首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
用彭曼—蒙特斯模式估算作物蒸腾量的研究   总被引:2,自引:0,他引:2  
  相似文献   

2.
作物蒸发蒸腾量的测量与估算在农业方面有着重要的作用.本文主要介绍了作物蒸发蒸腾量的直接测定方法与估算方法,并在此基础上着重分析了各种方法的测量原理及其优缺点.目的在于能够在各种方法研究的基础上扬长避短,在以后的研究中找到一种适用于各种情况,准确测量作物蒸发蒸腾量的标准方法.  相似文献   

3.
河套灌区参考作物蒸发蒸腾量估算方法研究   总被引:2,自引:0,他引:2  
参考作物蒸发蒸腾量(ET0)是计算作物需水量的基础,一般用FAO推荐的Penman-Monteith公式(PM公式)计算。但是在河套灌区部分地区缺少辐射数据的观测,因而无法利用PM公式计算ET0。本文选用河套灌区临河气象站1990—2012年的气象资料,分析了利用PM公式计算参考作物蒸发蒸腾量ET0与气象要素的关系,发现对ET0影响最大的气象因素为净辐射,其次为饱和水气压差和平均温度。建立了基于饱和水气压差、温度和风速的ET0估算公式,验证结算显示相关系数、纳什效率系数和总量平衡系数分别为0.96、0.92、1.00。在风速缺测的条件下,也建立了基于饱和水汽压差和温度的ET0估算公式。以上两个公式为河套灌区缺资料条件下ET0的估算提供了简单且准确的估算方法。  相似文献   

4.
杨映才 《甘肃农业》2006,(11):380-381
作物蒸发蒸腾量的研究在节水灌溉中有非常重要的意义。本文主要从作物蒸发蒸腾量估算方法、测定方法和预测模型方面进行了总结。  相似文献   

5.
冯雪  潘英华  张振华 《安徽农业科学》2007,35(28):8781-8782,8793
采用盆栽试验,利用BP-人工神经网络模拟作物的蒸发蒸腾量,分别构建ET1(气象因子)、ET2(气象因子与播种天数)、ET3(气象因子、播种天数和含水率)3种人工神经网络模型,并将预测结果与称重法得到的实际值ET进行比较,结果表明,所构建的ET3模型的计算精度较高,是一种最优的计算作物蒸发蒸腾量的BP-人工神经网络模型。  相似文献   

6.
7.
参考作物蒸发蒸腾量的人工神经网络模型研究   总被引:9,自引:0,他引:9  
根据河套灌区多年气象资料和Penman-Monteith法计算得到的参考作物蒸发蒸腾量(ET0),回归分析了影响ET0的主成分。在此基础上比较了以4因子(平均气温、净辐射、相对湿度、2m处风速)和3因子(平均气温、净辐射、相对湿度)为输入向量,由Penman-Monteith法计算所得ETo为输出向量的BP网络ET0预报模型(BP-ET0)。研究表明,BP网络可以用于ET0的预报计算,4因子法和3因子法均简便可行,能满足生产的需要。相比之下,4因子法的精度更高。此研究是对传统ET0计算的补充。  相似文献   

8.
根据鄂尔多斯市及其周边地区24个站点30年气象资料,在对已有的水文、气象站网(均为非规则分布)进行正则化基础上,对ET0空间结构性进行了系统分析.充分利用ET0区域信息的特征,采用Kriging无偏最优估计方法对区域信息进行最优估计,并据此绘制了参考作物ET0最优等值线图.用以了解鄂尔多斯市的作物需水量的分布规律,为发展牧草提供科学的依据,提高畜牧业的生产总值.  相似文献   

9.
参考作物腾发蒸腾量等值线图的绘制   总被引:2,自引:0,他引:2  
根据鄂尔多斯市及其周边地区24个站点30年气象资料,在对已有的水、气象站网(均为非规则分布)进行正则化基础上,对ET0空间结构性进行了系统分析。充分利用ET0区域信息的特征,采用Kriging无偏最优估计方法对区域信息进行最优估计,并据此绘制了参考作物ET0最优等值线图。用以了解鄂尔多斯市的作物需水量的分布规律,为发展牧草提供科学的依据,提高畜牧业的生产总值。  相似文献   

10.
参考作物蒸发蒸腾量(ET0)是计算作物需水量和进行灌溉预报的基础要素.利用天气预报可测因子和Penman Monteith公式计算ET0,分别建立多元线性回归模型(MLR)和自适应神经模糊推理系统模型(ANFIS),两种方法的估算值与PenmanMonteith公式计算值没有明显的差异,自适应神经模糊推理系统预测值相对于多元线性回归模型具有整体吻合度好,相关性高.两种预测模型的输入项完全可以从当前短期气象预报中获得,程序运行操作简单,具有实用价值,为实时灌溉预报提供了理论基础.  相似文献   

