首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary evaluation of ten fungicides for the control of cucumber powdery mildew (Sphaerotheca fuliginea), tomato leaf mould (Cladosporium fulvum) and tomato grey mould (Botrytis cinerea) indicated that nine of them were systemically active against one or more of the pathogens when applied as soil drenches. Benomyl, thiophanate, thiophanate-methyl, thiabendazole and Cela W52A showed activity against all three diseases, but dimethirimol, triarimol and dodemorph were more specific and mainly active against cucumber powdery mildew. An in vitro bioassay generally indicated that fungitoxicity was not translocated from sprayed to unsprayed leaves, and though toxicity to B. cinerea, following soil drenches of benomyl, thiophanate and thiophanate-methyl, was detected by bioassay in leaf sap and calyces it was not detected in fruit. Furthermore, extended evaluation of benomyl for the control of grey mould on cropping tomotoes showed that in the presence of abundant B. cinerea inoculum, benomyl soil drench treatment effectively controlled flower and leaf infection but not fruit ghost-spotting.  相似文献   

2.
Since 2001, several isolates of Blumeria graminis, the causal agent of cereal powdery mildew, maintained on detached leaves at the John Innes Centre, Norwich, UK, have spontaneously become infected with an unknown filamentous fungus whose mycelia have quickly overgrown the powdery mildew colonies and destroyed them completely. A total of five isolates of the contaminant were obtained and identified as Paecilomyces farinosus based on morphological characteristics and rDNA ITS sequence data. To determine whether these P. farinosus isolates can be considered as biocontrol agents (BCAs) of powdery mildews, we studied the interactions between P. farinosus and the following four powdery mildew species: B. graminis f.sp. hordei infecting barley, Oidium neolycopersici infecting tomato, Golovinomyces orontii infecting tobacco and Podosphaera fusca infecting cucumber. The powdery mildew colonies of all these four powdery mildew species were quickly destroyed by P. farinosus in leaf cultures but neither conidial suspensions nor cell-free culture filtrates of P. farinosus isolates could suppress the spread of powdery mildew infections on diseased barley, tomato, tobacco or cucumber plants in the greenhouse. It is concluded that P. farinosus cannot be considered as a promising BCA of powdery mildew infections although it can destroy powdery mildew colonies in detached leaf cultures and can be a menace during the maintenance of such cultures of cereal, apple, cucurbit and tomato powdery mildew isolates.  相似文献   

3.
BACKGROUND: Physcion is a key active ingredient of the ethanol extract from roots of Chinese rhubarb (Rheum officinale Baill.) that has been commercialised in China for controlling powdery mildews. The biological mechanism of action of physcion against the barley powdery mildew pathogen was studied using bioassay and microarray methods. RESULTS: Bioassay indicated that physcion did not directly affect conidial germination of Blumeria graminis Speer f. sp. hordei Marchal, but significantly inhibited conidial germination in vivo. Challenge inoculation indicated that physcion induced localised resistance rather than systemic resistance against powdery mildew. Gene expression profiling of physcion‐treated barley leaves detected four upregulated and five downregulated genes (ratio ≥ 2.0 and P‐value < 0.05) by using an Affymetrix Barley GeneChip. The five upregulated probe sequences blasted to the same barley leaf‐specific thionin gene, with significant changes varying from 4.26 to 19.91‐fold. All downregulated genes were defence‐related, linked to peroxidase, oxalate oxidase, bsi1 protein and a pathogenesis‐related protein. These changes varied from ? 2.34 to ? 2.96. Quantitative real‐time PCR data confirmed that physcion enhanced the gene expression of leaf‐specific thionin of barley. CONCLUSION: Results indicated that physcion controls powdery mildew mainly through changing the expression of defence‐related genes, and especially enhancing expression of leaf‐specific thionin in barley leaves. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
解淀粉芽孢杆菌LJ1诱导黄瓜抗白粉病的研究   总被引:1,自引:1,他引:0  
解淀粉芽孢杆菌LJ1是从土壤中分离得到的一株对黄瓜白粉病具有较好防效的生防细菌。田间试验发现,用LJ1发酵上清100倍稀释液喷施黄瓜幼苗,在施药后14 d时其对黄瓜白粉病的防效可达83.45%。为研究LJ1防治病害的作用机制,用LJ1发酵上清100倍稀释液喷施黄瓜幼苗,测定黄瓜叶片中的超氧化物歧化酶(SOD)、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)等与诱导抗病性相关的酶活性和信号分子水杨酸含量的变化,并检测了苗期根围土壤中真菌的动态。结果显示,经过LJ1发酵液处理后3种酶的活性和水杨酸的含量在不同时间点均有一个骤增的过程,其活性显著高于对照,并且7 d后土壤中的可培养真菌数量急剧减少。说明LJ1发酵液中有诱导黄瓜产生抗病性的物质,并且诱导后分泌的抗性物质对真菌具有广谱性。  相似文献   

