首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
《Journal of Crop Improvement》2013,27(1-2):173-189
Abstract

Shortage of labor and water are forcing farmers to explore the alternatives of transplanting. A field experiment was conducted at the experimental farm of International Rice Research Institute (IRRI), Philippines during the 2003 wet season and the 2004 dry season to (1) evaluate the effects of different crop-establishment methods and N management on yield and yield parameters of rice; (2) determine N-use efficiency and water-use efficiency under different methods of rice establishment; and (3) analyze the economics of different crop-establishment methods. Crop-establishment method did not influence grain yield during the wet or dry seasons, indicating the potential of the three variants of direct seeding as alternative methods of establishing lowland rice. Direct-seeded rice had shorter crop duration, required less water and therefore had higher water-use efficiency than the transplanting method. Crop establishment did not influence the various indices of nitrogen-utilization efficiency except partial factor productivity of N (PFPN) during the wet season. During the dry season, dry-seeded rice had the lowest recovery efficiency. In contrast, agronomic-use efficiency and recovery efficiency were significantly higher in the SPAD-based (soil plant analyses development) N management strategy during the dry season. PFPN was significantly higher in the SPAD-based N management strategy during the wet and dry seasons. The interaction effect of crop establishment and N management indicated that for smaller N input and higher efficiency of N usage, N requirement for direct-seeded rice should be based on SPAD N technique. The cost-and-return analysis showed that benefit-cost ratio was consistently higher in dry seeding rice than transplanted rice using a SPAD-based N management.  相似文献   

2.
Research on crop establishment methods may improve green manure performance, reduce costs, and increase the adaptability of pre-rice green manure technology in lowland rice-based cropping systems. A two-season field experiment was conducted at the International Rice Research Institute (IRRI) in Los Baños, Philippines in 1991–1992 to compare four establishment practices of Sesbania rostrata green manure (zero tillage, with tillage, relay cropping in rice for 2 or 4 weeks) with four mineral N fertilizer levels (0, 30, 60, and 90 kg urea N/ha) in an intensive irrigated lowland system with three rice crops per year. S. rostrata was grown twice a year during the 43-day dry-wet and wet-dry transition periods between the wet and dry season rice crops.

Grain yield potential and fertilizer responsiveness of rice was generally highest in the dry season. On the other hand, S. rostrata growth was more vigorous in the wet season (long-day period) than in the dry season, regardless of establishment method. Green manure N accumulation was lowest with zero tillage (30 and 90 kg N/ha in dry and wet season, respectively) and highest when it was relay-cropped for two weeks (60 and 180 kg N/ha in dry and wet season, respectively). Land preparation for Sesbania ensured best green manure stand (> 100 plants/m2 vs 20–40 plants/m2 at no-till establishments) but increased costs of green manuring by US$16/ha compared with other establishment methods. A quadratic response function between mineral fertilizer equivalence and green manure N indicated that up to 75 kg N/ha, lowland rice uses green manure N more efficiently than urea. Depending on season and establishment method, S. rostrata substituted for 35 to 90 kg of split-applied urea N. Benefit-cost ratios indicated that pre-rice green manure use in the wet season under the current fertilizer and labor prices in the Philippines was a less attractive economic option than mineral N fertilizer. This was true for all establishment methods. In the dry season, S. rostrata established by relay cropping gave the highest rate of return. The 2-week relay cropping of green manure with irrigated rice gave highest green manure N accumulation and rice grain yield, and may be economically viable where fertilizer prices are higher or labor costs are lower than in the Philippines.  相似文献   


3.
Rice is the main crop produced in the Senegal River Valley under the semiarid Sahelian climate where water resource management is critical for the resource use sustainability. However, very limited data exit on rice water use and irrigation water requirement in this water scarcity environment under climate change conditions. Understanding crop water requirements is essential for better irrigation practices, scheduling and efficient use of water. The objectives of this study were to estimate crop water use and irrigation water requirement of rice in the Senegal River Valley at Fanaye. Field experiments were conducted during the 2013 hot and dry season and wet season, and 2014 hot and dry season and wet seasons. Three nitrogen fertilizer treatments were applied to rice variety Sahel 108: 60, 120, and 180 kg N ha?1. Rice water use was estimated by the two-step approach. Results indicated that crop actual evapotranspiration (ETa) varied from 632 to 929 mm with the highest ETa obtained during the hot and dry seasons. Irrigation water requirement varied from 863 to 1198 mm per season. Rice grain yield was function of the growing season and varied from 4.1 to 10.7 tons ha?1 and increased with nitrogen fertilizer rate. Rice water use efficiency relative to ETa and irrigation requirements increased with nitrogen fertilizer rate while rice nitrogen use efficiency decreased with the nitrogen fertilizer rates. The results of this study can be used as a guideline for rice water use and irrigation water requirement for the irrigation design projects, consultants, universities, producers, and other operators within rice value chain in the Senegal River Valley.  相似文献   

