首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Leaf senescence in a recent maize (Zea mays L.) hybrid is delayed relative to that in an older maize hybrid and the trait is associated with an improvement of the ratio of assimilate supply (i.e., source) and demand (i.e., sink) during grain filling. This study examined whether effects of source : sink ratio of leaf longevity in an old and more recent hybrid are associated with changes in leaf nitrogen (N) concentration and N uptake during grain filling. A 3-year field study was conducted with maize hybrids Pride 5 (old) and Pioneer 3902 (recent) grown at two soil-N levels: 150 kg−1 N ha−1 was broadcast in the high N treatment while none was added to the low N treatment. Four imposed source : sink treatments ranged from partial defoliation to no grain. Leaf N of the control treatments did not differ between the two hybrids, but the decline in leaf N from the control to the no-sink treatment was larger for Pioneer 3902 than for Pride 5. Total N uptake in above-ground portions was 10 and 18% greater in the new than in the old hybrid under low and high soil-N conditions, respectively. The difference in the total N uptake between the two hybrids could be attributed to post-silking N uptake. The proportion of N in the grain derived from post-silking N uptake was 60% for Pioneer 3902 and 40% for Pride 5 and this proportion was positively associated with the source : sink ratio. Higher rates of N uptake in Pioneer 3902 vs. Pride 5 appear to be, in part, the result of higher rates of dry matter accumulation of the newer hybrid during grain filling.  相似文献   

2.
To improve efficiency of soil N and water use in the savanna, maize (Zea mays L.) cultivars with improved root systems are required. Two rainfed field experiments were conducted in Samaru, Nigeria in the 1993 and 1994 growing seasons with five maize cultivars under various rates of nitrogen fertilizer. The capacity of maize for rapid early root growth and to later develop a deep, dense root system was assessed. In addition, the effect of N fertilization on root growth of maize was studied in 1994. The widely cultivated cultivar TZB-SR had a poor root system in the surface soil layer and was more susceptible to early-season drought, as indicated by low plant vigor and aboveground dry matter yield during that time. It had a lower grain yield and a relatively small harvest index, but ranked among the highest in total aboveground dry matter production compared to other cultivars. The size of root system alone did not always relate well with grain yield among cultivars. Partitioning of dry matter within the plant was important in determining differences in grain yield and N stress tolerance between cultivars. A semiprolific cultivar (SPL) had high seedling vigour and a dense root system in the surface soil layer that conferred a greater tolerance to early-season drought stress and improved uptake of the early-season N flush, as indicated by a greater dry matter yield at 35 days after sowing (DAS). It also had a fine, deep, dense root system at flowering that could have improved water- and N-use efficiency in the subsoil (> 45 cm), thereby avoiding midseason drought stress in 1994. SPL had a large harvest index and the greatest yield among cultivars in 1994. Averaged across cultivars, greater root growth and distribution was observed at a moderate N rate of 0.56 g plant−1 than at zero-N or high N (2.26 g plant−1). Differences in root morphology could be valuable as selection criteria for N-efficient and drought-tolerant maize.  相似文献   

3.
《Plant Production Science》2013,16(2):107-116
Abstract

To clarify the genotypic variation of nitrogen (N) response in the AA genome Oryza species, we investigated dry matter production, N uptake, N and water use efficiencies (NUE and WUE), bleeding sap rate (BR), and root morphological traits at vegetative stage in 6 cultivars and 4 strains of 6 species (O. sativa, O. glaberrima, O. barthii, O. nivara, O. meridionalis, and O. rufipogon) grown under standard N (SN) and low N (LN) conditions. Some wild Oryza strains and O. glaberrima showed high dry matter production under both N conditions. In most plants, total dry weight decreased and root dry weight increased under the LN condition, resulting in decreased top-root ratio. In japonica cultivars of O. sativa, however, these traits were unaffected by the N condition. There were no significant differences in WUE with plant species or N conditions. In all plants, however, NUE was higher in the LN than SN condition, and was conspicuously high in most wild Oryza species and O. glaberrima. Some of them showed increased capacity of nitrate-N (NO3-N) uptake under the LN condition. In cultivars and strains with a high NUE, root dry weight, root surface area, and BR were also higher under the LN condition. These results suggest that a high NUE is associated with the development of a root system, increased BR, and probably increased capacity of NO3-N uptake. This study revealed the presence of superior wild Oryza strains for growth under LN that may be a promising genetic resource for low N-input agriculture.  相似文献   