5.
Apple shoots and aerial parts of 13 other plant species infected with powdery mildews during the previous season were collected in late winter and early spring between 1998 and 2003 at a total of 34 sample sites in Hungary. Samples were examined for the presence of overwintering structures of Ampelomyces, common mycoparasites of powdery mildews. Pycnidia and resting hyphae resembling those of Ampelomyces were found on six plant species, including apple. Their viability and subsequent mycoparasitic activity of the hyphae emerging from the overwintered fungal structures were studied in vitro to determine whether they can serve as sources of primary inocula of Ampelomyces in the spring. Overwintered pycnidia of Ampelomyces collected in the spring, and produced in both the ascomata and the conidiophores of powdery mildews during the previous season, initiated the life cycle of these mycoparasites when placed close to fresh powdery mildew colonies in vitro. Similarly, thick-walled resting hyphae, found in the dried powdery mildew mycelia which covered the overwintered aerial parts of the host plants, also germinated and gave rise to new intracellular pycnidia of Ampelomyces when powdery mildew colonies were inoculated with them in vitro. On apple trees, Ampelomyces mycoparasites overwintered as resting hyphae in the dried powdery mildew mycelia covering the shoots and in the parasitized ascomata of Podosphaera leucotricha on the bark and the scales of the buds. Approximately 31% of the field samples collected from apple trees in spring between 1998 and 2003 contained overwintered structures of Ampelomyces. Artificial bursting of apple buds in the laboratory showed that both P. leucotricha and Ampelomyces start their life cycle during or soon after bud burst, but Ampelomyces can only slowly follow the spread of its mycohost on infected leaves. Most probably, the mycoparasites did not overwinter in the dormant hyphae of P. leucotricha in the buds, but only on the bark and the bud scales, as their hyphae were not found in the young hyphae of apple powdery mildew that appeared on the leaf tissues during bud burst. This study demonstrated that Ampelomyces mycoparasites can survive the winter in the field as pycnidia and as resting hyphae in the dried mycelia of their mycohosts.  相似文献   

6.
The new systemic fungicide N,N'-bis-(1-formamido-2,2,2-trichloroethyl)-piperazine (CELA W 524) was shown to display a moderate to distinct fungitoxic activity in vitro towards several pathogenic and non-pathogenic fungi. Depending on the inert ingredients present2, the available formulations proved to be either rather phytotoxic or virtually non-phytotoxic. Pre-infectional spraying with the non-phytotoxic formulation provided complete protection of barley, bean, cucumber, pea and tomato plants against barley powdery mildew, bean rust, cucumber powdery mildew and cucumber scab, pea powdery mildew and tomato leaf mould, respectively. some suppression of disease symptoms —although only at high concentrations of CELA W 524 — was observed in the case of leaf spot in pea plants. Upon post-infectional treatment disease control was less pronounced, although powdery mildew diseases and tomato leaf mould were effectively suppressed. When applied via the roots CELA W 524 proved to be systemically active, successfully protecting barley plants against powdery mildew, and cucumber plants against powdery mildew and cucumber scab.Samenvatting Het nieuwe systemische fungicide CELA W 524 (C. H. Boehringer Sohn, Ingelheim am Rhein, Duitsland) bleek een matige tot duidelijke fungitoxische werking in vitro te vertonen tegenover verschillende pathogene en niet-pathogene schimmels. Eén van de beschikbare formuleringen bleek vrij sterk fytotoxisch, de andere was nagenoeg niet fytotoxisch. Bespuiting vóór inoculatie met de niet-fytotoxische formulering resulteerde in volledige bescherming van gerst, bonen, komkommers, erwten en tomaten tegen respectievelijk gerstemeeldauw, boneroest, komkommermeeldauw en vruchtvuur, erwtemeeldauw en bladvlekkenziekte bij tomaat. Enige onderdrukking van ziektesymptomen trad ook op bij erwten, geïnoculeerd metAscochyta pisi, tenminste, wanneer hoge concentraties van CELA W 524 werden gebruikt. Bij bespuiting na inoculatie was het effect geringer, hoewel meeldauwziekten en bladvlekkenziekte bij tomaat toch doeltreffend bestreden werden. Toegediend via de wortels bleek CELA W 524 systemisch actief; het beschermde aldus gerst tegen meeldauw en komkommers tegen meeldauw en vruchtvuur.  相似文献   

