首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical and Statistical Analysis of Precipitation in Singapore   总被引:1,自引:0,他引:1  
The results of chemical analyses of precipitation samples collected in Singapore between August 1997 and July 1998 are presented. Major inorganic and organic ions were determined in 169 rain samples collected using an automated wet-only sampler. The daily sample pH values ranged from 3.49 to 6.54 with a volume-weighted mean of 4.50, and about 88% of the samples had pH values less than 5.0 Nss-SO4 2? accounted for about 53 % of the sum of anions in rain, whereas chloride, nitrate, formate, and acetate accounted for the remainder. Rain chemistry data were analyzed using principal component analysis to find possible sources of the measured chemical species. Three components that accounted for 83.5% of the total variance were extracted: sea-spray (Na+, Cl? and and Mg2+) and soil particles (Ca2+ and K+), acid factor (nss-SO4 2?, NO3 ?, NH4 +, and H+), and biomass burning (HCOO? and CH3COOO?).  相似文献   

2.
This study was carried out to evaluate acid depositions and to understand their effect. Wet precipitation has been collected at twenty-four sites in Korea for one year of 1999. The ion concentrations such as H+, Na+, K+, Mg2+, NH4 +, Ca2+, Cl?, NO3 ? and SO4 2? were chemically analyzed and determined. Precipitation had wide range of pH(3.5~8.5), and volume-weighted average was 5.2. The contribution amounts of Cl?, SO4 2? and NO3 ? in anion were shown to be 54%, 32%, and 14%, respectively and those of Na+ and NH4 + in cation were 32% and 25%. The ratios of Cl? and Mg2+ to Na+ in precipitation were similar to those of seawater, which imply that great amount of Cl? and Mg2+ in precipitation could be originated from seawater. The concentration of H+ is little related with SO4 2?, NO3 ? and Cl? ions, whereas nss?SO4 2? and NO3 ? are highly correlated with NH4 +, which could suggest that great amount of SO4 2? and NO3 ? exist in the form of ammonium associated salt. The annual wet deposition amounts (g m?2year?1) of SO4 2?, NO3 ?, Cl?, H+, NH4 +, Na+, K+, Ca2+ and Mg2+ were estimated as 0.88~4.89, 0.49~4.37, 0.30~9.80, 0.001~0.031, 0.06~2.15, 0.27~4.27, 0.10~3.81, 0.23~1.59 and 0.03~0.63.  相似文献   

3.
Rain water at two forested sites in Guangzhou (south China) show high concentrations of SO4 2?, NO3 ? and Ca2+ and display a remarkable seasonal variation, with acid rain being more important during the spring and summer than during the autumn and winter. The amount of acid rain represents about 95% of total precipitation. The sources of pollutants from which acid rain developed includes both locally derived and long-middle distance transferred atmosphere pollutants. The seasonal variation in precipitation chemistry was largely related to the increasing neutralizing capacity of base cations in rainwater in winter. Soil acidification is highlighted by high H+ and Al3+ concentrations in soil solutions. The variation in elemental concentration in soil solution was related to nitrification (H+, NH4 + and NO3 ?) and cation exchange reaction (H+, Al3+) in soil. The negative effect of soil acidification is partly dampened by substantial deposition of base cations (Ca2+, Mg2+ and K+) in this area.  相似文献   

4.
Rain event samples have been collected in Haifa, Israel, for nine hydrological years 1981 to 1990. Precipitation amount, pH, SO4 =, NO3 ?, Cl?, NH4 +, Na+, K+, Ca++, Mg++ and alkalinity of rainwater samples were recorded. The sampling and analysis program was based on WMO recommendations for background networks. The sampling was performed manually, and the analysis was based on wet chemistry for ions and atomic absorptions for metals. Data of 187 rain samples showed that the average pH was 5.3±1.1∶ 26% of the rain events were below pH of 5.6 and 23% above pH of 7.0. Some simple chemical mass-balance considerations indicate that natural sources, sea salt and soil carbonates are the main contributors to rain chemistry. However, the presence of low pH events observed over the years suggests that the impact of anthropogenic emissions may overwhelm the buffering capacity of the alkaline aerosol.  相似文献   

5.
Elution of Cl?, SO4 2?, NO3 ?, and H+ often occurred in that order at a site in the central Sierra Nevada, California, that receives an annual average of 1000 cm of snowfall which is low in acidic components. During eight winter periods of above-base level snowpack outflow, and one spring melt period, on the average 25% of the ions were discharged at the following percentages of outflow volumes: Cl? at 11%, NO3 ? at 13%, SO4 2? at 18%, and H+ at 20%. Seven of eight winter outflows were associated with low ionic strength rainfall onto the snowpack. Mean solute concentrations during the first 25% and first 50% of the total outflow were significantly greater than during the last 75% and last 50% of the total outflow for Cl?, NO3 ?, and SO4 2?, but not for H+. Maximum solute concentrations were up to 2.9 times the overall event volume-weighted mean concentrations for Cl?, 3.7 times for NO3 ?, 3.0 times for SO4 2?, and 2.9 times for H+.  相似文献   

