首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protective role of 18 amino acids on the acute toxicity of Cu in a fresh water cladoceran, Daphnia magna is reported. One hundred percent mortality in 48 hr of exposure occured at 0.56 mg L?1 of Cu or higher. A dose of each tested amino acid (10 mg L?1 was found to significantly neutralize the toxic effect of Cu as evidenced by a decrease in mortality and a significant increase in the median survival time (LT50) value). The 48 hr LC50 value was 0.093 mg L?1 for Cu alone, while the LC50s with Cu plus amino acids ranged from 0.438 to 2.516 mg L?1 of Cu, suggesting a 4.7 to 27 fold decrease in acute toxicity of Cu. A significant difference between LC50 of Cu alone and Cu with amino acids was observed. The role of amino acids for protection against heavy metal pollution stress in aquatic animals is discussed.  相似文献   

2.
Acute toxicity screening tests were conducted with water soluble fractions (WSFs) of a solvent refined coal (SRC-II) liquid from a pilot plant and three reference organisms: the cladoceran Daphnia magna, the fathead (FH) minnow Pimephales promelas, and larvae of the midge fly Chironomus tentans. Stock WSFs typically contained 900 to 1100 mg l?1 total carbon (TC) and 700 to 800 mg l?1 total dye complexable phenolics, with lower concentrations of aromatic and saturate hydrocarbons and N compounds. Under standard test conditions (temperature 20 °C, pH 7.3 to 8.2 and hardness 65 to 80 mg l?1 CaCO3), mean LC50 values in mg l? TC were 3.3 for daphnia, 11.l for FH minnow, and 13.7 for midge larvae. Acute toxicity was also examined under other water quality conditions (temperature 10 or 25 °C, pH 6.0 or 6.5, and hardness ? 180 to 220 mg 1?1 CaCO3). The coal liquid was less toxic to daphnids at 10 °C than at 20 or 25 °C, but response of other organisms at different temperatures varied. The pH of the liquid had little effect on toxicity values. All organisms were less susceptible in hard water. Chemical compositions of stock WSFs were similar, suggesting that temperature, pH, and hardness had little effect on solubility of major synfucl components. Dilution indexes for stock WSFs were higher than for petroleum oils, and reflect the greater solubility of chemicals from the liquified coal in freshwater.  相似文献   

3.
Acute exposure of the central stoneroller minnow to sublethal levels of phenol was found to decrease the ability of this species to tolerate hypoxic conditions as indicated by the dissolved oxygen (DO) concentration at which loss of equilibrium occurred. For fishes acclimated at 7.5 °C, loss of equilibrium occurred at progressively higher DO levels as the phenol exposure concentration was increased from 0 to 12 mg phenol L?1. Mean DO concentrations at which loss of equilibrium occurred ranged from 2.33 ± 0.10 mg O2 L?1. for the control group (0 mg phenol L?1. to 2.76 ± 0.14 mg O2 L?1. (at 12 mg phenol L?1. Loss of equilibrium also occurred at progressively higher DO levels in fish acclimated at 23 °C, but only after an initial decrease among the 6 mg phenol L?1. test fish in the loss of equilibrium DO concentration. At 23 °C, loss of equilibrium occurred at DO levels ranging from 1.3 ± 0.09 mg O2 L?1. (6 mg phenol L?1. to 2.33 ± 0.16 mg O2 L?1. (12 mg phenol L?1. These data indicate that acute exposures to sublethal levels of phenol can have significant effects on the ability of the stoneroller minnow to tolerate conditions of low DO, and the results agree with the previously reported relationship between phenol toxicity and DO levels.  相似文献   

