首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Alemow (Citrus macrophylla Wester) seedlings were subjected to moderate or severe water stress by watering them at different intervals for several irrigation cycles. Transpiration rate was measured after irrigation was resumed. Severe water stress reduced transpiration but increased leaf water potential (ψleaf), while moderate water stress reduced transpiration less and did not affect ψleaf. This suggests that moderate water stress influences only stomatal conductance and not root and shoot resistance.  相似文献   

2.
张义  胡芳芳 《北方园艺》2010,(24):97-99
以2 a生桃砧紫叶李、紫叶桃、美人梅为试材,利用LI-6400便携式光合作用分析仪测定在水分胁迫下这3个红叶树种净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)的日变化特征。结果表明:在干旱胁迫之前这3个红叶树种的净光合速率、气孔导度以及蒸腾速率日变化动态都呈双峰曲线,但随着胁迫时间的延长,3个树种叶片的3个光合参数均由双峰曲线变成了单峰曲线,峰值陡度变缓。  相似文献   

3.
Trunk diameter variation (TDV) is considered one of the most promising tools for automating the scheduling of fruit tree irrigation, and trunk growth rate (TGR) a possible indicator of TDV values. The use of TGR in commercial orchards is less common in olive trees than in other species, possibly because the influence of the environment, orchard age and the presence of developing fruit on the olive tree seasonal TGR pattern is poorly understood. In this study the trunk growth rate (TGR) seasonal progression was characterized in fully irrigated young olive trees during fruiting and non-fruiting years. In both years, at the beginning of the season, a period with an almost linear increase was found, mainly determined by temperature. In the non-fruiting year TGR remained almost constant after that initial increase, while during the fruiting year a significant decrease occurred at approximately 25 days, from values around 0.2 mm day−1 to values around 0.1 mm day−1. Since midday shoot water potentials were not affected, this variation was likely not produced by water stress conditions. In addition, the lack of relationship between trunk growth rate and air temperature indicated that the TGR decrease in the fruiting year was not determined either by air temperature. The period of decreasing TGR values, however, coincided with the time that the endocarp reached its maximum transverse area, a significant moment for fruit development which precedes pit hardening. These results suggest that the traditional period where regulated deficit irrigation is done, “the pit hardening”, may be indicated easier and more accurate for TGR decrease and endocarp expansion.  相似文献   

4.
Berry weight (BW) and sugar concentration (SC) are relevant indices in viticulture since they can be easily measured and, when considered together, give a relatively fair estimation of grape quality. This work aims to evaluate the influence of water availability, leaf area and fruit load on BW and SC, estimating the relative importance of these factors. Leaf area (LA), berry number (BN), yield (YLD), water potential in summer (ψpd-s), BW and SC were measured in 16 and 17 ‘Tempranillo’ vineyards in 1999 and 2000, respectively. In all the vineyards, according to local practices, the irrigation amount decreased as summer progressed. The study vineyards comprised a broad range of situations concerning leaf area, fruit load and water status in summer. Average leaf water potential in summer and LA/BN ratio, when considered together, estimated properly BW (R2 = 0.91; P < 0.001) and, in a similar way, ψpd-s and LA/YLD ratio estimated SC (R2 = 0.74; P < 0.001). The relative weight of ψpd-s in both relationships was much higher than that of any of the LA:fruit ratios, showing that, under semiarid conditions, water availability plays the main role in regulation of berry growth and sugar accumulation and, therefore, the highest attention should be paid in these areas to irrigation management, seeking the degree of stress that allows optimizing the combination of yield and berry quality in each situation.  相似文献   

5.
Our study focuses on the physiological response and yield-quality performance of split-root potted Sangiovese grapevines under a partial root-zone drying (PRD) regime from pre-veraison to harvest by withholding water from one of the two pots and comparing the results to a well-watered control (WW). While predawn water potential (ψpd) tended to equilibrate in PRD with the soil moisture level of the wet pot, both stem (ψst) and mid-day leaf-water potential (ψl) were markedly lower in PRD as compared to WW vines, indicating that Sangiovese shows anisohydric response. On the other hand, the seasonal reduction of leaf assimilation rate (A) in PRD over the 6-week stress period versus WW was 16% as compared to a 41 and 25% for leaf stomatal conductance (gs) and transpiration (E), respectively. As a consequence, intrinsic WUE (A/gs) was markedly increased in the half-stressed vines, suggesting a response more typical of an isohydric strategy. Shoot growth was promptly checked in PRD vines, which had no limitation in yield and better grape composition as per soluble solids and total anthocyanins. These responses occurred in spite of sub-optimal leaf photosynthesis rates and lowered leaf-to-fruit ratio and qualify Sangiovese as a good candidate for adapting to regulated deficit irrigation strategies.  相似文献   

