首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic (As) poisoning of groundwater in Bangladesh has become a major environmental and health issue. The extensive use of groundwater in irrigation of rice has resulted in elevated As in soils and crops. A study was undertaken to determine As concentrations in groundwater, soils, and crops in 16 districts of southwestern Bangladesh. Groundwater samples were collected from shallow-tube and hand-tube wells (STW and HTW) used for irrigation and drinking water. Soil and rice plants were sampled from the command area of the tube wells. Arsenic concentrations were determined using an atomic absorption spectrometer equipped with flow injection hydride generator. Groundwater samples contained <10 to 552 μg As L?1. Arsenic concentrations in 59% of STW samples exceeded 50 μg As L?1, the national standard for As in drinking water. Unlike groundwater, most of the surface water samples contained <10 μg As L?1. Concentrations of As in the soils from the command area of the tube wells ranged from 4.5 to 68 mg kg?1. More than 85% of the soils contained <20 mg As kg?1. The mean As concentration in the rice grain samples was 0.23 mg kg?1, which is much less than the maximum food hygiene standard. A positive relationship was observed between groundwater and soil As, implying that soil As level increases as a result of irrigation with contaminated water. However, irrigation water As did not show any relation with rice grain As. The findings suggest that surface water bodies are a safe source of irrigation water in the As-contaminated areas.  相似文献   

2.
ABSTRACT

Soil fertility in many parts of the north?western Himalayan region (NWHR) has declined owing to accelerated nutrient mining under existing crop regime. Therefore, this study aimed to assess effect of the predominant horticulture?based land uses on soil fertility and health in mid and high hills of NWHR. Soil samples (0?20 cm) were collected, analyzed for different soil chemical attributes (pH, electrical conductivity, organic C, available primary-, secondary-, and micro-nutrients), and compared across five key land uses: perennial grass (PG), peach orchard (PO), apple orchard (AO), field vegetable farming (VF), and protected vegetable farming (PV). Soils of the investigated land uses were neutral to near neutral in soil reaction (6.3?6.8) except field vegetable and protected vegetable farming. Amount of soil organic C and labile organic C was significantly higher (p ≤ 0.05) in soils of apple orchards (18.6 g kg?1 and 687.3 mg kg?1, respectively) and peach orchards (20.4 g kg?1 and 731.3 mg kg?1, respectively) over others. An abrupt and significant increase in Olsen-P was recorded in soils of field vegetable farming (17.1 mg kg?1) and protected vegetable farming (13.0 mg kg?1), which shifted their nutrient index (NI) of P in to high category (≥ 2.33). The concentration of mineralizable-N in soil was statistically at par in soils under perennial grass and fruit orchards, while protected vegetable farming showed maximum soil mineralizable-N content (115.5 mg kg?1) and NI of nitrogen (1.83). The NI was in high category (≥ 2.33) for copper, iron, and manganese in majority of the land uses. In view of the results, temperate fruit?tree based land uses are benign in up?keeping soil fertility and soil health, and needs promotion on large scale. Additionally, policies to create incentives for the build-up of soil organic matter and replenishment of the depleted soil macro and micro nutrients in vegetable-farmed lands are warranted.  相似文献   