4.
In order to recover and reuse water in the Kraft mill process, evaluation of separate streams is required to identify toxic compounds or microcontaminants. The stage E1 Kraft effluent, corresponding to the first extraction step of the bleaching Kraft mill process, provides the main toxic compounds found in the final process effluent. This paper uses the toxicity identification evaluation (TIE) procedure for the physicochemical and ecotoxicological characterization of the E1 Kraft effluent. To distinguish the most important toxic compounds, a physicochemical characterization and Phase I of the TIE procedure were performed. The acute toxic effect of the E1 Kraft effluent and treated fraction was performed on Daphnia magna. Results show that untreated E1 Kraft effluent exerts an acute toxic effect on D. magna (24 h LC50?=?27.6%), where the E1 Kraft effluent is characterized by pH 10.5, chemical organic demand (COD) 1,348.8 mg/l, and biological organic demand (BOD5) 397.5 mg/l, while total phenolic compounds and color are 853.7 mg/l and 0.204 1?×?1 cm, respectively. Additionally, Cu+2 (0.51 mg/l) and Fe+2 (0.64 mg/l) were detected. With respect to different treatments, our results indicate that activated carbon, anionic and cationic exchange treatments were able to reduce more that 45% of E1 Kraft effluent’s acute toxicity and that the ethylenediaminetetraacetic acid treatment was able to reduce the E1 Kraft effluent’s acute toxicity to around 75% and the Cu+2 concentration to 0.019 mg/l. Moreover, specific analysis of heavy metals and organic compounds by GC-MS show that the main compound responsible for the toxicity was Cu+2, whose tolerance level on D. magna of the 0.12 mg/l.  相似文献   

5.
The toxicity of organophosphate insecticides, mainly phosphamidon, monocrotophos and dichlorvos to the blood clamAnadara granosa, occurring in Kakinada Bay of the Godavari estuarine system was measured. The LC50 values of three insecticides for 24,48,72 and 96 hr exposure ranged from 4.26 to 11.53 mg L?1 for phosphamidon, 3.50 to 9.31 mg L?1 for monocrotophos and 1.79 to 6.20 mg L?1 for dichlorvos. Dichlorvos proved highly toxic even at low concentrations compared to either phosphamidon or monocrotophos. The animals showed decreasing activity with increasing insecticide concentrations and duration of exposure. However, there was no marked difference in the toxicity between phosphamidon and monocrotophos.  相似文献   

6.
The quality of water from 388 wells in 6 regions in the Kingdom of Saudi Arabia has been investigated with respect to pH, total dissolved salts (TDS), nitrite, ammonium, nitrate, and faecal coliforms. Concentration of TDS varied widely, from 180 to 9350 mg L?1, with a mean of 754 mg L?1. Of the 388 wells, 72 (18.6%) were above the WHO limit of 1000 mg L?1. The levels of nitrate varied significantly, ranging from 0.0 to 95.2 mg L?1, with an average value of 20.7 mg L?1. About 7.7% of the tested wells had nitrate content above the WHO limit of 45 mg L?1, and 16% of the wells showed NH4 + levels greater than 0.05 mg L?1. Faecal coliforms were present in 21.4% of the tested well waters. The results indicated that significant nutrient and faecal coliforms contaminated of well water was occurring.  相似文献   

7.
Greenhouse and laboratory studies were conducted to evaluate the toxic effects of Be and V on collards (Brassica oleracea, var. acephala L.). In the laboratory germination study, incremental increases in the Be concentrations of the growing medium induced a steady decline in the radicle length of seven-day-old collard seedling. Beryllium concentrations greater than or equal to 8 mg Be L?1 totally inhibited seed germination. The presence of V in the growing medium had no effect on collard germination; however, it had a profound effect on subsequent radicle elongation. Concentrations of V less than 1 mg V L?1 stimulated radicle elongation, while concentrations greater than or equal to 3 mg V L?1 caused severe toxicity. In the greenhouse study, Be toxicity was observed in collards grown in a Blanton sand (Grossarenic Paleudult) received treatments greater than or equal to 150 mg Be kg ?1 (as BeSO4). Irrespective of treatment level, 97% of the Be taken up by the plants remained in the roots while only 3% was translocated to aboveground plant parts. Vanadium tissue concentrations and toxicity to collards varied with soil type. Additions as low as 80 mg V kg?1 to the Blanton sand significantly reduced collard biomass while additions as high as 100 mg V kg?1 to an Orangebury loamy sand (Typic Paleudult) had no effect on plant biomass. The differential response was attributed to greater accumulation of V by plants grown in the Blanton soil.  相似文献   