4.
玉米根系特征的基因型差异及与氮吸收效率的关系   总被引:1,自引:0,他引:1  
在4个硝酸盐浓度下进行2个玉米品种盆栽砂培试验,研究玉米根系特征的基因型差异对硝酸盐浓度的响应及与氮素吸收效率的关系。结果表明,氮高效品种郑单958在硝酸盐浓度为0.08、0.8、4.0 mmol/L时,根重、根幅、根长、根表面积、根体积、分枝数、分形维数、根系活力均显著高于氮低效玉米品种内单314。各根系形态指标随硝酸盐浓度的增加逐渐增加,当硝酸盐浓度从4.0 mmol/L增加至8.0 mmol/L时,不同基因型品种间差异不显著。在低氮胁迫条件下,玉米主要通过增加细根比例、增加根表面积吸收更多的氮素;在氮素供应充足条件下,通过增加根系平均直径,形成高密的分枝系统吸收氮素。进一步通径分析表明,根长与根体积对氮吸收效率直接影响最大,是氮吸收效率差异的主要原因。  相似文献   

5.
《Plant Production Science》2013,16(4):307-317
Abstract

Root traits that can contribute to drought resistance have not been clearly indentified. We examined the role of root system development in enhancing water uptake and contribution to dry matter production by using the root box-pinboard method, with which quantitative assessment of root system development and the water uptake of root are possible. Chromosome segment substitution lines CSSL45 and CSSL50, and the recurrent parent Nipponbare were grown under continuously waterlogged conditions (control), and various intensities of water deficit in root boxes. There was no significant difference among the genotypes in shoot growth and root development, while CSSL45 and CSSL50 showed greater shoot dry weight than Nipponbare under water deficit conditions. This was due to their abilities to promote root system development as compared with Nipponbare, which facilitated greater water extraction than Nipponbare, especially under the mild water deficit condition of 20–25% w/w soil moisture contents. Furthermore, the increased root length density did not exceed the estimated critical value for water uptake, which indicates that plastic root system development was functionally effective and efficient for the enhancement of water uptake under mild water deficit conditions.  相似文献   

6.
为探讨土壤硝态氮非均匀分布条件下小麦根系生长及氮素吸收特征,选用石麦15、衡观35、H10和L14等4个小麦品种为材料,进行土壤分层培养试验,模拟土壤剖面中上下层硝态氮空间分布差异,测定和分析了小麦根系长度、直径、分布等形态学特征及植株氮素含量和累积量。结果表明,当土壤中硝态氮施用量上层较低、下层较高时,小麦植株根系总长和表面积在上下土层中分布比值降低,根系趋向下层土壤生长。上下层土壤中硝态氮施用量均较高时,上下层土壤中的根系总长和表面积比值较大,根系趋向上层土壤生长。土壤剖面不同层次中硝态氮供应非均匀条件下,小麦根系发育呈现明显的可塑性反应。小麦根系总长和表面积以及直径≤0.15mm的细根长(占整个根系的比重很大)与植株地上部氮含量和氮素积累量极显著正相关,与土壤中硝态氮含量极显著负相关。  相似文献   