3.
Soil contamination due to spills or leaks of crude oils andrefined hydrocarbons is a common problem. Estimation of spillvolume is a crucial issue in order to determine the expectedcontaminating life span of contaminated soils. The directprocedure to determine the amount of hydrocarbon in soil is to measure the concentration of total petroleum hydrocarbon (TPH) in soil samples. The primary objective of this study was toassess the potential effects of oil contaminated soils on thewater quality of Devegecidi dam reservoir. For this purpose,limited spill data available were evaluated and soil samplingstudies were conducted in the Beykan oil field to analyze forTPH on oil contaminated soils. Available spill and measured soilTPH data were used in a subsequent modeling study to assess thereservoir water quality impacts due to dissolved mass leachingfrom hydrocarbon contaminated soils. Evaluation of availablespill data between 1989 and 1995 revealed that a total of 252recorded spills resulted in a net spill of 395 tons. The majortypes of oil spills were identified as well heads (WH), returnlines/flow lines (RL/FL), and power oil lines (POL). A total of211 soil samples was collected at selected well heads andanalyzed for TPH in the laboratory. TPH results revealed aconcentration range between 600 and 115 500 mg kg-1 with a meanconcentration of 20 300 mg kg-1. Modeling studies focused onbehavior assessment and involved two major components. The firstcomponent is a soil-leaching submodel for estimating theleachate concentration and contaminant mass leaching out of thecontaminated soil body. The second component is a reservoirwater quality submodel assuming complete-mix conditions forestimating the changes of hydrocarbon concentration in thereservoir water as a function of time. These two components arecoupled via a mass inflow term present in the reservoir waterquality model, accounting for contaminant mass loadingcontributed by the leaching of contaminated soil. Simulation runs performed under conservative conditions assuming an annualaverage oil spill volume of 95 tons and the minimum reservoirvolume of 7.3 × 106 m3 revealed that there isno imminent threat to reservoir water quality from the dissolved phase contaminants soils. Limited amount of availablemeasurements of TPH concentrations in soil samples and benzeneconcentrations in reservoir water samples supported model results.  相似文献   

4.

Purpose

Cadmium (Cd) is considered a toxic element and its concentrations are relevant to human health and the environment. Therefore, the purpose of the study was to determine the extent to which the bottom sediments of water bodies (artificial lakes and ponds) in the Silesian Upland in southern Poland are contaminated with Cd; an attempt was also made to determine the factors that condition spatial differences in the concentration of this element between individual water bodies in the region.

Materials and methods

Measurements of the Cd content in bottom sediments were carried out in 35 water bodies in southern Poland in 2011 and 2012. Depending on the surface area and morphometric characteristics, from two to nine samples representative in terms of sediment thickness were collected in each water body. Cadmium concentrations were determined for 92 0.25 g aliquots using the TD-ICP method.

Results and discussion

Cadmium content in all samples (0.7–580.0 mg kg?1) was higher than the natural range of concentrations for this element in the Earth’s crust (0.1–0.3 mg kg?1) and the geochemical background for Poland (0.5 mg kg?1) and, with a few exceptions, was also higher than the preindustrial concentration (1.0 mg kg?1) and the regional geochemical background (2.5 mg kg?1). Adopting natural Cd concentrations in the Earth’s crust (0.1–0.3 mg kg?1) as the baseline for the geoaccumulation index (Igeo), the sediments examined can be classified as extremely and heavily contaminated (and moderately contaminated in a small number of cases). The assessment of sediment quality based on Igeo, with the regional geochemical background (2.5 mg kg?1) adopted as the baseline, results in non-contaminated and moderately contaminated sediments being dominant with a far smaller number of heavily and extremely contaminated ones.

Conclusions

In the case of several water bodies, Cd concentrations were at record levels that have not been found anywhere else in the world. On the basis of the Igeo, sediments of varying quality were found—from virtually uncontaminated to extremely contaminated. The Igeo index as an indicator of the quality of bottom sediments is a measure that requires careful interpretation, especially when different concentration levels regarded as natural are used for determining its value.
  相似文献   

5.
Soil phosphorus contents in a county with high concentration of livestock Soil samples, collected in a county with very high concentration of livestock, had contents of DL-soluble phosphorus in the range of <0.1 to 1.2 g P kg?1 and of total P in the range of 0.5 to 3.5 g P kg?1. These results indicated larger P-enrichments than have been observed in previous studies.  相似文献   