4.
[目的]再生稻是头季稻生长的延续.本研究尝试从根际微生态系统的变化来阐明机械化栽培下头季稻氮肥管理对头季-再生季水稻产量形成的影响,为再生稻高产高效栽培提供参考.[方法]以"甬优1540"为材料,通过2年的田间试验,在头季总施氮量(225.00 kg/hm2)不变的前提下,设置头季不同氮肥运筹处理,分析了机械化栽培下再...  相似文献   

5.
《Field Crops Research》2005,92(1):17-33
The inclusion of grain legumes in rainfed lowland rice farming systems provides an opportunity to increase food production, household income, and human nutrition of impoverished rice farmers in Asia. We examined the effect of rice establishment method on the performance of wet season rice (Oryza sativa L.) and post-rice crops of either chickpea (Cicer arietinum L.) or moong [Vigna radiata (L.) Wilczek] on an Udic Haplustalf in the drought-prone, rainfed lowlands of eastern India. Rice was either direct seeded in lines on moist soil immediately after the onset of wet season rain or transplanted after sufficient rainwater accumulated for soil submergence. Crop establishment method had no effect on rice performance in a season (2001) with normal rainfall. In a drought season (2002), direct seeding resulted in mean rice grain yield of 2.3 t ha−1, whereas the transplanted rice crop failed. The agronomic efficiency of N fertilizer applied to direct-seeded rice was comparable for the 2 years (18 and 24 kg grain per kg N applied). Topsoil inorganic N was markedly higher following chickpea and moong than following a post-rice fallow. Direct-seeded rice had higher yield and accumulation of N following a post-rice legume than following fallow, but transplanted rice derived no such benefit from the legume. Direct-seeded rice was established 1–2 months before transplanted rice, and direct-seeded rice matured before transplanted rice by 8 days in the favorable season and by 26 days in the drought season. The soil nitrate present after legumes and fallow rapidly disappeared, presumably by denitrification, following the onset of rains and soil flooding prior to transplanting. A portion of this accumulated soil nitrate was taken up by the direct-seeded rice before it could be lost. But transplanted rice did not benefit from this inorganic N derived from legumes because virtually all soil nitrate was lost before transplanting. Direct seeding of rice ensured better use of residual and applied N, reduced risk due to drought, and favored intensification with post-rice legumes in drought-prone lowland systems.  相似文献   

6.
7.
The effects of nitrogen fertilizer treatment and source (prilled urea, urea supergranule, fresh azolla, rice straw or sesbania or rice straw compost and their combinations) on grain quality were studied in the 1987 crops of variety IR64 at IRRI. Although fertilizer application improved grain yield, it improved protein content only in the case of urea supergranule, azolla and rice straw. Lysine contents of brown rice protein were similar in samples with no N fertilizer and those with the highest protein content in both seasons. Fertilizer treatment regardless of source tended to decrease weight and increase translucency of brown rice in both seasons. Effects on other grain properties were not consistent in both seasons. Season affected more grain properties than fertilizer treatment did, particularly translucency which was higher in the dry season than in the wet season.  相似文献   