7.
The critical crop nitrogen uptake is defined as the minimum nitrogen uptake necessary to achieve maximum biomass accumulation (W). Across a range of crops, the critical N uptake is related to W by a power function with a coefficient less than unity that suggests crop N uptake is co-regulated by both soil N supply and biomass accumulation. However, crop N demand is also often linearly related to the expansion of the leaf area index (LAI) during the vegetative growth period. This suggests that crop N demand could be also linked with LAI extension. In this paper, we develop theory to combine these two concepts within a common framework. The aim of this paper is to determine whether generic relationships between N uptake, biomass accumulation, and LAI expansion could be identified that would be robust across both species and environment types. To that end, we used the framework to analyze data on a range of species, including C3 and C4 ones and mono- and di-cotyledonous crops. All crops were grown in either temperate or tropical and subtropical environments without limitations on N supply. The relationship between N uptake and biomass was more robust, across environment types, than the relationship of LAI with biomass. In general, C3 species had a higher N uptake per unit biomass than C4 species, whereas dicotyledonous species tended to have higher LAI per unit biomass than monocotyledonous ones. Species differences in N uptake per unit biomass were partly associated with differences in LAI and N-partitioning. Consequently the critical leaf-N uptake per unit LAI (specific leaf nitrogen, SLN) was relatively constant across species at 1.8–2.0 g m−2, a value that was close to published data on the critical SLN of new leaves at the top of the canopy. Our results indicate that critical N uptake curves as a function of biomass accumulation may provide a robust platform for simulating N uptake of a species. However, if crop simulation models are to capture the genotypic and environmental control of crop N dynamics in a physiologically functional manner, plant growth has to be considered as the sum of a metabolic (e.g. leaves) and a structural (e.g. stems) compartment, each with its own demand for metabolic and structural N.  相似文献   

8.
Summary

Nitrogen (N) availability for crop uptake is dependent on various factors that influence the transformation of N sources and transport of N forms in soils. The fate and transport of N is site specific. Therefore evaluation of N dynamics under each condition is neither practical nor feasible. Simulation models which are adequately calibrated and tested can be used to estimate the fate and transport of N as well as crop responses under different production systems. These evaluations provide some guidelines as how to manage N and water efficiently to maximize the N uptake efficiency and minimize the losses. Thus, they contribute to the development of N and water best management practices. In this chapter, we discuss recent information on experimentally measuring the water and nutrient transport in soils as well as performing estimations using simulation models. The development and application of different simulation models for different production systems have been summarized. Some case studies on nitrogen and water best management practices are also discussed.  相似文献   

9.
《Journal of Crop Improvement》2013,27(1-2):217-244
SUMMARY

Since CO2 is a primary input for crop growth, there is interest in how increasing atmospheric CO2 will affect crop productivity and alter cropping system management. Effects of elevated CO2 on grain and residue production will be influenced by crop selection. This field study evaluated soybean [C3; Glycine max(L.) Merr.] and grain sorghum [C4; Sorghum bicolor (L.) Moench.] cropping systems managed under conservation tillage practices and two atmospheric CO2 concentrations (ambient and twice ambient) for three growing seasons. Elevated CO2 increased soybean and sorghum yield by 53% and 17% increase, respectively; reductions in whole plant water use were also greater for soybean than sorghum. These findings suggest that increasing CO2 could improve future food security, especially in soybean production systems. Elevated CO2 increased aboveground residue production by > 35% for both crops; such shifts could complement conservation management by increasing soil surface cover, thereby reducing soil erosion. However, increased residue could negatively impact crop stand establishment and implement effectiveness during tillage operations. Elevated CO2 increased total belowground dry weight for both crops; increased root proliferation may alter soil structural characteristics (e.g., due to increased number and extent of root channels) which could lead to increases in porosity, infiltration rates, and subsequent soil water storage. Nitrate leaching was reduced during the growing season (due to increased N capture by high CO2-grown crops), and also during the fallow period (likely a result of altered decomposition patterns due to increased C:N ratios of the high CO2-grown material). Enhanced crop growth (both above-and be-lowground) under elevated CO2 suggests greater delivery of C to soil, more soil surface residue, and greater percent ground coverage which could reduce soil C losses, increase soil C storage, and help ameliorate the rise in atmospheric CO2. Results from this study suggests that the biodegradability of crop residues and soil C storage may not only be affected by the environment they were produced in but may also be species dependent. To more fully elucidate the relationships between crop productivity, nutrient cycling, and decomposition of plant materials produced in elevated CO2 environments, future studies must address species effects (including use of genetically modified crops) and must also consider other factors such as cover crops, crop rotations, soil series, tillage practices, weed management, and regional climatic differences.  相似文献   

