 10.5‐13.3 cM.  相似文献   

16.
陕甘川重要小麦品种抗条锈基因分析   总被引:17,自引:0,他引:17  
王凤乐  宋位中 《作物学报》1994,20(5):589-597
根据对16个国外和4个国内已知毒性基因的小麦条锈菌反应,结合系谱分析,研究了39个陕西、甘肃、四川省重要小麦品种所具有抗条锈基因。试验结果显示,已知抗病基因Yr1、2、3、7、9、10、SD、Su等分布在20个品种中,其中11个品种含有Yr9。3个品种对供试菌系均表现抗病反应,2个品种抵抗大多数供试菌系,表明它们具有主效的未  相似文献   

17.
R. N. Sawhney 《Euphytica》1987,36(1):49-54
Summary Variation for resistance toPuccinia graminis f.sp.tritici, P. recondita f.sp.tritici andP. striiformis was induced in theTriticum aestivum cultivar Lalbahadur using nitrosomethyl urea. Variations were isolated from the M2 population in the post-seedling stage in the field when infected with a mixture of races of each of the three rusts. Plants exhibiting simultaneous resistance to stem rust, leaf rust and yellow rust were indentified. Repeated screening in the subsequent generations confirmed the resistance of the mutant lines that are morphologically similar to the parental cultivar. The rust resistance of 20 mutant lines was also confirmed at the seedling stage using individual races of stem rust and leaf rust. The different patterns observed in the mutant lines tested against a wide range of races show that these lines can be used as components of a multiline. The patterns of variation compared with those of the known genes for resistance against the Indian races of the pathogens suggest that the mutations for rust resistance are due to factor different from those already known in bread wheat, providing a broadened genetic base for future breeding programmes.  相似文献   

18.
Summary Seedling resistance to wheat stem rust was determined in populations of wild emmer wheat, Triticum dicoccoides, and characterized by means of ecological factors and allozyme genotypes. Reactions to wheat stem rust were studied in 102 single plant accessions of T. dicoccoides from ten populations by inoculation with Puccinia graminis tritici race 14, isolate GSR-739. Six populations displayed different degrees of response polymorphism with reactions ranging from high resistance to complete susceptibility, whereas four populations contained only susceptible plants. In some of the accession, unexplained intrasib variation in resistance and intraplant variation of infection-types were found. Resistance to stem rust was negatively correlated with two ecological factors, altitude and number of Sharav (hot-dry) days which are unfavorable to disease development. Variation in stem rust response was shown to exist in ecogeographic regions where climatic variables enhanced the development of the fungus, conceivably maintained by natural selection. Likewise, allozyme genotypes, single or in multiple loci combinations, appeared to be associated with resistance or susceptibility to rust. Such association need to be verified by genetic studies in order to become established as useful markers.  相似文献   

19.
小麦条锈病、叶锈病和白粉病是我国小麦的重要真菌病害,培育兼抗型成株抗性品种是控制病害最为经济有效和持久安全的方法。本研究选用由成株抗性育种方法培育的21份冬小麦高代品系和96份春小麦高代品系,在多个环境下进行这3种病害的成株期抗性鉴定,并利用紧密连锁的分子标记检测了兼抗型基因Lr34/Yr18/Pm38、Lr46/Yr29/Pm39和Sr2/Yr30的分布。田间鉴定表明,21份冬小麦品系中有17份兼抗3种病害,占80.9%;96份春小麦品系中有85份兼抗3种病害,占88.5%。分子标记检测发现,21份冬小麦品系均含QPm.caas-4DL,其中7份还含QPm.caas-2BS,9份还含QPm.caas-2BL;96份春小麦品系中,18份含Lr34/Yr18/Pm38,37份含Lr46/Yr29/Pm39,29份含Sr2/Yr30。以上结果表明,分子标记与常规育种相结合,可有效培育兼抗型成株抗性品种,为我国小麦抗病育种提供了新思路。  相似文献   

20.
Summary Using the cultivar Arina as the recurrent parent, six backcrosses were made with two donor lines carrying the leaf rust resistance genes Lr1 and Lr9, respectively. Selection for leaf rust resistance occurred at the seedling stage in the greenhouse; the first plants transferred to the field were BC6F4s. Frequency distribution of the 332 Lr1/7 × Arina and the 335 Lr9/7 × Arina lines showed continuous variation for yellow rust resistance and heading date in these leaf rust near-isogenic lines (NILs). Similar results were also obtained for plant height, for resistance to powdery mildew and glume blotch, as well as for baking quality characters in another set of more advanced NILs. The available information on the behaviour of one of the parents of cultivar Arina led to the conclusion that the expressed yellow rust resistance is quantitative and might possibly be durable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号