6.
Aguilar  J.  Dorronsoro  C.  Fernández  E.  Fernández  J.  García  I.  Martín  F.  Simón  M. 《Water, air, and soil pollution》2004,151(1-4):323-333
Soil remediation has been studied after a spill from a settling pond of a pyrite mine in Aznalcóllar (SW Spain). The affected area was approximately 55 km2 and extended about 40 km from the spill. The Pb concentration in soils ranged from 35.8 to 3231.0 mg kg-1, with a mean value of 385.8 mg kg-1. The remediation techniques investigated included: manual and mechanical removal of the contaminated soil, mixing the upper part of the soils by ploughing, and addition of different amendment materials to reduce the Pb solubility, such as carbonates, zeolites, iron-rich soils, bentonites and yeasts. A combination of liming with iron-rich soils proved the most effective treatment.  相似文献   

7.
Abstract

Water extraction of trace elements can simulate the concentration of elements in the soil solution from where the plant takes up the elements. The objective of this investigation was to determine the water extractable concentration of seven trace elements (Fe, Mn, Ni, Co, Mo, Pb and Cd) and to assess their relationship with soil properties of the Danube basin in Croatia. Soil samples from the surface layer (0–25 cm) of 74 sites, having different land uses (forest and agricultural land), were collected. Samples were analysed for total and water extractable trace elements as well as for pH, DOC, SOC and CEC. The concentrations of water extractable fraction of trace elements were on average: 20.14 mg kg?1 for Fe, 3.61 mg kg?1 for Mn, 0.07 mg kg?1 for Ni, 0.016 mg kg?1 for Co, 0.01 mg kg?1 for Mo, 0.01 mg kg?1 for Pb and 0.0009 mg kg?1 for Cd. Soil properties were in the following range: pH 4.3–8 (Avg: 6.35), DOC 6.1–73 mg l?1 (Avg: 26 mg l?1), CEC 1.3–24 cmol kg?1 (Avg: 9 cmol kg?1) and SOC 0.5–5% (Avg: 1.7%). The concentration of water extractable fraction of trace elements was significantly correlated with pH (p <0.001), DOC (p <0.001 – p <0.05) and CEC (p <0.001) but their relationship with total content of trace element and SOC was rather weak, suggesting that total metal alone cannot be an indicator of toxicity or deficiency. Results show that pH, DOC and CEC are important soil quality parameters taking part in the solubility control of trace metals in the soil rather than their total concentration. The difference between land uses has been observed as well, suggesting that a change in land use can cause a change in trace element solubility.  相似文献   

8.
It is well documented that synthetic chlorinated hydrocarbon residues are widespread throughout the world ecosystem. Recently serious contamination of the Kupa River in Slovenia resulting from improper disposal of the waste disharged by an electro-capacitor manufacturing plant was observed. The migration of the PCBs from the waste tip into the karst ground water and source water has been established. PCBs have been also introduced into the small Lahinja River a tributary of the Kupa. Consequently, these pollutants have been detected in the Kupa river. An investigation of the levels of chlorinated hydrocarbons in tap water, water and fish samples collected from 1985 to 1988 from the Kupa River in the region of Petrinja and Sisak was performed. This region is about 200 km downstream of the primary contamined area. Concentrations of chlorinated insecticides and polychlorinated biphenyls in tap water ranged from <0.2 to 5.0 ng dm?3 for PCBs such as Aroclor 1254 and from <0.4 to 10.4 ng dm?3 for PCBs such as Pyralene 1500. In the Kupa River, water samples were found with PCBs such as Aroclor 1254 from <1.5 to 5.0 and from <2.6 to 104 ng dm?3 for PCBs such as Pyralene 1500. The level of the investigated chlorinated insecticides were under the sensitivity limits of 0.05 for dieldrin and 0.1 ng dm?3 for DDTs. Concentrations of chlorinated insecticides and polychlorinated biphenyls in the fish samples were several orders of magnitude higher in comparison with the water samples and ranged from the sensitivity limit for dieldrin (<0.0001) to 0.0034 mg kg?1; p,p'DDT from 0.0003 to 0.0076 mg kg?1; p,p'DDE from 0.0004 to 0.1752 mg kg?1; p,p'DDD from 0.0001 to 0.0201 mg kg?1 wet weight. Concentrations of PCBs were significantly higher and ranged from 0.015 to 2.742 mg kg?1 wet weight for Pyralene 1500 and from 0.090 to 1.590 mg kg?1 for Aroclor 1254 +Aroclor 1260.  相似文献   