10.
《Plant Production Science》2013,16(4):529-534
Abstract

Experiments were conducted to evaluate the nitrogen (N) balance in forage rice cultivation using animal manure in 1/2,000a Wagner pots in a greenhouse. The cattle manure and poultry manure were applied at 3 levels of N (0, 14, 28 g available N m–2) without additional chemical fertilizer application. The pots were designed to simulate the fluid percolation in the paddy field. The results indicated increasing levels of N input improved plant height, tiller number, SPAD value and biomass (straw, grain and root) production, however, N leaching from soil (Andosols) due to percolating water also increased. The planting of rice plants proved to reduce 30% of the N leaching loss. N use efficiency, the ratio of N uptake by plant per unit N application, decreased in higher N application. The N uptake by the above-ground parts occupied about 66% of the whole plants.  相似文献   

11.
N leaching from the topsoil, which occurs both by vertical percolation and runoff, is becoming increasingly important, not only from the point of view of crop production but also in the maintenance of water quality. N runoff from sloping fields has not yet been investigated extensively, but lysimeter studies have provided us with comprehensive data on vertical percolation of this nutrient. Numerous investigations throughout Europe have determined the most important factors concerned with N leaching from the topsoil and their relationship to water quality. The results may be summarized as follows: The amount and distribution of rainfall have a considerable effect on translocation of N from the topsoil. To exactly what extent is determined by the amount of water leached, which in turn depends to a large degree on the growth of the plant. Therefore the vegetative cover, as a result of its water utilization (mainly by transpiration) and its nutrient uptake, is often the most important factor in N leaching. This is borne out by the fact that by far the greatest leaching occurs in uncropped land (fallow) and during the part of the year where little growth occurs. Under crops with a limited root system and low transpiration, such as vines, leaching will also be higher than under a profuse plant cover (e.g. grassland). The main effect of the soil itself depends on its own N reserves and their mineralization rate. The amount of naturally occurring N in a mineral soil can vary between 600 and 12,000 kg/ha. Of this, approximately 10 – 250 kg/ha is given off anually under European climatic conditions. Thus as well as the factors already mentioned, the soil's N reserves also play an important part in the extent of N leaching. The vast majority of lysimeter studies carried out in Europe prove that the addition of N in mineral fertilizers has comparatively little influence on the amount of N leached out. An important point about N fertilizers is that they are applied when needed by the plant, which of course cannot occur in nature with the N from mineralization of the soil reserves. According to the data on hand, less than 5% of the N added in the form of mineral fertilizers will be leached out. Although excessive rates of N in lysimeter trials led to increased translocation into the subsoil, it was also proved that as a result of increased plant growth, N leaching losses were lower in a plot fertilized with N than in the PK control. Since N is leached out almost exclusively in the form of nitrate, and since the ammonium added as fertilizer is converted relatively quickly to nitrate, there is little difference in the leaching losses following application of the various types of N used today. The time of application, however, can be a determining factor. Gaseous N losses, in particular as a result of denitrification, can also affect N leaching indirectly. Discussion of N leaching leads inevitably to the question of water quality maintenance and what part N leached from soil plays in the eutrophication of surface waters and the nitrate content of ground water. The effect of agricultural land on the nitrate content of ground water depends on the cropping system: Vines, for instance, do not have a very extensive root system, and there are high leaching losses from the soil of vineyards. Under permanent grassland, on the other hand, the lowest losses have been recorded. In crops with a limited root system it is theoretically impossible to avoid an increase in the nitrate level of the ground water following high N application rates. This is however only a theory, and has not yet been fully investigated. In relation to agriculture as a whole these cases are to be regarded as exceptions, and they could possibly be improved by new agricultural techniques. As far as eutrophication is concerned, N leaching and the factors that affect it are of minor importance, since nitrogen, in contrast to phosphate, is already present in surface water at a concentration high enough to cause eutrophication. To sum up, it may be said that high rates of N are applied in intensive agriculture, but they do not usually lead to an increased N content in ground water and surface water. The reason for this is that the additional N promotes plant growth, which results in a greater nutrient uptake, and rationalization of agricultural methods on economic grounds ensures an adequate utilization of nutrients by applying rates commensurate with and timed according to the crop's need.  相似文献   