8.
对"3414"田间试验各处理玉米产量和不同氮水平(N0=0、N1=93.75、N2=187.5、N3=281.25 kg/hm~2)下测定土壤无机氮,探究N、P、K不同配比施肥对玉米产量的影响和不同氮水平下土壤无机氮的变化特征。结果表明,施氮对玉米产量的影响达到差异显著水平,施磷、钾肥对玉米产量的影响差异不显著。随着施氮量升高,玉米产量先升高后稳定,通过方差分析确定当地最佳推荐施氮量变化范围为93.75~281.25 kg/hm~2。施氮可以提高1 m土壤中铵态氮和硝态氮的积累量。铵态氮易被固定,拔节期以后,土壤中铵态氮积累较为稳定。硝态氮在土壤中变异较大,尤其在高施氮量(281.25 kg/hm~2)时,1 m土体中硝态氮积累量显著增加。无机氮总量与施氮量显著相关,当施氮量为281.25 kg/hm~2时,大大增加中期(抽雄期)氮素损失风险,确定安全施氮量处于187.5~281.25 kg/hm~2。提高产量、减少氮素损失的生产目标,207.27 kg/hm~2的施氮量为当地经济安全施氮量。  相似文献   

9.
We conducted field trials of rice grown in sandy soil and clay soil to determine the effects of nitrogen application levels on the concentration of NH4+-N in surface water,loss of ammonia through volatilization from paddy fields,rice production,nitrogen-use efficiency,and nitrogen content in the soil profile.The concentration of NH4+-N in surface water and the amount of ammonia lost through volatilization increased with increasing nitrogen application level,and peaked at 1-3 d after nitrogen application.Less ammonia was lost via volatilization from clay soil than from sandy soil.The amounts of ammonia lost via volatilization after nitrogen application differed depending on the stage when it was applied,from the highest loss to the lowest:N application to promote tillering > the first N topdressing to promote panicle initiation(applied at the last 4-leaf stage) > basal fertilizer > the second N topdressing to promote panicle initiation(applied at the last 2-leaf stage).The total loss of ammonia via volatilization from clay soil was 10.49-87.06 kg/hm2,equivalent to 10.92%-21.76% of the nitrogen applied.The total loss of ammonia via volatilization from sandy soil was 11.32?102.43 kg/hm2,equivalent to 11.32%-25.61% of the nitrogen applied.The amount of ammonia lost via volatilization and the concentration of NH4+-N in surface water peaked simultaneously after nitrogen application;both showed maxima at the tillering stage with the ratio between them ranging from 23.76% to 33.65%.With the increase in nitrogen application level,rice production and nitrogen accumulation in plants increased,but nitrogen-use efficiency decreased.Rice production and nitrogen accumulation in plants were slightly higher in clay soil than in sandy soil.In the soil,the nitrogen content was the lowest at a depth of 40-50 cm.In any specific soil layer,the soil nitrogen content increased with increasing nitrogen application level,and the soil nitrogen content was higher in clay soil than in sandy soil.In terms of ammonia volatilization,the amount of ammonia lost via volatilization increased markedly when the nitrogen application level exceeded 250 kg/hm2 in the rice growing season.However,for rice production,a suitable nitrogen application level is approximately 300 kg/hm2.Therefore,taking the needs for high crop yields and environmental protection into account,the appropriate nitrogen application level was 250-300 kg/hm2 in these conditions.  相似文献   

10.
《Plant Production Science》2013,16(2):228-231
Abstract

In recent years, water and labor shortage in Southeast Asia is driving the farmers towards dry-seeded rice systems. Weed infestation is a serious threat for adoption of these systems. A study was conducted in the wet and dry seasons to evaluate the performance of 10 elite “Green Super Rice” (a recently named group of rice genotypes bred for unfavorable marginal environments) genotypes at two different weed infestation levels (partial and moderate weed control) under dry-seeded conditions. Average yield loss due to weed competition in the partial weed control treatment ranged from 12 – 57% in the wet season and 2 – 23% in the dry season. In the partial weed control plots, the drought pyramiding genotype IR83140-B-11-B performed well, resulting in 2850 and 4610 kg ha–1 of yield in the wet and dry seasons, respectively. The yield loss of this genotype in the partial weed control plots relative to the moderate weed control plots was only 21% in the wet season and 10% in the dry season. Results clearly showed that grain yield in different genotypes were positively correlated with leaf area at an early stage of the crop. The study also found negative and linear correlation between grain yield and weed biomass at harvest, demonstrating the importance of weeds in dry-seeded rice systems. The study suggested that genotypes with a larger leaf area could be integrated with other weed management strategies to achieve sustainable weed control in dry-seeded rice systems.  相似文献   