9.
Abstract

Soil washing is one of the methods used to remediate soil contaminated with heavy metals, and when the contaminated elements have been effectively removed the washed soil can be used for agriculture. Soil washing was conducted using 0.5 mol L?1 CaCl2 solution at pH 4 as an extracting agent to remediate a paddy field soil contaminated with Cd. Dolomite powder was applied to neutralize the soil to the original pH 6.2. After CaCl2 washing, the content of Cd extractable in 0.1 mol L?1 HCl decreased from 2.4 to 0.8 mg kg?1. Subsequently, a pot experiment was carried out to evaluate the effect of soil washing on Cd concentration in polished rice (Cdpr) for three successive years. Using the washed soil, Cdpr was ≤ 0.2 mg kg?1 with and without a treatment that simulates midseason drainage, whereas it was > 0.5 mg kg?1 in the unwashed soil with the midseason drainage treatment. The reasons for low Cdpr growth in the washed soil were the low content of exchangeable Cd in the soil and the resultant high soil pH (> 7). To evaluate the effect of soil pH on Cdpr in the fourth year, we adjusted soil pH to 5 with H2SO4 before transplanting rice seedlings. The Cdpr in the washed soil with the midseason drainage treatment increased to 0.47 mg kg?1, whereas it was less than 0.2 mg kg?1 under continuous flooding. Thus, high pH or whole season flooding are important to keep Cdpr at ≤ 0.2 mg kg?1 even after soil washing. With the application of dolomite and other ordinary fertilizers, soil properties were little affected by the present soil washing procedure because the difference in rice yield between the washed and unwashed plots was not significant within each year.  相似文献   

10.
Physical-based fractions of SOM were examined. Soil carbon (C) and nitrogen (N) across ecotopes were 17.22 g kg?1 and 3.73 g kg?1, respectively. Soil C and N were higher in conventional tillage (CT) than no-till (NT) by 2.94% and 0.94%, respectively. Soil C ranged from 11.09 g kg?1 in silt to 18.02 g kg?1 in coarse sand; from 12.89 g kg?1 in fine sand to 18.88 g kg?1 in clay under NT and CT, respectively. Soil N ranged from 4.54 g kg?1 in silt to 5.55 g kg?1 in clay; from 5.06 g kg?1 in coarse sand to 5.56 g kg?1 in silt under NT and CT, respectively. Soil N in bulk soil changed by ?3.24% while soil C in bulk soil changed by ?11.87%. The silt + clay was saturated; hence, studies on soil C and N dynamics in these ecotopes are advocated.  相似文献   

11.
Soil and water samples were analysed for trace metals and As in two watercourses and 14 sampling plots in a salt marsh polluted by mine wastes in SE Spain. Groundwater levels, soil pH and Eh were measured ‘in situ’ for a 12-month period in each sampling plot, and total calcium carbonate was also determined. Low concentrations of soluble metals (maximum Mn 1.089 mg L?1 and maximum Zn 0.553 mg L?1) were found in the watercourses. However, total metal contents were extremely high in the soils of a zone of the salt marsh (maximum 1,933 mg kg?1 of Mn, 62,280 mg kg?1 of Zn, 16,845 mg kg?1 of Pb, 77 mg kg?1 of Cd, 418 mg kg?1 of Cu and 725 mg kg?1 of As), and soluble metals in the pore water reached 38.7 mg L?1 for Zn, 3.15 mg L?1 for Pb, 48.0 mg L?1 for Mn, 0.61 mg L?1 for Cd and 0.29 mg L?1 for As. Variable concentrations with depth indicate a possible re-mobilisation of the metals, which could be related to spatial and temporal variations of water table level, pH and Eh and to the presence of calcium carbonate. A tendency for the Eh to decrease in the warmest months and to increase in the coldest ones was found, especially, in plots that received water with a high content of dissolved organic carbon. Hence, the existence of nutrient effluent-enriched water may modify the physical–chemical conditions of the soil–water system and influence metal mobility.  相似文献   