12.
《Plant Production Science》2013,16(2):173-184
Abstract

A field experiment was conducted to examine the possibility of introducing winter legumes, hairy vetch and faba bean, as green manures to turmeric cropping in a temperate region. Hairy vetch shoots were incorporated to determine the effect of N and P added as green manure. Higher values in plant height and number of leaves of turmeric were observed in the treatment with incorporation of hairy vetch than in that without incorporation (no-incorporation) throughout the growth periods. The differences in total amounts of N and P of turmeric between incorporation and no-incorporation treatments were the highest on 15 October, when the amount was increased by 8.0 g N and 1.1 g P m–2 compared with the no-incorporation treatment. From September to October, curcumin content rapidly increased with rhizome thickening, and gradually increased. We also quantified the N and P contribution from faba bean residues to the succeeding turmeric. The total amounts of N and P in turmeric cultivated after incorporating shoot and root residues into previously cultivated faba bean field were 2.5 g N and 1.0 g P m–2, respectively, larger than incorporating only roots. In previously fallow field, the incorporation of the shoot increased the total amount of N and P in tumeric by 4.5 g and 1.9 g m–2, respectively, compared with that without incorporation. In the second year after incorporation, growth and nutrient uptake of the turmeric crop did not significantly differ from those without incorporation. In the temperate region, these winter legumes would be used as basal organic matters for turmeric production.  相似文献   

13.
Potatoes require high nitrogen (N) fertilizer rates because of their poor N efficiency. Better understanding of N dynamic in potato crops could improve N efficiency and thus enhance crop profitability and reduce N losses. A similar field experiment was conducted in Switzerland in 3 years, from 2009 to 2011, to investigate the yield and quality response to N fertilization of two commercial potato cultivars with different tuber qualities, Bintje and Laura. Five doses of ammonium nitrate were tested: 0, 80, 120, 160 and 200 kg N ha?1. Aboveground and belowground biomass evolution, total yield, starch concentration and tuber sizes were measured annually. In 2011, the total N uptake and the soil mineral N content were also measured during the growing season and at harvest.The study showed that N fertilization had a positive effect on yield and the percentage of large tubers (>?70 mm) and a negative effect on starch concentration. Both cultivars presented the same potential yield, although cv. Laura’s yield was more affected by N fertilization deficiency and more responsive to the late N fertilizer application. At harvest, both cultivars had a similar N uptake efficiency and N utilization efficiency. However, they differed with respect to N uptake dynamics. Nitrogen uptake was slower for cv. Laura than for cv. Bintje due to a longer period required for the development of the belowground biomass. The results provide useful recommendations for improvement of N fertilization practices (e.g. rate and time of application) of these two cultivars in Swiss conditions.  相似文献   

14.
《Plant Production Science》2013,16(3):327-335
Abstract

We introduced subsoiling to a field of wheat-soybean rotation where no-tillage practice had been conducted for five years and whose yield tended to decrease or stagnate. By subsoiling a half of each plot just before wheat sowing, treatments of tillage/no-tillage × subsoiling/no-subsoiling were established. Root distribution, shoot growth, water uptake and yield of both crops were examined to elucidate whether the subsoiling improves the productivity such as shoot biomass and yield through the modification of root system development, and how differ the effects of subsoiling between tilled and non-tilled fields. In wheat, roots were less concentrated in surface (0 ? 5 cm) layer in no-tillage, and distributed more in deep (20 ? 25 cm) layer of the soil. Deuterium labeled heavy water analysis revealed that the subsoiling enhanced water uptake from the deep soil layer in the no-tillage field. Both the no-tillage and subsoiling showed positive and significant effect on total biomass and yield. The effect of subsoiling must be related to water supply by deep roots in spring. In soybean no-tillage significantly increased the productivity, but subsoiling did not though distribution of the roots was modified by both practices. Soybean in non-tilled accumulated roots in the surface soil layer, but subsoiling did not significantly modify the root distribution especially in the deep soil layer. Water uptake trend and yield was thus not changed significantly by subsoiling. Subsoiling in the non-tilled field increased rooting depth and showed the possibility of braking yield stagnation in long-term no-tillage cultivation in wheat, but not in soybean.  相似文献   