8.
Created wetlands offer a low cost, low maintenance, and practical alternative for upgrading secondary municipal wastewater treatment systems. The removal efficiencies, effects of seasonal temperature variations, and effects of increased loading rates on contaminant removal within such a system was studied by Auburn University researchers at a created wetland site in Hurtsboro, Alabama. The 0.16 ha system consisted of a two cell wetlands planted with cattails (Typha latifolia), bulrush (Scirpus validus), arrow duck potatoes (Sagitaria latifolis), burr reeds (Spargaminum eurycarpun), water pennywort (Hydrocotyl ranunculoides), and parrotfeather (Myriophyllum brasiliense). Testing occurred from January through September of 1988 at hydraulic loading rates of 169, 289, and 345 m3 ha?1 d?1. The monthly average total suspended solids influent: effluent mg L?1 concentration ratio during the study period was 135:19 while the monthly average total BOD5 influent: effluent mg L?1 concentration ratio was 38:8. Once the system stabilized, the monthly average total BOD5 effluent concentration remained essentially constant over the range of average BOD5 loading rates employed in this study. Total Kjeldahl N removal was more effective at loading rates of 2.6 kg ha?1 d?1. The monthly average influent: effluent TKN mg L?1 concentration ratio was 15:4.  相似文献   

9.
Soil adsorption and the toxicity of four chloroanilines for earthworms were investigated in two soil types. The toxicity tests were carried out with two earthworm species, Eisenia andrei and Lumbricus rubellus. LC50 values in mg kg?1 dry soil were recalculated towards molar concentrations in pore water using data from soil adsorption experiments. An attempt has been made to develop Quantitative Structure Activity Relationships (QSAR's) using these results and data on five chlorophenols and dichloroaniline in four soils and five chlorobenzenes in two soils published previously (Van Gestel and Ma, 1988, 1990; Van Gestel et al., 1991). Significant QSAR relationships were obtained between 1) adsorption coefficients (log K om ) and the octanol/water partition coefficient (log k ow ), and 2) LC50 values (in itμmol L?1 soil pore water) and log K ow . It can be concluded that both earthworm species tested are equally sensitive to chlorobenzenes and chloroanilines, E. andrei is more sensitive than L. rubellus to chlorophenols.  相似文献   

10.
Nickel (Ni) is an ubiquitous, naturally occurring metalthat is associated with metal mining and other industrialactivities. Despite elevated Ni concentrations reportedfor many industrial receiving waters, Ni receives littleresearch attention addressing factors influencing itstoxicity to freshwater fish. This study examined theinfluence of water hardness, pH, and total suspended solids(TSS) in soft, reconstituted water on Ni toxicity to larvalfathead minnows (Pimephales promelas). Increasingwater hardness from 20 to 140 mg L-1 (as CaCO3) reduced acute Ni toxicity by 5-fold (96-h LC50s 0.45 and 2.27 mg Ni L-1, respectively). Low pH had a slight protective effect against Ni toxicity relative to neutral pH conditions. At pH 5.5, the 96-h LC50 was 0.69 mg Ni L-1, compared to 0.54 mg Ni L-1 at pH 7.0. However,Ni toxicity was significantly reduced at pH 8.5 where the 96-h LC50 was 2.21 mg Ni L-1. These results were explainedon the basis of Ni speciation. Total suspended solids also reduced Ni toxicity (expressed as 96-h LC50s) from 0.35 to 1.12 mg Ni L-1 over a TSS range of 10 to 100 mg L-1.This reduction of toxicity due to TSS is significant becausemine effluents often have a combination of elevated TSS andmetals. The ameliorative effect of TSS was not as significantas high hardness or pH probably because there is a TSS threshold, after which physical irritation to fish gills counteracts any protective effect conferred by TSS. This finding is relevant to choices made in design of mine effluenttreatment systems; i.e., there may be an optimum range ofTSS concentrations that protect aquatic biota againsteffects of metals that remain after treatment.  相似文献   