11.
氨挥发和氮淋洗是氮肥损失的重要途径,导致严重的环境污染。有关橡胶林氮肥穴施后的氨挥发和氮淋洗损失问题的研究鲜见报道。本研究设置0 kg/hm2(对照)、100 kg/hm2(低氮)、230 kg/hm2(中氮)、400 kg/hm2(高氮)的施氮水平,分别采用通气法和渗漏盘法研究橡胶林尿素穴施后的氨挥发和氮淋洗损失特征。结果表明,旱季氨挥发损失过程大致在14~20 d内完成,雨季基本在7~10 d完成;氨挥发峰值在旱季较雨季延迟,旱季大概施肥后6~13 d达到峰值,而雨季1~3 d即达到峰值;与对照相比,低氮、中氮和高氮处理的氨挥发损失大致为9.32~21.54 kg/hm2。氮淋洗损失主要发生在雨季(5—11月),且以硝态氮淋洗为主;橡胶林氮肥穴施条件下的氮淋洗损失约为2.36~9.00 kg/hm2;随着施氮量的增加,氨挥发和氮淋洗损失均呈增加趋势。综上,橡胶林氮肥穴施后的氨挥发和氮淋洗损失并不高,其施氮量不宜超过230 kg/hm2。  相似文献   

12.
Yield constraints of rainfed lowland rice in Central Java, Indonesia   总被引:1,自引:0,他引:1  
The low and unstable yields of rainfed lowland rice in Central Java can be attributed to drought, nutrient stress, pest infestation or a combination of these factors. Field experiments were conducted in six crop seasons from 1997 to 2000 at Jakenan Experiment Station to quantify the yield loss due to these factors. Experimental treatments—two water supply levels (well-watered, rainfed) in the main plots and five fertilizer levels (0-22-90, 120-0-90, 120-22-0, 120-22-90, 144-27-108 kg NPK ha−1) in the subplots—were laid out in a split-plot design with four replications. Crop, soil, and water parameters were recorded and pest infestations were assessed.

In all seasons, rice yield was significantly influenced by fertilizer treatments. Average yield reduction due to N omission was 42%, to K omission 33–36%, and to P omission 3–4%. Water by nutrient interactions did not affect rice yield and biomass production. In two of the three dry seasons, an average of 20% of the panicles were damaged by pests and estimated yield loss from pests was 56–59% in well-watered and well-fertilized treatments. In one out of six seasons, yields under rainfed conditions were 20–23% lower than under well-watered conditions. Drought, N and K deficiencies, and pest infestation are the major determinants for high yields in rainfed environments in Jakenan. Supplying adequate nutrient and good pest control are at least as important as drought management for increasing crop productivity of rainfed rice-growing areas in Central Java. The relative importance of drought, nutrient and pest management may vary in other rainfed areas. Yield constraints analysis should be systematically carried out to identify appropriate management strategies.  相似文献   


13.
《Field Crops Research》1996,47(1):43-52
Manure management is a difficult task on many intensive dairy farms. Crops that can utilize large quantities of manure N, yield quality forage with larger rates of manure application, and allow manure spreading at different times in a year can simplify that task. A study was conducted in 1990 and 1991 on a Copake sandy loam soil (mixed mesic) in New Milford, Connecticut. The objectives were: (1) to measure and compare dry matter (DM) response of orchardgrass (Dactylis glomerata L.) to different amounts and application times of N fertilizer and liquid and solid cattle manure; and (2) to determine crop uptake of fertilizer and manure N. Fertilizer and liquid and solid manure were applied to the soil surface annually in amounts of 150, 300 or 450 kg N ha−1 in one, two or four equal applications. Orchardgrass dry matter production increased over the entire range of N amounts from all sources. Yields varied from approximately 2500 kg DM ha−1 for control plots (0 kg N) to 10600 kg for plots receiving 450 kg N ha−1 either as fertilizer or liquid manure. Crop response to liquid manure application was greater in year one with abundant rainfall than in year two with dry conditions during most of the growing season, whereas crop response to solid manure application improved in the second year, due to the availability of residual organic N. Orchardgrass was more sensitive to the timing of fertilizer N application than to manure N application. Despite the large differences in weather patterns experienced during this study, analysis of application patterns indicated that manure could be applied throughout the growing season to crop stubble (post-harvest) with comparable rates of uptake overall. N uptake in control plots averaged 56 kg N ha−1 for both years, compared to 340 kg N ha −1 for fertilizer plots, 250 kg N ha −1 for liquid manure plots and 190 kg N ha−1 for solid manure plots receiving 450 kg total N ha −1.  相似文献   