12.
One of the main environmental impacts of concentrated animal feeding operations is soil degradation in the vicinity of the livestock breeding facilities due to substances such as ammonia emitted from the various stages of the process. In this research, the soil degradation effects of an intensive hog farming operation (IHFO) located at a Mediterranean limestone soil coastal area have been investigated. Soil samples of the upper mineral soil were taken in various distances and directions from the IHFO boundaries. Thirteen experimental cycles were carried out in the duration of 1.5?years starting in March 2009 until October 2010. The soil samples were analysed on total, exchangeable and water-soluble Ca, Mg and K as well as water-soluble ammonium concentrations. Significantly lower concentrations of the exchangeable and water-soluble base cations were observed on soil samples at increasing proximity downwind from the farm (south). Southern soil average concentrations of exchangeable base cations ranged between 78.6 and 128.52?mmol Ca2+?kg?1 soil, 8.42?C21.39?mmol?Mg2+?kg?1 soil and 4.25?C8.1?mmol?K+?kg?1 soil, respectively. Southern soil average concentrations of water-soluble base cations ranged between 0.57 and 2.17?mmol Ca2+?kg?1 soil, 0.16?C0.89?mmol?Mg2+?kg?1 soil and 0.48?C0.95?mmol?K+?kg?1 soil, respectively.  相似文献   

13.
The capability of Chromolaena odorata (L) to grow in the presence of different concentrations of three heavy metals in crude oil-contaminated soil and its capability to remediate the contaminated soil was investigated using pot experiments. C. odorata plants were transplanted into contaminated soil containing 50,000 mg kg?1 crude oil and between 100 and 2,000 mg kg?1 of cadmium, nickel, and zinc and watered weekly with water containing 5% NPK fertilizer for 180 days. C. odorata did not show any growth inhibition in 50,000 mg kg?1 crude oil. Plants in experiments containing 2,000 mg kg?1 Cd showed little adverse effect compared to those in Zn-treated soil. Plants in 1,000 and 2,000 mg kg?1 Ni experiments showed more adverse effects. After 180 days, reduction in heavy metals were: 100 mg kg?1 experiments, Zn (35%), Cd (33%), and Ni (23%); 500 mg kg?1, Zn (37%), Cd (41%), and Ni (25%); 1,000 mg kg?1, Zn (65%), Cd (55%), and Ni (44%); and 2,000 mg kg?1, Zn (63%), Cd (62%), and Ni (47%). The results showed that the plants accumulated more of the Zn than Cd and Ni. Accumulation of Zn and Cd was highest in the 2,000 mg kg?1 experiments and Ni in the 500 mg kg?1 experiments. Crude oil was reduced by 82% in the experiments that did not contain heavy metals and by up to 80% in the heavy metal-treated soil. The control experiments showed a reduction of up to 47% in crude oil concentration, which was attributed to microbial action and natural attenuation. These results show that C. odorata (L) has the capability of thriving and phytoaccumulating heavy metals in contaminated soils while facilitating the removal of the contaminant crude oil. It also shows that the plant??s capability to mediate the removal of crude oil in contaminated soil is not significantly affected by the concentrations of metals in the soil.  相似文献   