15.
水肥耦合对橡胶树根系垂直分布的影响   总被引:3,自引:0,他引:3  
水分和养分是限制橡胶树生长和产胶量的重要因子.以17a树龄的热研7-33-97橡胶树为试验材料,通过田间小区试验研究了不同水肥耦合水平对橡胶树根系垂直分布特征的影响,结果表明:橡胶树吸收根系主要分布在0~20 cm土层,随土壤层次的加深,橡胶根系干重在垂直分布上呈递减趋势,可用乘幂函数模型表示.适量增施氮、磷肥均能促进0~20 cm土层根系的生长;氮肥施用量过大,深层根系比重增大;轻度降低土壤水分能够促进根系扎深.水肥耦合对根系生长和分布具有调节作用,本试验条件下,各土层根系干重总量以丰氮丰水和丰磷丰水组合处理最高,分别达0.33和0.31 kg/m3,并且根系在土壤剖面上的分布与养分分布具有一致性.  相似文献   

16.
《Plant Production Science》2013,16(2):134-135
Summary

The effect of fluctuation in soil moisture on the root development of sweetpotato was studied during its establishment period, i.e., from planting to about one month after planting. The number of leaves, shoot dry weight and vine length were suppressed significantly by deficient moisture but the same were markedly increased by excessive moisture regardless of the time of occurrence relative to the initial development of the plant. In terms of its roots, the number and total length of the root system components were either increased or decreased depending upon the soil moisture regime in which they were subjected immediately prior to the time of sampling. Deficient soil moisture reduced the number and total length of the root system components while excessive moisture caused notable stimulation. Continuous exposure to normal soil moisture caused substantial reduction in the number of adventitious roots and consequent depression in total length but this could be attributed to sink competition among adventitious roots. Under fluctuating soil moisture, normal moisture content appeared to restore the aberrant development of the roots caused by deficient or excessive levels. The suppressed formation and elongation of the root system components under deficient soil moisture was alleviated when the soil moisture condition was changed to normal. On the other hand, the stimulated root formation and elongation in the excessive moisture was abated when the normal soil moisture condition prevailed afterwards. The result was the opposite when the soil moisture condition was reversed, i.e., normal then followed by either deficient or excessive soil moisture.  相似文献   

17.
SUMMARY

Cropping system refers to temporal and spatial arrangements of crops, and management of soil, water and vegetation in order to optimize the biomass/agronomic production per unit area, per unit time and per unit input. Soil quality refers to its intrinsic attributes that govern biomass productivity and environment moderating capacity. It is the ability of soil to perform specific functions of interest to humans. Three components of soil quality (e.g., physical, chemical and biological) are determined by inherent soil characteristics, some of which can be altered by management. Soil quality and soil resilience are inter-related but dissimilar attributes. Resilient soils, which have the ability to restore their quality following a perturbation, have high soil quality and vice versa. Decline in soil quality sets-in-motion degradative processes, which are also of three types, namely physical (e.g., compaction, erosion), chemical (e.g., acidification, salinization) and biological (e.g., depletion of soil organic matter content). Soil degradation, a biophysical process but driven by socioeconomic and political causes, adversely affects biomass productivity and environment quality. Determinants of soil quality are influenced by cropping systems and related components. Dramatic increases in crop yields during the 20th century are attributed to genetic improvements in crops, fertilizer use, and improved cropping systems. Dependence on fertilizers and other input, however, need to be reduced by adopting cropping systems to enhance biological nitrogen fixation and use efficiency of water and nutrients through conservation tillage, cover crops, and improved methods of soil structure and nutrient management.  相似文献   