14.
Rice (Oryza sativa L.) followed by chickpea (Cicer arietinum L.) or a fallow is one of the predominant cropping systems in the rainfed lowlands of India. Crop rotation experiments over 3 years (1996–1998) to quantify N supply and demand under rainfed lowland rice–chickpea and rice–fallow cropping systems on a loam Alfisol and a clay Vertisol in Raipur, India were conducted under direct-seeded rice culture. The rice growth, yield, development and N accumulation were affected most by N rates (0, 40, 80, 120 kg ha−1) followed by cropping system (rice–chickpea, rice–fallow) and soil types (Alfisol, Vertisol). The incorporation of chickpea in the cropping system helped in accumulating a greater amount of soil N than fallow. The rice yield, dry matter and N accumulated were significantly higher in rice–chickpea than rice–fallow systems on both soils and in all years. The lowest rice yields were recorded in 1997 due to unfavorable rainfall distribution. The total rainfall was the highest in this season, but most of it occurred during a short period at an early growth stage. The post-heading rains were lowest in this season and resulted in the lower rice yield as compared with that of 1996 and 1998. This indicates the significance of rainfall distribution in controlling yield in a rainfed environment. The rice yields were lower on Vertisol than Alfisol during periods of drought. The performance of chickpea was also better in Alfisol as compared with that in the Vertisol due to its better soil physical attributes. The residual effect of N applied to the preceding rice crop was non-significant on all yield, growth and N accumulation parameters of chickpea. The N balance computed from the top 70 cm soil layers indicated less N loss in the rice–chickpea system as compared with that in rice–fallow. The recovery efficiency at the highest N rate (120 kg N ha−1) was higher for the rice–chickpea (57–61%) than that of rice–fallow (49–53%) system. The improved N balance for rice–chickpea system from third year onwards was due to switch to dry seeding and improved soil N status. The inclusion of legume and the effective capture of biologically fixed N and soil N through direct-seeded rice system in rainfed lowlands may help in improving the rice yield of resource poor farmers.  相似文献   

15.
【目的】为合理利用水稻生长期间的降雨,改善江汉平原地区稻田氮肥管理。【方法】采用田间小区试验,研究了常规淹灌(FI)和适雨灌溉(RAI)条件下,农民习惯施肥(FFP)、30%尿素+70%控释掺混肥(30%N+70%CRF)和优化减氮施肥(OPT-N)对降雨利用率、水稻产量、光合特性、干物质积累及氮吸收利用的影响。【结果】1)RAI能在节省水资源同时提升稻田对雨水的储蓄和利用能力,与FI相比可减少田间灌溉水量41.7%,各生育阶段水稻叶片净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)、干物质积累、氮素吸收以及产量均有不同程度的增加;2)两种水管理方式下,与FFP处理相比,OPT-N处理水稻在分蘖期的PnGsCiTr、干物质积累和氮素吸收显著降低,但在孕穗期-灌浆期有所增加,对最终产量形成影响不大;RAI结合30%N+70%CRF处理有利于水稻生育前期PnGsCiTr的增加,提升生育中后期干物质积累量,氮素吸收量在分蘖期显著高于OPT-N和FFP,在齐穗期和成熟期显著高于FFP,有效穗数、穗长、千粒质量和结实率在各处理间表现最高,实际产量相较常规水肥管理可增产10.4%。【结论】适雨灌溉条件下,OPT-N不会显著影响水稻的生长及产量,30%N+70%CRF有助于水稻光合作用、氮素吸收及产量的增加。  相似文献   