6.
Maps of both volume-weighted mean pH and mean H+ deposition in precipitation were developed for the continental United States and Canada using data from 12 precipitation chemistry monitoring networks. The maps were constructed using 1981–1982 laboratory pH data from approximately 130 monitoring sites. The area of greatest acidity (lowest pH/highest H+ deposition) is located in the northern Ohio Valley and southeastern Ontario, an area corresponding to high SOx and NOx emissions.  相似文献   

7.
The effects of artificial precipitation with different pH levels on soil chemical properties and element flux were studied in a lysimeter experiment. Cambic Arenosol (Typic Udipsamment) in monolith lysimeters was treated for 6 1/2 yr with 125 mm yr?1 artificial rain in addition to natural precipitation. Artificial acid rain was produced from groundwater with H2SO4 added. pH levels of 6.1, 4 and 3 were used. ‘Rain’ acidity was buffered, mainly due to cation exchange with Ca2+ and Mg2+, which were increasingly leached due to the acid input. The H+ retention was not accompanied by a similar increase in the output of Al ions, but a slight increase in the leaching of Al ions was observed in the most acidic treatment. The net flux of SO4 2? from the lysimeters increased with increasing input of H2SO4, but in the most acidified lysimeters significant sorption of SO4 2? was observed. The sorption was, however, most likely a concentration effect. The ‘long-term’ acidification effects on soil were mainly seen in the upper O and Ah-horizons, where an impoverishment of exchangeable Ca2+ and Mg2+ was observed. An increased proportion of Al ions on exchange sites in the organic layer was observed in the pH 3-treated soil. By means of budget calculations the annual release of base cations due to weathering was estimated to be between 33 and 77 mmolc m?2.  相似文献   

8.
The recovery potential of stream acidification from years of acidic deposition is dependent on biogeochemical processes and varies among different acid-sensitive regions. Studies that investigate long-term trends and seasonal variability of stream chemistry in the context of atmospheric deposition and watershed setting provide crucial assessments on governing biogeochemical processes. In this study, water chemistries were investigated in Noland Divide watershed (NDW), a high-elevation watershed in the Great Smoky Mountains National Park (GRSM) of the southern Appalachian region. Monitoring data from 1991 to 2007 for deposition and stream water chemistries were statistically analyzed for long-term trends and seasonal patterns by using Seasonal Kendall Tau tests. Precipitation declined over this study period, where throughfall (TF) declined significantly by 5.76?cm?year?1. Precipitation patterns play a key role in the fate and transport of acid pollutants. On a monthly volume-weighted basis, pH of TF and wet deposition, and stream water did not significantly change over time remaining around 4.3, 4.7, and 5.8, respectively. Per NDW area, TF SO4 2- flux declined 356.16?eq?year?1 and SO4 2- concentrations did not change significantly over time. Stream SO4 2- remained about 30???eq L?1 exhibiting no long-term trends or seasonal patterns. SO4 2- retention was generally greater during drier months. TF monthly volume-weighted NH4 + and NO3 - concentrations significantly increased by 0.80???eq L?1?year?1 and 1.24???eq L?1?year?1, respectively. TF NH4 + fluxes increased by 95.76?eq?year?1. Most of NH4 + was retained in the watershed, and NO3 - retention was much lower than NH4 +. Stream monthly volume-weighted NO3 - concentrations and fluxes significantly declined by 0.56???eq L?1?year?1 and 139.56?eq?year?1, respectively. Overall, in NDW, inorganic nitrogen was exported before 1999 and retained since then, presumably from forest regrowth after Frazer fir die-off in the 1970s from balsam wooly adelgid infestation. Stream export of NO3 - was greater during winter than summer months. During the period from 1999 to 2007, stream base cations did not exhibit significant changes, apparently regulated by soil supply. Statistical models predicting stream pH, ANC, SO4 2-, and NO3 - concentrations were largely correlated with stream discharge and number of dry days between precipitation events and SO4 2- deposition. Dependent on precipitation, governing biogeochemical processes in NDW appear to be SO4 2- adsorption, nitrification, and NO3 - forest uptake. This study provided essential information to aid the GRSM management for developing predictive models of the future water quality and potential impacts from climate change.  相似文献   