11.
This study characterizes the effects of water–soil flooding volume ratio and flooding time on copper (Cu) desorption and toxicity following multiple floodings of field-collected soils from agricultural sites acquired under the Comprehensive Everglades Restoration Plan (CERP) in south Florida. Soils from four field sites were flooded with three water–soil ratios (2, 4, and 6 [water] to 1 [soil]) and held for 14 days to characterize the effects of volume ratio and flooding duration on Cu desorption (volume ratio and flooding duration study). Desorption of Cu was also characterized by flooding soils four times from seven field sites with a volume ratio of 2 (water) to 1 (soil) (multiple flooding study). Acute toxicity tests were also conducted using overlying waters from the first flooding event to characterize the effects of Cu on the survival of fathead minnows (Pimephales promelas), cladocerans (Daphnia magna), amphipods (Hyalella azteca), midges (Chironomus tentans), duckweed (Lemna minor), and Florida apple snails (Pomacea paludosa). Acute tests were also conducted with D. magna exposed to overlying water from the second and third flooding events. Results indicate that dissolved Cu concentrations in overlying water increased with flooding duration and decreased with volume ratio. In the multiple flooding study, initial Cu concentrations in soils ranged from 5 to 223 mg/kg (dw) and were similar to Cu concentration after four flooding events, indicating retention of Cu in soils. Copper desorption was dependent on soil Cu content and soil characteristics. Total Cu concentration in overlying water (Cuw) was a function of dissolved organic carbon (DOC), alkalinity, and soil Cu concentration (Cus): log(Cuw)?=?1.2909?+?0.0279 (DOC)?+?0.0026 (Cus)???0.0038 (alkalinity). The model was validated and highly predictive. Most of the desorbed Cu in the water column complexed with organic matter in the soils and accounted for 99% of the total dissolved Cu. Although total dissolved Cu concentrations in overlying water did not significantly decrease with number of flooding events, concentrations of free Cu2+ increased with the number of flooding events, due to a decrease in DOC concentrations. The fraction of bioavailable Cu species (Cu2+, CuOH+, CuCO3) was also less than 1% of the total Cu. Overlying water from the first flooding event was only acutely toxic to the Florida apple snail from one site. However, overlying water from the third flooding of six out of seven soils was acutely toxic to D. magna. The decrease in DOC concentrations and increase in bioavailable Cu2+ species may explain the changes in acute toxicity to D. magna. Results of this study reveal potential for high Cu bioavailability (Cu2+) and toxicity to aquatic biota overtime in inundated agricultural lands acquired under the CERP.  相似文献   

12.
The 48 and 96-hr LC50 values of Pb (Pb(NO3)2) with O. niloticus were 3.34 and 2.15 mg L?1, respectively, compared to 1.91 and 1.72 mg L?1, respectively, for C. lazera. C. tentans larvae and Benacus sp. demonstrated 48-hr LC 50 of 2.68 and 1.89 mg l?1 respectively. The 96-hr LC50 value was 1.77 mg L?1 for Chironomus and 1.36 mg L?1 for Benacus. Clarias appeared to be the most susceptible of the four to Pb poisoning; Chironomus being the least susceptible. Uptake pattern of Pb by fingerlings of O. niloticus and C. lazera exposed to 0.33 and 0.27 mg L?1 Pb, respectively, and the clearance of accumulated Pb were curvilinear. There was an initial ‘fast’ phase of accumulation occurring during the first 96 hr, followed by a slower phase over the remaining 240 hr. Mean Pb concentrations in gills, intestine, liver, muscle, bone, skin and whole body of O. niloticus were 33.30, 22.2, 5.3, 2.8, 1.8 and 14.9 μg g?1, respectively, compared to 28.7, 6.5, 11.5, 2.5, 5.6, 5.9 and 6.8 µg g?1 respectively in C. lazera. The half life of Pb in Oreochromis was 20 hr compared to 43 hr in C. lazera. Bioconcentration factors in Oreochromis and Clarias were 78.3 and 33.8, respectively. The data suggest that O. niloticus accumulates and eliminates Pb faster than C. lazera.  相似文献   