14.
The aim of the present study was to investigate the uptake of 16 PAHs by willow (Salix viminalis) from soil amended with contaminated sewage sludge. Uptake experiments were conducted on field plots using sludge applications of 0, 30, 75, 150, 300, and 600 Mg ha?1. The total PAH content of control soil and sludge were 49.6 μg kg?1 and 5713 μ g kg?1, respectively. The concentrations for the 16 PAHs listed as priority pollutants were measured for soil and plant tissue samples obtained at 0.5, 1.5, 2.5, and 3.5 years. Soil total PAH content decreased significantly within the first half year, followed by minimal changes over the subsequent three years of treatment. PAH analysis was carried out on a HPLC-UV. Total PAH content in control plants was 3.6–7.3 μ g kg?1 for shoots and 13–27 μ g kg?1 for leaves. Treated plant tissue content was higher with shoots and leaves containing ~5.5–17.6 and 13.5–33.8 μg kg?1, respectively. Plant total PAH content did not show a significant trend relative to controls with respect to time. However, uptake did increase in relation to an increased sludge application. Bioconcentration factors (BCF), adjusted by control values, were calculated for total PAH content. BCF values were highest for the initial sampling (6 months) and did not show a significant temporal relationship. BCF values did decrease with increasing sludge application. With respect to individual PAHs, elevated plant tissue concentrations were measured for “light” PAH (e.g. naphthalene, phenanthrene, acenaphthalene) with leaf BCF values correlated with solubility and organic partitioning coefficients.  相似文献   

15.
Maize (Zea mays L.) is the most widely grown crop in Bosnia and Herzegovina especially in Northwest part of the country. Considering that, the maize is extremely sensitive to micronutrient deficiency the main aim of this study was to asses: (1) micronutrient availability in soil, (2) micronutrient status in silage maize; and (3) the relationship between micronutrient soil availability and maize plant concentration. Soil samples for micronutrient availability (n?=?112) were collected from 28 farms in 7 municipalities. Plant available micro- and macro- nutrients in soil were extracted using Mehlich-3, except plant available Se was extracted using 0.1M KH2PO4. Result showed that on average there was no significant difference between different soil types regarding their potential in plant available nutrients. P deficiency was present both, in soil and plants in whole region. Soil extractable P was ranging from 0.003–0.13?g?kg?1 and total plant P was ranging from 0.79–4.95?g?kg?1. Zinc deficiency was observed in two locations both in soil (0.71?mg?kg?1; 0.79?mg?kg?1) and plant (11.5?mg?kg?1; 15.8?mg?kg?1). Potential Se soil deficiency was observed on some locations, while Se plant status is not high enough to meet daily requirements of farm animals. Extractable soil nutrients could be used as relatively good predictor of potential soil and plant deficiencies, but soil nutrient interactions and climate conditions are highly effecting the plant uptake potential.  相似文献   

16.
Concerns have been raised of possible human food chain transfer of lead and arsenic from crops grown on orchard soils with histories of lead arsenate use. The objective of this study was to determine arsenic and lead uptake by three cultivars of carrots grown on four orchard soils with histories of lead arsenate use. Total concentrations of arsenic and lead in these soils ranged from 93 to 291 and from 350 to 961 mg kg?1 for arsenic and lead, respectively. Arsenic in peeled carrot ranged from 0.38 to 1.64 mg kg?1, while lead ranged from 2.67 to 7.3 mg kg?1 dry weight. This study demonstrated that carrots will accumulate arsenic and lead in the root, which may become a human health risk when consumed. However, further studies are needed to determine what fraction of arsenic and lead in these carrots are bioavailable to humans when consumed.  相似文献   