9.
Project Rain (Reversing Acidification In Norway) is a 5-yr international research project aimed at investigating the effect on water and soil chemistry of changing acid deposition to whole catchments. The project comprises 2 parallel large-scale experimental manipulations -- artificial acidification at Sogndal and exclusion of acid rain at Risdalsheia. Treatment at Sogndal commenced April 1984 with the acidification of the snowpack by addition of H2SO4 (SOG2) and a 1:1 mixture of H2SO4 and HNO3 (SOG4). Preliminary results indicate rapid and significant response in runoff chemistry to the acid treatment; pH decreased (to as low as 4.1 during snowmelt in 1984); SO4, NO3, and labile Al increased. Response during snowmelt 1985 was modest relative to 1984. At Risdalsheia treatment began in June 1984 with the mounting of the transparent panels on the roofs at KIM catchment (treatment by deacidified rain) and EGIL catchment (control with ambient acid rain). Preliminary data for the first year indicate that most runoff samples from KIM contain much lower NO3 concentrations, about 20 to 30% lower SO4 levels and pH 0.1 to 0.3 units higher than runoff from EGIL catchment. The treatments continue in 1985–87. Project RAIN provides experimental evidence bearing on target loading, reversibility of acidification, and the processes linking acid deposition, soil acidification and freshwater acidification.  相似文献   

10.
The effects of artificial rain of various acidities were studied in a lysimeter experiment. Lysimeters, 29 cm in diameter, and 40 cm deep contained a Gleyed Dystric Brunisol. Natural structure, stratification and original vegetation were maintained. Artificial rain was produced from groundwater with “high” concentrations of neutral salts and from rainwater with lower concentrations. pH levels of 6, 4, 3 and 2 were established by adding H2SO4. Effects of dilution with given amounts of acid were examined by comparing the effects of 50 mm “rain” month?1 of pH 3 and pH 2 with 500 mm “rain” month?1 of pH 4 and pH 3, respectively. The study continued for 5 yr. Totals of 1250 or 12500 mm “rain” were applied in addition to a natural input of 2773 mm. Increased input of SO4 2? increased the output of SO4 2? but, as concentration increased, sorption of SO4 2? in the soil also increased. Concentrations of base cations in the leachate increased parallel to the output of SO4 2?. However, significant effects on leaching of base cations and on the content of exchangeable cations in the soil, was only found in the pH 2 treatment with 1250 mm of “rain” and in the pH 4 and pH 3 treatment with 12500 mm of “rain”.  相似文献   

11.
Fog/cloud and rain water were collected at the mountainside of Hachimantai range in northern Japan and rain water was also collected at Akita City in order to investigate the air pollutant scavenging mechanism. The concentrations of various ions in these samples were analyzed, and the fog drop size and the wind direction were measured at each fog event. The fog at Hachimantai range had a very high total ion concentration, and was considerably acidified by non sea salt (nss-) SO4 2? and NO3 ?, compared with the rain at Akita and all sites in Hachimantai range. Using the oblique rotational factor analysis, three factors were extracted as the air pollutants; A: (NH4)2SO4+H2SO4, B: sea salts+HNO3+H2SO4, C: NH4NO3+OH?. These salts are well-known as the cloud condensation nuclei (CCN). Combining the factor analysis with the 72h back trajectory at 850hPa level, the contribution of Factor A was closely connected to the long-range transportation of anthropogenic or natural aerosol in air masses of continental origin.  相似文献   

12.
Precipitation chemistry was discussed from the viewpoint of potential sources for four rural sites where wet-only daily-basis measurement data sets were available during the period from April 1996 to March 1997 in Japan. Annual volume-weighted mean concentrations of nss-SO4 2? and NO3 ? ranged from 18.0 to 34.6 µeq L?1, and from 9.3 to 23.1 µeq L?1, respectively. The degree of neutralization of input acidity in terms of the concentration ratio, [H+] / ([nss-SO4 2?] + [NO3 ?]), ranged from 0.46 to 0.63. This suggests that about half of the input acidity due to H2SO4 and HNO3 was neutralized by NH4 + and nss-Ca2+ to produce the pH values of 4.46 to 4.82 for these sites. Maximum likelihood factor analysis was then performed on the logarithmically transformed daily wet deposition of major ions. Two factors successfully explained a total of about 80% of the variance in the data for each site. Interpreting varimax rotated factor loadings, we could identify two source types: (1) acid source with large loadings on ln(H+), ln(nss-SO4 2?), ln(NO3 ?) and ln(NH4 +), (2) sea-salt source with large loadings on ln(Na+), ln(Cl?), ln(Mg2+) and ln(K+). The rural wet deposition over Japan appears to have a similar structure in terms of the kinds of sources and their relative location.  相似文献   