7.
To clarify the relationship between the phylogeny and infectivity of isolates of Podosphaera fuliginea s. lat. (= Sphaerotheca fuliginea s. lat.) from cosmos and cucumber, more than 50 powdery mildew isolates from these two plants were subjected to nucleotide sequencing or PCR-RFLP analysis of the rDNA internal transcribed spacer (ITS) region and cross-inoculation tests. The isolates from both cosmos and cucumber are genetically monotypic, and there are six nucleotide substitutions in the rDNA ITS region between isolates from cosmos and cucumber. Cross-inoculation tests of these isolates revealed that isolates from cosmos are not pathogenic on cucumber. Although isolates from cucumber produced conidia on leaves of cosmos in the laboratory, the conidial density was much lower than that from isolates from cosmos. This result, as well as the fact that the cucumber strain was not isolated from cosmos in fields, suggests that isolates from cucumber do not infect cosmos in the field. Therefore, powdery mildews on cosmos and cucumber can be regarded to have become specialized for their hosts both genetically and pathogenically. The present study reconfirms the close relationship between phylogeny and infectivity of powdery mildew fungi. Host specialization may be a trigger that causes genetic divergence of powdery mildew fungi. Received 28 June 2000/ Accepted in revised form 4 September 2000  相似文献   

8.
The systemic activity of simeconazole (RS-2-(4-fluorophenyl)-1-(1H-1,2,4-triazol-1-yl)-3-trimethylsilylpropan-2-ol) in plants was compared with those of eight other sterol demethylation inhibitor (DMI) fungicides. Simeconazole prevented the infection of Blumeria graminis (DC) Speer f sp hordei Marchal on barley leaves within a radius of several centimeters from the edge of local treatment on the leaves when the compound was separated from the leaves by glass coverslips. This reveals that simeconazole has prominent vapour-phase activity. Simeconazole showed excellent curative activity against barley powdery mildew when treated 1-3 days after inoculation. Furthermore, this indicates that simeconazole has notable translaminar activity because, when the compound was applied onto either the adaxial or abaxial leaf surface, it showed excellent efficacy against powdery mildew on the opposite side of the leaf surface of barley and cucumber. Simeconazole also showed excellent efficacy against barley powdery mildew by soil drench 24h after inoculation. This suggests that simeconazole was absorbed very quickly into the barley plant after treatment. The permeability of the compound through cuticular membranes prepared from tomato fruits was about 20% at 22 h after the treatment and was much superior to that of the other DMI fungicides tested.  相似文献   

9.
A spray inoculation of the first leaf of 2-leaf stage cucumber plants with a non-pathogenic isolate of Alternaria cucumarina or Cladosporium fulvum before a challenge inoculation with the pathogen Sphaerotheca fuliginea induced systemic resistance to powdery mildew on leaves 2–5. Systemic resistance was expressed by a significant (p < 0.05) reduction in the number of powdery mildew colonies produced on each leaf of the induced plants, as compared with water-sprayed plants. Systemic resistance was evident when a prior inoculation with each of the inducing fungi was administered 1, 3 or 6 days before the challenge inoculation with S. fuliginea. Increasing the inoculum concentration of A. cucumarina or C. fulvum enhanced the systemic protection and provided up to 71.6% or 80.0% reduction, respectively, in the number of colonies produced on upper leaves, relative to controls. Increasing the inoculum concentration of S. fuliginea used for challenge inoculation, increased the number of powdery mildew colonies produced on both induced and non-induced plants. Pre-treated plants, however, were still better protected than controls, indicating that the level of systemic protection was related to the S. fuliginea inoculum concentration. The induction of systemic resistance against powdery mildew by biotic agents, facilitates the development of a wide range of disease management tools.  相似文献   

10.
Ethirimol, a hydroxypyrimidine fungicide active against powdery mildews only, inhibited the formation of appressoria during primary infection of barley powdery mildew, Erysiphe graminis f.sp hordei. It also affected other stages of mildew development. Several adenine analogs had similar effects and ethirimol-resistant mildew strains were generally cross-resistant to these. Adenine and adenosine reduced the fungitoxicity of ethirimol. During the formation of appressoria [3H]adenine was incorporated into RNA but [14C]glycine was not, suggesting that purine biosynthesis did not occur. Ethirimol inhibited this RNA synthesis and it is concluded that the fungicide may interfere with adenine metabolism at some site subsequent to its synthesis.  相似文献   