16.
【目的】为合理利用水稻生长期间的降雨,改善江汉平原地区稻田氮肥管理。【方法】采用田间小区试验,研究了常规淹灌(FI)和适雨灌溉(RAI)条件下,农民习惯施肥(FFP)、30%尿素+70%控释掺混肥(30%N+70%CRF)和优化减氮施肥(OPT-N)对降雨利用率、水稻产量、光合特性、干物质积累及氮吸收利用的影响。【结果】1)RAI能在节省水资源同时提升稻田对雨水的储蓄和利用能力,与FI相比可减少田间灌溉水量41.7%,各生育阶段水稻叶片净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)、干物质积累、氮素吸收以及产量均有不同程度的增加;2)两种水管理方式下,与FFP处理相比,OPT-N处理水稻在分蘖期的Pn、Gs、Ci、Tr、干物质积累和氮素吸收显著降低,但在孕穗期-灌浆期有所增加,对最终产量形成影响不大;RAI结合30%N+70%CRF处理有利于水稻生育前期Pn、Gs、Ci、Tr的增加,提升生育中后期干物质积累量,氮素吸收量在分蘖期显著高于OPT-N和FFP,在齐穗期和成熟期显著高于FFP,有效穗数、穗长、千粒质量和结实率在各处理间表现最高,实际产量相较常规水肥管理可增产10.4%。【结论】适雨灌溉条件下,OPT-N不会显著影响水稻的生长及产量,30%N+70%CRF有助于水稻光合作用、氮素吸收及产量的增加。  相似文献   

17.
A field study on assessment of crop establishment methods on yield, economics and water productivity of rice cultivars under upland and lowland production ecologies was conducted during wet seasons (June–November) of 2012 and 2013 in Eastern Indo-Gangetic Plains of India. The experiment was laid-out in a split-plot design (SPD) and replicated four times. The main-plot treatments included three crop establishment methods, viz. dry direct-seeded rice (DSR), system of rice intensification (SRI) and puddled transplanted rice (PTR). In sub-plots, five rice cultivars of different groups like aromatic (Improved Pusa Basmati 1 and Pusa Sugandh 5), inbreds (PNR 381 and Pusa 834) and hybrid (Arize 6444) were taken for their evaluations. These two sets of treatments were laid-out simultaneously in two production ecologies, upland and lowland during both years. In general, lowland ecology was found favourable for rice growth and yield and resulted in 13.2% higher grain yield as compared to upland ecology. Rice grown with SRI method produced 19.4 and 7.0% higher grain yield in 2012 and 20.6 and 7.1% higher in 2013, over DSR and PTR. However, PTR yielded 13.1 and 14.5% higher grain over DSR during 2012 and 2013, respectively. On an average, Arize 6444 produced 26.4, 26.9, 28.9 and 54.7% higher grain yield as compared to PS 5, P 834, PNR 381 and IPB1, respectively. Further, the interaction of production ecologies × crop establishment methods revealed that, in upland ecology, SRI recorded significantly higher grain yield as compared to PTR and DSR, but in lowland, grain yield resulting from SRI was similar to the yield obtained with PTR and significantly higher than DSR. The latter two methods (PTR and DSR) yielded alike in lowland ecology in both study years. The production ecologies × crop establishment methods × cultivars interaction on grain yield showed that the growing of Arize 6444 cultivar using SRI method in upland ecology resulted in the higher grain yield (8.87 t/ha). But the cost of production was also highest in SRI followed by PTR and DSR across production ecologies and cultivars. Cultivation of hybrid (Arize 6444) involved higher cost of production than all other cultivars. Irrespective of crop establishment methods and cultivars, gross returns, net returns and B:C ratio were significantly higher in lowland compared to upland ecology. Owing to higher grain yield, SRI method fetched significantly higher gross returns and net returns over PTR and DSR. Average increase in net return with Arize 6444 was 68.8, 41.0, 37.7 and 33.1% over IPB 1, PNR 381, P 834 and PS 5, respectively. There was a saving of 30.7% water in SRI and 19.9% in DSR over PTR under upland ecology. Similarly in lowland ecology, water saving of 30.2% was observed in SRI and 21.2% in DSR over PTR. Due to higher yield and saving on water, SRI returned significantly higher total water productivity (TWP) (5.9 kg/ha-mm) as compared to DSR (3.5 kg/ha-mm) and PTR (3.6 kg/ha-mm) under upland ecology. In lowland ecology, also SRI (6.2 kg/ha-mm) resulted in higher TWP as compared to other two methods. However, DSR gave significantly higher TWP as compared to PTR. Among cultivars, hybrid Arize 6444 recorded the highest TWP in both upland and lowland production ecologies across crop establishment methods. Hence, growing of hybrid Arize 6444 with SRI method can enhance rice productivity and water-use efficiency in lowland and upland production ecologies of Eastern Indo-Gangetic Plains and in other similar regions.  相似文献   