17.
Soybean (Glycine max) commonly experience Mn deficiencies in the coarse-textured soils of Coastal Plain Virginia, especially under high pH conditions. The objective of this study was to investigate the ability of a novel coated fertilizer to provide Mn and B to soybeans in soils where Mn deficiency is common and B deficiency, although far less common than with Mn, is possible. A 60-d greenhouse experiment was conducted with three treatments: control, uncoated KCl, and Mn +B coated KCl applied to Bojac and Dragston sandy loams. Soil and whole plant tissue samples were collected throughout the experiment. Bojac and Dragston soils treated with the coated KCl contained 12.0 mg kg?1 and 15.8 mg kg?1 more Mehlich 1 – Mn, 21.7 mg kg?1 and 23.0 mg kg?1 more Mehlich 3 Mn, and 4.5 mg kg?1 and 4.6 mg kg?1 CaCl2 – Mn than the control and uncoated KCl, respectively. Coated KCl increased above ground tissue Mn by 42.9 mg kg?1 compared to the control and the uncoated KCl treatments in the Bojac soil, while the Dragston soil showed no significant differences in Mn tissue concentration between treatments. Above ground tissue, Mn was much lower in the Dragston soil than the Bojac, probably due to greater organic matter which chelates Mn keeping it less plant available. Boron concentrations did not differ in plant tissue or soil, regardless of the extraction method. Results indicate that the coated KCl product could consistently provide increased Mn concentration in acidic sandy soils despite varying levels of organic matter, but is not effective for B.  相似文献   

18.
Soil samples were collected from western and southern region of Turkey in 1995 from 17 sampling stations of different depths. Natural and artificial radionuclide activity levels of soil samples of the western and southern sea in Turkey were previously reported about nine years after the Chernobyl accident. The aim of the study was to collect data for following up of the earlier study and to present result for distributions of radionuclides in soil samples of the western and southern regions of Turkey. 226Ra is in the range 19–276 Bq kg?1, 7–173 Bq kg?1 for 238U, 8–244 Bq kg?1 for 232Th, 86–1162 Bq kg?1 (dry wt.) for 40K and 137Cs activity result varies between 1.8–82 Bq kg?1 (dry wt.).  相似文献   

19.
Foliar Cd and Zn concentrations in Salix, Populus and Zea mays grown on freshwater tidal marshes were assessed. Soil metal concentrations were elevated, averaging 9.7 mg Cd kg?1 dry soil, 1100 mg Zn kg?1 dry soil and 152 mg Cr kg?1 dry soil. Cd (1.1–13.7 mg kg?1) and Zn (192–1140 mg kg?1) concentrations in willows and poplars were markedly higher than in maize on impoldered tidal marshes (0.8–4.8 mg Cd kg?1 and 155–255 mg Zn kg?1). Foliar samples of maize were collected on 90 plots on alluvial and sediment‐derived soils with variable degree of soil pollution. For soil Cd concentrations exceeding 7 mg Cd kg?1 dry soil, there was a 50% probability that maize leaf concentrations exceeded public health standards for animal fodder. It was shown that analysis of foliar samples of maize taken in August can be used to predict foliar metal concentrations at harvest. These findings can therefore contribute to anticipating potential hazards arising from maize cultivation on soils with elevated metal contents.  相似文献   

20.
The concentrations of As and Zn in 100 georeferenced soils uniformly distributed throughout the area affected by the spill from the Aznalcóllar mine (April 1998) were analysed at three depths (0–10, 10–30, and 30–50 cm) and on four dates (autumn–winter 1998, 1999, 2001, and 2004). For an estimate of the geochemical background, 30 unaffected soils near the edge of the spill were also analysed at the same depths. The soils were contaminated before the spill and, the accident seriously increased the concentration of As and Zn in the first 10 cm of almost all the affected soils. After the enormous efforts of cleaning up the tailings, around 45% of the soils had a concentration higher than 100 mg As kg?1 dry soil, and some 35% had a concentration higher than 1,000 mg Zn kg?1 dry soil. Both As and Zn penetrated between 10 and 30 cm in 25% and 45% of the soils, respectively, but reached 30 cm in only 12% of the soils. The remediation actions, especially the tilling and homogenisation of the uppermost 25 cm of the all soils, caused the As and Zn concentrations to decline in the soils, but this change was not very effective from the standpoint of pollution. Thus, 6 years after the spill, the uppermost 10 cm of 30% of the soils continued to have an As concentration higher than 100 mg As kg?1, while the Zn concentration diminished considerably on the surface due to its greater mobility, accumulating between 10 and 30 cm in depth, where 20% of the soils continued to register more than 1,000 mg Zn kg?1 dry soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号