13.
The early life stages of smallmouth bass (Micropterus dolomieui) were exposed to Pb in acute (96 hr) and sub-chronic (90 day) bioassays (water hardness = 152 mg L?1 as CaCO3). After 96-hr static exposures at nominal Pb concentrations up to 15.9 mg L?1, eggs and sac fry showed no increased mortality over that in controls. Swim-up fry (96-hr LC50 = 2.8 mg Pb L?1) were more sensitive to Pb exposure than were fingerlings (96-hr LC50 of 29.0 mg Pb L?1 ). The relation between dissolved Pb and mortality was non-significant for either swim-up fry or fingerlings. Fingerlings were exposed to Pb concentrations as high as 405 μg L?1 for 90 day to evaluate effects on substrate selection, locomotor activity, hematology, and weight. Dark or light substrate selection (cover-seeking) and locomotor activity, weight and hemoglobin concentration in the blood were not significantly altered by any treatment. Hematocrit and leucocrit varied significantly but not in relation to Pb levels. Sub-chronic Pb exposure did not appear to represent a threat to smallmouth bass in waters of medium hardness and above-neutral pH (7.1 to 7.9).  相似文献   

14.
Acute toxicity of Pb to the water flea; (Daphnia sp) and Copepod, (Cyclop sp) both important component of zooplankton diet of fish was determined by static assay. A positive relationship between percentage mortality and exposure concentration was found in all tests. Mean 24-h LC50, 48-h LC50 and 96-h LC50 values were 2.51?±?0.0.04 mg l?1, 1.88?±?0.06 mg l?1 and 1.65?±?0.19 mg l?1 for Daphnia spp and 3.11?±?0.03 mg l?1, 2.97?±?0.05 mg l?1 and 2.61?±?0.09 mg l?1 for Cyclop spp, respectively. For all tested species did the LC50 values decrease with time; the decrease was more marked for Daphnia spp. Observed symptoms include spiral movement followed by change of body colour to white and rapid disintegration of the skin. The Daphnia spp. appear to be more sensitive to Pb poison than Cyclop spp. The results showed that concentrations of Lead (Pb) in excess of 0.19 mg l?1 and 0.30 mg l?1 can be potentially harmful to Daphnia magna and Cyclop spp respectively.  相似文献   

15.
Our contribution to Zr environmental hazard, arrived at by means of bioassays on bacteria, microscopic algae and fish, confirms the hypothesis that Zr has low toxicity. Toxic effects revealed with the Microtox test may be attributed to pH rather than specifically to Zr (5 min. EC50 > 4.3 mg L?1). Fish assays also confirmed the low toxicity of Zr (96-hr LC50 > 20 mg L?1; 96 hr minimal stress concentration > 20 mg L?1; Mutagenicity (Fluctuation test) and genotoxicity (S.O.S. Chromotest) assays failed to show any DNA-related effects linked to this metal. Only the algal assays (ATP energy stress) demonstrated genuine toxicity at Zr concentrations between 1.3 and 2.5 mg L?1.  相似文献   

16.
Since swine wastewater is used by farmers for soil fertilization, evaluation of toxic compounds or micro-contaminants of separate streams is required. This paper uses the toxicity identification evaluation (TIE) procedure for the physicochemical and ecotoxicological characterization of swine wastewater. To distinguish the most important toxic compounds, a physicochemical characterization and phase I-TIE procedure were performed. The acute toxic effect of swine wastewater and treated fractions (phase II-TIE) were evaluated using Daphnia magna determining 48-h LC50. Results show a high level of conductivity (23.5 μS cm−1), which is explained as due to the concentration of ions, such as ammonium (NH4+–N 1.6 g L−1), sulfate (SO42− 397.3 mg L−1), and chlorine (Cl 1,230.0 mg L−1). The acute toxicity of the swine wastewater was evaluated on D. magna (48-h LC50 = 3.4%). Results of the different water treatments indicate that anionic exchange treatments could reduce 22.5% of swine wastewater’s acute toxicity by reducing chlorine (to around 51%) and conductivity (8.5%). On the other hand, cationic exchange treatment increased acute toxicity on D. magna (% RT = −624.4%), by reducing NH4+–N (around 100%) and total nitrogen (95.5%). This finding suggests that part of the toxicity comes from anionic compounds, such as chlorine.  相似文献   