11.
The transpiration experiment was done under greenhouse conditions with a C3 plant sweet pepper (Capsicum annuum Linn.) and two C4 plants, sorghum (Sorghum bicolor L.Moench) and maize (Zea mays Linn.). Three species were irrigated with three different water treatment levels of 100%, 66% and 33% which gave a comparison of tolerance and adaptation to irrigation and two different levels of water stress. The measurements of transpiration rate and stomatal conductance were done between 8.00 a.m. and 16.00 p.m. with measurements about each 1.5 h with an infrared gas analyzer. The results showed that Z. mays probably due to a higher leaf area had very low values and was significantly different (LSD pairwise comparison) from C. annuum and S. bicolor. The hypotheses that C4 plants and C3 plants have different transpiration rates and stomatal conductance could not be shown with the results. However, the hypotheses that for the same species, the highest values in transpiration rate and stomatal conductance were with the 100% irrigation treatment and the lowest values were with the 33% irrigation treatment could be accepted due to the results of this trial.  相似文献   

12.
以6个不同大豆品种为材料,对不同时期不同节位叶片光合速率、气孔导致和蒸腾速率进行研究。结果表明:不同大豆品种在整个生育期间叶片光合速率动态变化不同,OhioFG1前期叶片光合速率高,后期衰老较快;HS93-4118前期并不太高,而后期叶片光合速率高;铁丰29整个生育期光合速率都较高。所以在选育品种时,不能只看某一时期的瞬时光合速率,还要看整个生育时期的光合速率动态变化。通过对不同时期不同节位叶片光合速率、气孔导度和蒸腾速率的研究,结果表明:气孔导度、蒸腾速率在不同时期不同品种间与光合速率表现出趋势一致性变化。  相似文献   

13.
地膜覆盖对蒸腾蒸发的影响   总被引:3,自引:0,他引:3  
通过2000年农田膜覆盖的试验,结果表明该项技术具有明显的保墒作用,有效地改善了土壤的湿度和土壤储水量,还对农田的土壤温度和空气湿度有明显的影响,从而影响了作物蒸腾和土壤的蒸发,促进了农田水分的良性循环。  相似文献   

14.
基于PenmanMonteith模型的林木日蒸腾模拟   总被引:3,自引:0,他引:3  
忽略大气层结,考虑气压订正,用冠层整体气孔阻力(rst)代换冠层阻力(rc),蒸散面的净辐射值(Rn)采用冠层截留净辐射(Rnl),便可在叶面积指数(LAI)、林木单叶平均气孔阻力(rsi)和气象要素实测数据的基础上,应用修正后的PenmanMonteith模型进行林木蒸腾量的模拟。本研究通过对Rn、LAI、rsi的实地观测,确定了林冠截流净辐射(Rnl)、消光系数(k)、冠层阻力转换系数(K')、空气动力学阻力(ra)和冠层整体气孔阻力(rst),对青海大通地区紫果云杉(Picea purpurea)、华北落叶松(Larix principisrupprechtii)、沙棘(Hippophae rhamnoides)、白桦(Betula platyphylla)和青杨(Populus cathayana)的日蒸腾过程进行了模拟,与用快速称重法订正的Li1600稳态气孔仪实测蒸腾结果对比,模拟的相对误差在±15%以内;模型敏感性分析发现,温度、LAI以及rsi是决定模拟结果的主要参数,模型对各参数变化反应不敏感。西北林学院学报21卷第3期刘胜等基于PenmanMonteith模型的林木日蒸腾模拟  相似文献   

15.
对香紫苏不同发育阶段的蒸腾作用与环境因子的相互关系进行了系统研究。结果表明,香紫苏在苗期的蒸腾作用最强,其日变化最大,蕾期次之,花期最小,并且温度、光照强度和叶温与蒸腾速率之间均呈现明显的正相关,而气孔导度与光照强度及温度之间却呈现出负相关性,湿度和气孔导度之间则呈明显的正相关。蒸腾速率与气孔导度日变化趋势类似,可能在于二者通过一定的协调关系,控制叶面水分的蒸发。  相似文献   

16.
本文对九个种源11年生杉木的蒸腾速率(包括日变化和季节变化)、蒸腾系数等指标进行了测定,分析了种源间的差异、变化规律及其与光合作用、生长量的关系。结果表明,不同种源杉木蒸腾作用具有相对的遗传稳定性,并与光合作用、生长量间存在着一定的相关性。  相似文献   