11.
In field trials against apple scab (caused by Venturia inaequalis) and powdery mildew (caused by Podosphaera leucotricha), improved control of one or other disease has been given by the newer systemic fungicides benomyl, triarimol and the thiophanates. However, in tests on apple seedlings in the greenhouse, biological evidence of translocation from individual deposits was generally limited to movement within the treated leaf. In greenhouse tests with cucumbers and marrows, using Oidium sp., there was again little evidence for movement of toxicant from a treated leaf, although effective disease control was readily obtained by root application of several compounds at low dosage. These results suggest that the systemic properties of the compounds evident when used as soil or seed treatments are of little account when they are applied as foliar sprays.  相似文献   

12.
The major product identified in the photochemical degradation of fluotrimazole, in aqueous suspension, as a thin film on glass, and sprayed on barley leaves, was 3-(trifluoromethyl)triphenylmethanol. This was also detected after photolysis in methanol, although methyl 3-trifluoromethyltrityl ether was the major product. Moreover, under all these conditions, 3-(trifluoromethyl)triphenylmethane was also present. 3-Trifluoromethylbenzophenone was produced only by irradiation of an aqueous suspension. The photolysis products, in contrast to fluotrimazole, were inactive at 1 mmol against barley powdery mildew (Erysiphe graminis).  相似文献   

13.
采用喷雾法研究了大黄酚对黄瓜白粉病的生物活性及其在黄瓜组织中的内吸传导性。结果表明,大黄酚对黄瓜白粉病菌具有较高毒力,感染白粉病的叶片经200 mg/L的大黄酚处理2 d后,霉状物变褐色,病斑枯死。扫描电子显微镜观察显示,黄瓜白粉病菌经大黄酚处理后,菌丝和分生孢子梗扭曲、变形,分生孢子塌陷。盆栽试验表明,利用大黄酚防治黄瓜白粉病具有较长的持效期,黄瓜子叶上喷施100 mg/L的大黄酚,20 d后接种病原菌,其防效仍达84.83%,与有效成分500 mg/L的硫磺悬浮剂防效相近。此外,大黄酚在黄瓜组织中具有一定的跨层传导性,其横向传导性较弱,几乎无向顶及向基的传导性。  相似文献   

14.
Adenine and adenosine are metabolized by the adenine salvage pathway during primary infection of barley powdery mildew, Erysiphe graminis f.sp. hordei. Operation of this pathway was affected by the hydroxypyrimidine fungicide, ethirimol. Adenosine deaminase, ADAase, which was detected in mildew conidia and infected plants, but not in healthy barley, was the only enzyme in this pathway inhibited by the fungicide in in vitro assays. This feature of the mildew enzyme was unusual, and correlates with the specificity of hydroxypyrimidines which act against powdery mildews only. Other properties of this enzyme were similar to ADAase from other sources. In structure/activity studies with dimethirimol analogs, poor fungicidal activity was often associated with failure to inhibit ADAase, especially when assayed during appressoria formation. Purine derivatives were much less specific, and their mode of action against powdery mildew is probably different. Ethirimol resistance was not related to changes in ADAase, nor was the fungicide altered to an inactive metabolite. It is concluded that ADAase is one site of hydroxypyrimidine action.  相似文献   

15.
Yang X  Yang L  Wang S  Yu D  Ni H 《Pest management science》2007,63(5):511-515
The extract of the plant Rheum officinale Baill, mainly containing the anthraquinones physcion and chrysophanol, is highly active against plant powdery mildew. Experiments were conducted in the laboratory and greenhouse to determine the interaction of the two compounds on cucumber powdery mildew [Sphaerotheca fuliginea (Schlecht.) Poll] and on wheat powdery mildew [Blumeria graminis (DC.) Speer f. sp. tritici Marchal]. Physcion was much more bioactive than chrysophanol against these powdery mildews. There was a significant synergistic interaction between the two compounds on the diseases when the ratios of physcion to chrysophanol ranged from 1:9 to 5:5. The synergistic degree increased with increase in the chrysophanol proportion in the combination. The findings indicate that, in order to ensure constant efficacy of the extract on the disease, both the contents and the proportion of the main active ingredients physcion and chrysophanol have to be determined.  相似文献   