17.
Microbial decomposition of extracted and leached dissolved organic carbon (DOC) and nitrogen (DON) was demonstrated from three pasture soils in laboratory incubation studies. DOC concentration in water extracts ranged between 29 and 148 mg C L?1 and DON concentration ranged between 2 and 63 mg N L?1. Between 17 and 61 % of the DOC in the water extracts were respired as CO2 by microbes by day 36. DON concentrations in the extracts declined more rapidly than DOC. Within the first 21 days of incubation, the concentration of DON was near zero without any significant change in the concentration of NO3 ? or NH4 +, indicating that microbes had utilized the organic pool of N preferentially. Decomposition of leached DOC (ranged between 7 and 66 mg C L?1) and DON (ranged between 6 and 11 mg N L?1) collected from large lysimeters (with perennial pasture; 50 cm diameter?×?80 cm deep) followed a similar pattern to that observed with soil extracts. Approximately 28 to 61 % of the DOC in leachates were respired as CO2 by day 49. The concentration of DON in the leachates declined to below 1 mg N L?1 within 7–14 days of the incubation, consistent with the observations made with extractable DON. Our results clearly show that DOC and DON components of the dissolved organic matter in pasture soils, whether extracted or leached, are highly decomposable and bioavailable and will influence local ecosystem functions and nutrient balances in grazed pasture systems and receiving water bodies.  相似文献   

18.
Daphnia magna, initially exposed when less than 48 h old, were maintained at reduced dissolved oxygen (DO) concentrations for 26 days. Exposure was accomplished in a continuous flow recirculating water system. Number of days to first brood, number of young in the first brood, total number of young produced, and dry weight were parameters measured. Statistical analyses show the Daphnia exposed to the lowest DO concentration tested (1.8 mg l?1) had significantly reduced responses for all parameters measured. In addition, the organisms exposed to 2.7 mg l?1 O2 gained less weight than did the controls.  相似文献   

19.
Nitrate-N (NO3 ?-N) is a ubiquitous pollutant in both surface and groundwater in many agro-ecosystems. This has elicited a concerted effort to identify management strategies that mitigate NO3 ?–N pollution, without compromising crop yield. This study was conducted on a field site located at the Bio-Environmental Engineering Centre (BEEC) in Truro, NS, Canada during 1999 and 2000. The site has been used since 1997 to investigate the relative effect of inorganic versus organic fertilizer (liquid hog manure; LHM) applied at rates (70 kg N ha?1) on NO3 ?-N leaching from a carrot rotation system. NO3 ?-N concentrations were monitored in both the soil profile and in tile drainage effluents from eight treatment plots. The LHM treatment elicited significantly (P < 0.01) higher soil NO3 ?-N concentrations than inorganic fertilizer (IF) in June and October during 1999, but not 2000. The sampling date and soil depth were significant in most cases. Annual flow weighted averages (FWA) of NO3 ?-N in drainage water were generally greater for plots receiving LHM (15.4 and 10.5 mg L?1 for 1999 and 2000, respectively), when compared to IF (8.9 and 6.0 mg L?1 for 1999 and 2000, respectively), but the difference was significant (P < 0.05) only in 1999. Maximum NO3 ?-N concentrations in drainage water were similar for both treatments, while the LHM treatment had a significantly higher percentage of samples that were > 10 mg L?1. The total NO3 ?-N load was greater for the LHM treatment when compared to the IF treatment in 1999. Barley and carrot yields were unaffected by treatment applications.  相似文献   

20.
Numerous studies have attempted to relate the ability of microorganisms to tolerate heavy metals added to artificial media to metal concentrations found in the environment from which the microbes were originally isolated. Organic and inorganic components of artificial media, however, may bind and chelate metals, thus reducing the biological activity/potency of these metals. We varied the concentration of various components of HM (HEPES — MES) medium and determined their effects on Cd toxicity to Rhizobium leguminosarum biovar trifolii. Varying the concentrations of Ca, Mg and agar in the medium had no effect on Cd toxicity. Increasing additions of HEPES, MES, phosphate, and yeast extract significantly reduced the observed severity of Cd toxicity. When 3 mg L?1 phosphate was added to the medium, the Cd maximum resistance level (MRL) was 2 gmg mL?1. When, however, the addition of phosphate was increased to 660 mg mL?1, the MRL to Cd was 18 μg mL?1. These results clearly demonstrate that Cd toxicity to microorganisms is significantly influenced by the composition of the media used in toxicity testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号