6.
A greenhouse study was conducted to evaluate the ameliorative effects of zinc (0, 5, 10 and 20 mg Zn kg−1 soil) under saline (800, 1600, 2400 and 3200 mg NaCl kg−1 soil) conditions on pistachio (Pistacia vera L. cv. Badami) seedlings’ photosynthetic parameters, carbonic anhydrase activity, protein and chlorophyll contents, and water relations. Zn deficiency resulted in a reduction of net photosynthetic rate and stomatal conductance. The quantum yield of photosystem II was reduced at zinc deficiency and salt stress. Zinc improved plant growth under salt-affected soil conditions. Increasing salinity in soil under Zn-deficient conditions, generally decreased carbonic anhydrase activity, protein, chlorophyll a and b contents. However, these adverse effects of salinity alleviated by increasing Zn levels up to 10 mg kg−1 soil. Under increasing salinity, chlorophyll a/b ratio significantly increased. Zinc treatment influenced the relationship between relative water content and stomatal conductance, and between leaf water potential and stomatal conductance. It concluded that Zn may act as a scavenger of ROS for mitigating the injury on biomembranes under salt stress. Adequate Zn also prevents uptake and accumulation of Na in shoot, by increasing membrane integrity of root cells.  相似文献   

7.
A two-year field experiment was performed in order to evaluate the suitability of de-oiled olive pomace for soil management in a young super high-density olive orchard. In the literature there are not works on this topic.  相似文献   

8.
Drought and salinity are two of the most important factors limiting the lemon yield in south-eastern Spain. The effects of drought and salt stress, applied independently, on water relations, osmotic adjustment and gas exchange in the highest evapotranspiration period were studied to compare the tolerance and adaptive mechanisms of 13-year-old ‘Fino 49’ lemon trees, in immature and mature leaves. The study was carried out in an experimental orchard located in Torre Pacheco (Murcia). Three treatments were applied: Control, well-irrigated; drought-stress (DS), non-irrigated from 15th May to 7th July and salinity, irrigated with 30 mM NaCl from 1st March to 7th July. At the end of the experiment, only DS trees showed a decreased leaf stem water potential (Ψmd). Under DS conditions, both types of leaf lost turgor and did not show any osmotic or elastic mechanism to maintain leaf turgor. Osmotic adjustment was the main tolerance mechanism for maintenance of turgor under salt stress, and was achieved by the uptake of Cl ions. Gas-exchange parameters were reduced by DS but not by salinity, stomatal closure being the main adaptive mechanism for avoidance of water loss and maintenance of leaf turgor. Salinity gave rise to greater Cl accumulation in mature than in immature leaves. The increase of proline in immature leaves due to DS indicates greater damage than in mature leaves.  相似文献   

9.
Root restriction often depresses photosynthetic capacity and the mechanism for this reduction, however, remains unclear. To identify the mechanism by which root restriction affects the photosynthetic characteristics, tomato (Lycopersicon esculentum Mill.) seedlings were subjected to root restriction stress with or without supplemental aeration to the nutrient solution. With the development of the root restriction stress, CO2 assimilation rate was decreased only in confined plants without supplemental aeration. There were also significant decreases in leaf water potential, stomatal conductance (gs), intercellular CO2 concentration (Ci), and increases in the stomatal limitation (l) and the xylem sap ABA concentration. Meanwhile, the maximum carboxylation rate of Rubisco (Vcmax) and the capacity for ribulose-1,5-bisphosphate regeneration (Jmax) also decreased, followed by substantial reductions in the quantum yield of PSII electron transport (ΦPSII). Additionally, root restriction resulted in accumulation of carbohydrates in various plant tissues irrespective of aeration conditions. It is likely that root restriction-induced depression of photosynthesis was mimicked by water stress.  相似文献   

10.
To study the response of tomato (Solanum lycopersicum cv. Rio Grande) to salinity, the effect on plant growth, water relations, stomatal conductance and Chlorophyll fluorescence was investigated. Tomato plants were grown in peat culture under controlled conditions and submitted during 28 days to saline stress ranging from 0 to 25, 50, 100, 150 and 200 mM of NaCl. At the end of the experiment period, plant growth was significantly decreased with increasing salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号