17.
10个树种光合和蒸腾性能对水分胁迫的响应   总被引:14,自引:2,他引:14  
研究了10个树种一年生实生苗主要光合和蒸腾性能对根际水分胁迫的响应.在水分胁迫条件下,其生理过程均受到显著影响,不同树种对水分胁迫的响应不同,树种间响应值的变化表明其抗旱性的差别,将其响应值用模糊数学隶属函数统计方法进行综合评判得出:金链树、紫穗槐、香椿、木瓜抗旱能力较强;沙枣、杜仲、柠条、国槐次之;葛藤、合欢抗旱能力较差.  相似文献   

18.
建立节水条件下作物叶片的蒸腾速率模拟模型将为温室作物节水灌溉提供理论依据。本研究以温室盆栽番茄营养生长期叶片为研究对象,在温室内进行了不同定植期和水分处理试验。以光合速率光响应曲线模拟值为基础,建立了不同水分条件下的气孔导度模型以及基于气孔导度模型的Penman-Monteith叶片蒸腾速率模型,并采用不同播期试验下的试验数据对建立的模型进行检验。结果表明,气孔导度模型模拟番茄叶片气孔导度的均方根误差(RMSE)和相对回归估计标准误差(rRMSE)分别为0.0109mol/(m2·s)(H2O)和12.83%,叶片蒸腾速率模型的RMSE和rRMSE分别为0.18mmol/(m2·s)(H2O)和15.55%。建立的番茄叶片蒸腾速率模型实现了通过基本温室气象参数和土壤水分参数模拟叶片蒸腾速率,模拟精度较高,参数便于获取,是对短时间尺度蒸腾速率模拟研究的有益探索,具有一定的理论意义和良好的应用前景。  相似文献   

19.
在天津滨海地区高水位、黏重土壤利用田间小区试验研究土壤调盐改良技术对咸水灌溉的冬小麦光合速率、蒸腾速率、气孔导度、叶绿素含量指数等生理指标的影响,试验结果表明,冬小麦播种前采用适当土壤调盐改良技术能够提高冬小麦抽穗期、灌浆期的光合速率、叶绿素含量指数,降低气孔导度、蒸腾速率.小麦冬前施用75 kg/100 m2改良剂(40%风化褐煤+40%磷石膏+20%脱硫石膏)有利于提高冬小麦灌浆期的光合速率,有降低抽穗期、灌浆期小麦的蒸腾速率的效果,冬前施用45 kg/100 m2改良剂(20%风化褐煤+40%磷石膏+20%脱硫石膏+20%沸石粉)对提高冬小麦抽穗期光合速率有利,同时也提高抽穗期小麦的蒸腾速率;土壤调盐改良剂对咸水灌溉冬小麦的气孔导度有明显抑制作用,冬前施用30kg/100 m2改良剂(40%磷石膏+20%脱硫石膏+40%沸石粉)的冬小麦气孔导度与不采用改良措施相比,抽穗期降低52.28%,灌浆期降低39.51%;冬前施用45 kg/100 m2或75 kg/100 m2改良剂(40%风化褐煤+40%磷石膏+20%脱硫石膏)和30 kg/100 m2改良剂(40%磷石膏+20%脱硫石膏+40%沸石粉)均能够显著提高抽穗、灌浆期冬小麦的叶绿素含量指数;冬前施用45 kg/100m2改良剂(20%风化褐煤+40%磷石膏+20%脱硫石膏+20%沸石粉)和30 kg/100 m2改良剂(40%磷石膏+20%脱硫石膏+40%沸石粉),即使在较高土壤含盐量也能够使冬小麦光合速率保持在较高水平,使冬小麦蒸腾速率受到土壤含盐量影响不明显.  相似文献   

20.
不同土壤水分下杨树的蒸腾变化及抗旱适应性研究   总被引:15,自引:0,他引:15  
在适宜土壤水分(70θf)、中度干旱(55θf)和严重干旱(40θf)等3种土壤水分条件下研究84K杨树的蒸腾特性及抗旱适应性.结果表明:杨树的蒸腾速率与土壤含水量密切相关,其总耗水量、总生物量的大小均为适宜土壤水分>中度干旱>严重干旱,总WUE在中度干旱下最高,严重干旱下最低;蒸腾速率的日变化是环境因子综合作用的结果,其中大气因子对杨树蒸腾速率的影响主要受土壤水分含量的控制.在干旱条件下杨树的抗旱性与SOD活性及K+含量之间关系不明显,杨树不具备耐旱植物的显著特征;由此建议84K杨树不宜在黄土高原地区大  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号