18.
为了探明施氮量及氮肥运筹对优质杂交水稻产量及氮素吸收利用的影响,以晶两优华占、锦两优华占和晶两优1212为试验材料,2017~2018年在湖南省浏阳市进行了不同施氮量(145~225 kg/hm^2)和不同氮肥运筹(基肥、蘖肥、穗肥施用比例)的大田小区试验。结果表明:(1)适当减少施氮量能显著提高杂交水稻氮素收获指数、籽粒氮利用效率及氮肥偏生产力。(2)杂交水稻产量存在显著的品种间差异和年间差异,其中2017年以晶两优华占产量最高(9. 56 t/hm^2),3品种平均为8. 75 t/hm^2; 2018年以锦两优华占最高(13. 45 t/hm^2),3品种平均为12. 87 t/hm^2。(3) 2018年高施氮量处理显著增产,而2017年则显著减产。可见,增加氮肥用量或改进氮肥施用模式是否增加杂交水稻产量,可能与种植期间的气候条件有关。  相似文献   

19.
王蒙  赵兰坡  王立春  侯云鹏  李前  谢佳贵 《玉米科学》2012,20(6):128-131,136
在吉林省榆树市粮食高产示范区,以先玉335为试验材料,通过田间试验研究不同氮肥运筹对春玉米的生长、产量及土壤氮素平衡的影响。结果表明,适宜氮肥运筹方式能显著提高玉米产量,施氮量200 kg/hm2,全部用作基肥不追肥(基追比1∶0)处理前期氮素供应过量,导致氮素向子粒转运量减少,过多保留在营养体中,致使产量和氮素利用效率相对其他处理较低;氮肥1/5基施,2/5拔节期追施,2/5大喇叭口期追施(基追比为1∶2∶2)的处理有较高的氮肥农学利用率、氮肥利用率和氮肥偏生产力。玉米生育期田间氮肥的表观损失主要由一次性过量施肥造成,增大拔节后追肥比例增加了收获后土壤的无机氮残留。对氮肥的调控应结合作物养分不同阶段需求及土壤养分供应,达到玉米高产和提高氮肥利用效率,减少氮肥损失对环境带来的危害。  相似文献   

20.
【目的】探明秸秆还田和氮肥管理对麦/油后直播杂交稻氮素积累、转运、氮肥利用效率及籽粒产量的影响。【方法】选用优质三系杂交稻宜香优2115,采用二因素裂区设计,麦、油茬田同步开展试验,处理完全一致。主区为麦/油秸秆全量翻埋还田(M1)和秸秆不还田(对照,M0),副区设4个氮肥管理,即不施氮对照(N0)、m基肥∶m分蘖肥∶m促花肥∶m保花肥比例分别为1∶0∶0∶0(N1)、3∶3∶2∶2(N2)、2∶2∶3∶3(N3),测定了直播杂交稻主要生育时期各器官的氮素积累量及籽粒产量。【结果】结果表明,两种轮作方式下,氮肥管理对直播杂交稻主要生育时期的氮素积累、齐穗后茎鞘、叶片的氮素转运及稻株氮素利用效率均存在显著或极显著的调控效应。秸秆还田显著提高麦/油茬杂交稻中后期的氮素积累量、茎鞘和叶片的氮素转运量以及氮肥利用效率,其中,氮肥农学利用率、氮肥偏生产力和氮肥表观利用率较秸秆不还田分别提高了34.96%/28.76%、2.52%/2.61%和31.91%/22.30%。同时,油菜秸秆还田下直播杂交稻各生育时期氮素积累和产量较麦秆还田表现更好,籽粒产量提高481 kg/hm2(5.22%)。M1N2处理、M0N3处理下,直播杂交稻各阶段的氮素积累速率明显加大,促进结实期茎鞘和叶片的氮素向穗部转运,成熟期稻株氮素积累量优势明显且有较高的氮素利用效率(麦/油茬稻氮肥农学利用率、偏生产力和表观利用率分别达17.87 kg?kg–1/17.85 kg?kg–1、67.27 kg?kg–1/71.28 kg?kg–1、74.93%/75.05%),最终实现高产。【结论】在麦/油-稻轮作下秸秆全量还田,配合N2氮肥管理,可有效提高直播杂交稻氮素吸收、利用效率,增加籽粒产量,尤以油菜秸杆还田的效果更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号