16.
The protective activity of a crude extract prepared from the green macroalga, Ulva armoricana, previously shown to induce plant defence responses, was evaluated on three plant species, common bean, grapevine and cucumber, cultivated in the greenhouse and inoculated with three powdery mildew pathogens Erysiphe polygoni, E. necator and Sphareotheca fuliginea respectively. Chemical analyses showed that the extract was enriched in ulvans, which are green algae polysaccharides essentially composed of uronic acid and sulphated rhamnose. Weekly applications were performed by spraying of the green algal extract at various dilutions on bean, grapevine and cucumber leaves. A significant effect (50% protection) was observed using a dilution corresponding to about 3 g l−1 dry matter and up to 90% reduction of symptom severity was obtained for the highest concentration (1/9 dilution, 6 g l−1 dry matter) for the three plant species. To study the natural variability of the protective activity, five extracts prepared from algae batches harvested at different year periods were evaluated. Although polysaccharide composition varied among batches, all extracts elicit a reporter gene regulated by a defence-gene promoter in a transgenic tobacco line, and protect cucumber plants against powdery mildew infection. Together, these data demonstrate that U. armoricana is a reproducible source of active compounds which can be used to efficiently protect crop plants against powdery mildew diseases.  相似文献   

17.
Eleven 2-n-alkyl-, ten 2-n-alkyl-3-hydroxy- and ten 2-n-alkyl-2,3-epoxy-3-hydro-1,4-naphthoquinones, together with eighteen 1,4-naphthohydroquinone esters were tested as protectant fungicides against the apple and cucumber powdery mildews (caused by Podosphaera leucotricha and Sphaerotheca fuliginea respectively). In.general the former pathogen was more susceptible to compounds from all four series, the lowest 105ED50(M) being 0.7 for 2-n-octyl-2,3-epoxy-3-hydro-1,4 naphthoquinone.  相似文献   

18.
Microcyclic conidiogenesis (MC), a process defined as the production of conidia on a spore without any, or only a minimal, involvement of hyphal growth, has recently been reported in a little known powdery mildew species, Oidium longipes. To investigate whether this was an isolated case or it is a more general phenomenon in powdery mildew fungi, germinating conidia of eight species of the Erysiphales were examined using light microscopy. The following species were included in this work: Erysiphe necator on grapevine, Blumeria graminis f. sp. hordei on barley, Podosphaera xanthii on cucumber, Erysiphe sp. on Ligustrum vulgare, O. longipes on Petunia x grandiflora, O. neolycopersici on tomato, Golovinomyces cichoracearum on Rudbeckia laciniata and Sawadaea sp. on Acer negundo. In all these species, up to 4% of the germinated conidia exhibited MC. Moreover, when colonies of E. necator and O. neolycopersici, on detached grapevine and tomato leaves, respectively, were treated with a conidial suspension of Ampelomyces, the intracellular pycnidia of these mycoparasites appeared in microcyclic conidiophores. This represents a yet undescribed method of accelerating asexual reproduction in this mycoparasite. In the life cycle of powdery mildews, the importance of MC is still not clear but it should be taken into consideration when conidial germination is studied on the host surface for purposes such as epidemiology or species identification.  相似文献   

19.
The synthesis of seven 4-(1-cyclopropylalkyl)- and eight 4-(1-isopropylalkyl)-2, 6-dinitrophenols is described. When tested, together with six 4-(1-n-propylalkyl)-2, 6-dinitrophenols, several of these compounds showed high protectant activities against apple and cucumber powdery mildews. Their activities are discussed in relation to π values obtained from g.l.c. retention times, and to hydrogen bonding characteristics (both intra-and inter-) derived from infrared spectroscopic data.  相似文献   

20.
The new powdery mildew fungicide quinoxyfen belongs to the novel quinoline class of chemistry. Although its biochemical mode of action is unknown, quinoxyfen does not act in the same way as other cereal fungicides. It is a systemic protectant which inhibits the early stages of mildew infection on a wide range of crops, and provides season-long protection from a single early-season spray applied around GS 31. The base-line sensitivity profile of quinoxyfen was defined for barley powdery mildew (Erysiphe graminis f.sp. hordei) from over 340 field isolates collected from different parts of the UK from 1991 onwards. Sensitivities ranged from <0·0001→0·16 mg litre-1 with a mean of 0·003 mg litre-1. Current work is extending the base-line sensitivity studies to wheat powdery mildew (E. graminis f.sp. tritici), and includes isolates from European trials, but so far this new data set has shown no differences from barley powdery mildew. Quinoxyfen-resistant mutants were generated in the laboratory, and some similar resistant strains were obtained from treated field crops. These laboratory and field strains were always defective, in some way, for sporulation and, curiously, all required the presence of quinoxyfen for survival in culture. Attempts to generate resistant mutants that sporulated normally were unsuccessful. These studies suggested that the resistance risk for quinoxyfen is low. The recommended anti-resistance strategy accompanying introduction of quinoxyfen avoids seed treatments and late-season applications. Instead, a single early (GS 31) treatment using either pre-formulated mixtures or alternating with a fungicide with different mode of action is recommended. This strategy will be supported by continued monitoring of wheat and barley powdery mildew. ©1997 SCI  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号