18.
To explain the observation in field experiments that tobacco variety CB-1 was more nitrogen(N)-efficient than K326, the influence of two N levels on growth, N uptake and N flow within plants of the two tobacco varieties was studied. Xylem sap from the upper and lower leaves of both tobacco varieties cultured in quartz sand was collected by application of pressure to the root system. CB-1 took up more N with smaller roots at both high(HN, 10 mmol L-1) and low(LN, 1 mmol L-1) N levels, and built up more new tissues in upper leaves especially at LN level,than K326. Both varieties showed luxury N uptake, and CB-1 accumulated significantly less NO-3in new tissues than K326, when grown at the HN level. At both N levels, the amount of xylem-transported N and phloem-cycled N from shoot to root in K326 was greater than those in CB-1, indicating higher N use efficiency in CB-1 shoots than in K326 shoots. The major nitrogenous compound in the xylem sap was NO-3irrespective of N level and variety. Low N supply did not cause more NO-3reduction in the root. The results indicated that the N-efficient tobacco variety CB-1 was more efficient in both N uptake by smaller roots and N utilization in shoots, especially when grown at the LN level.  相似文献   

19.
《Journal of Crop Improvement》2013,27(1-2):329-359
SUMMARY

The impact of cropping systems on water quality is uncertain, and its interpretation depends heavily upon our definition of acceptable risk. As a means of determining net effect, both classical and precautionary approaches to assessing risk have their strengths and weaknesses. Relating the impact of cropping practices to human health outcomes can be particularly difficult. A variety of guidelines and standards are used to assess water quality, and recent methods for assessing water quality seek to incorporate more than water chemistry alone. An understanding of the derivation of water quality guidelines and standards is essential to their effective application, and meaningful interpretation.

In addressing water quality concerns, it is essential to first clarify that there is indeed a problem, and whether agriculture makes a significant contribution. Compound interactions and modes of chemical movement can render this troublesome. Yet, because farmers live on the land and drink the water, they want to be among the first to know what is happening and to take appropriate action when problems are identified.

Agriculture must be proactive in addressing water quality concerns. However, effective land management strategies depend greatly upon regional differences and may be highly site-specific. Hence, it is best to apply a set of common sense concepts at the local level. Because soil and water degradation are closely related, practices first developed to help conserve the soil (i.e., crop rotations, reduced tillage, cover crops) may also tend to conserve water quality. As well, restricting the loss of agricultural inputs (e.g., fertilizer nutrients, pesticides) from off farmland, and reducing the amount of those that might be available to do so, can assist in effectively reducing potential pollution. Buffer zones are a promising means of using plants and wetlands as a filter towards intercepting escaping contaminants.  相似文献   

20.
The wound response within damaged potato tubers (Solanum tuberosum L.) must be a coordination of suberization with other resistance responses if infection is to be avoided. Previously, we showed that wound healing was affected by wound severity and consequently the type of tissue damaged within the tuber. Using arachidonic acid-induced accumulation of rishitin as a model for phytoalexin accumulation, we now demonstrate that this tuber resistance response is also influenced by wound severity and the type of tissue exposed to the elicitor. Kennebec and Reddale tubers that were superficially wounded by removing a thin tissue slice (0.75 mm thick) from the surface and then treated with the elicitor arachidonic acid produced significantly less rishitin than more severely wounded tubers (e.g., tubers cut in half) and excised tuber tissue disks (17 mm × 4 mm). Excised, elicitortreated tuber tissues accumulated significantly more rishitin in cortical cells than in perimedullary and pith cells. Rishitin accumulation was routinely measured 96 h after wounding and was found to be declining by 144 h regardless of wound severity. Induction of rishitin accumulation was very localized with more than 80 % of the rishitin found within 0.75 mm of the treated wound. These results indicate that excised tuber tissue disks, often used as models in wound research, are not fully representative of intact tubers. Perhaps more important, the results show that superficial wounds of intact tubers, i.e., similar to shallow nick and abrasion type wounds typically incurred during harvest, accumulate very little rishitin. However, rishitin accumulation in the tuber disk model system is much greater than that found in superficially wounded tubers, but is similar to the accumulation that could be elicited in cut (seed) tubers. The complications contributed by these wound-related and tissue-specific interactions must be factored into the model system(s) used in describing the role(s) of phytoalexins in the broad framework of disease resistance for stored potatoes and cut seed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号