13.
Nutrient content and pH of rain samples collected at nine sites during 1988-1996 were studied to determine the amounts of N, P and S added by precipitation over Maracaibo Lake basin. The basin is a wide depression occupied by Lake Maracaibo and extensive alluvial plains and delimited by a mountainous zone of variable physiolgraphic characteristics with different cattle ranching and industrial activities. Rain pHs averaged ≈ 4 to 6, individual samples occasionally reached as low as pH 3 in the south basin. NH4 + levels were significantly higher (up to 2.6 mg/l NH4-N) than NO3 ? plus NO2 ?. Phosphorus levels were low, ranging from undetectable to 1.5 mg/l. The amounts of inorganic N/ha/yr added ranged from ≈ 5.4 Kg in the north to ≈ 8 Kg in the south basin; around the lakeshore, it was estimated that ≈ 9.8–16.8 Kg TN/ha (≈ 55 % as organic-N) are annually deposited. The annual amounts of SO4-S/ha added range from ≈ 10 to 13 Kg. The contribution of precipitation to P in the ecosystem is very small; ≈ 0.02 – 0.8 Kg of PO4-P/ha/yr was added in basin. The results of this study show that precipitation represents a significant factor for the total nitrogen and sulfur loading to Maracaibo Lake Basin.  相似文献   

14.
A mixed provenance Sitka spruce plantation, planted in 1986 on a drained deep peat, has been exposed to 6 different simulated mist treatments in 4 replicated blocks since 1996. Treatments provided N and/or S at a concentration of 1.6 mol m?3, supplying ca. 50 kg S and/or N ha?1 yr?1 as N (NH4NO3), S (Na2SO4), NS Acid (NH4NO3 + H2SO4 at pH 2.5), 2NS Acid (double dose by application at twice frequency), a control treatment supplied with additional rainwater only and a 'no treatment' set of plots. Throughfall, preserved with thymol in the field, was collected using gutters with a surface area of 1 m2 in all the replicate plots, and was analysed for all major ions. Prior to treatment in 1999, S deposition in throughfall exceeded that in rain because of dry deposition of SO2 and SO4 2? to the canopy; NH4 + and NO3 ? ions were both retained in the canopy. During treatment, only 20–40% of the applied N in the high-N treatments was retained in the canopy. Acidity in the applied mist was partly neutralised by the canopy, but not primarily through exchange of base cations, leading to the conclusion that weak organic acids, in solution or in situ in the canopy, contributed to the buffering of the H+ ion deposition in the acid treatments.  相似文献   

15.
This study focuses on fluxes of elements from, and changes in the soil properties of shallow organic material rich soil as a result of changes in precipitation acidity. Intact soil columns including natural vegetation from two areas (one exposed to acidic precipitation and one unpolluted) were used in a lysimeter experiment. The lysimeters were watered with simulated normal rain (pH 5.3) or simulated acidic rain (pH 4.3) for four years. Sulphuric acid and ammonium nitrate were used to regulate the quality of the simulated rain. Significantly more SO4 2? was leached from lysimeters receiving acid rain. Rain acidity had no significant effect on NO3 ? leaching. Significantly more Mg2+ was leached from lysimeters receiving acid rain, but this only applied for the soils from the unpolluted area. Four years of treatment did not cause any significant effect on the soil acidity and the amounts of base cations in the soil. The more acidic rain did, however, cause a significant lower cation exchange capacity. For the soils from the polluted area the acid precipitation did cause a lowering of the exchangeable K+ in the upper 5 cm of the soil. Different quality of the soil organic material indicated by different vegetation types appeared to cause significant differences in the amount of components leached from the soil, but did not cause any difference in response to the different rain qualities.  相似文献   

16.
In recent years, acid rain has been a social problem all over the world. In Japan, it is also a big problem especially in the metropolitan area. Then, we have measured major ions such as H+, Na+, NH4 +, K+, Mg2+, Ca2+, Cl?, NO3 ?, and SO4 2? in precipitation and dry deposition samples which had been collected at 9 sampling sites at Hiyoshi, Mita, Kashiwa, Shiki, Fujisawa, Yokosuka, Mitaka, Hachiouji, and Ashikaga in Tokyo Metropolitan area for 10 years since 1990. The average pH of precipitation in their sites was 4.56 (n=1906). As the results of multiple regression analysis showed that pH of precipitation was determined by 5 ions such as NH4 +, nssCa2+(non sea salt calcium), nssCl?(non sea salt chloride), NO3 ?, nssSO4 2?(non sea salt sulfate) in the most of the sampling sites. Therefore, it is very important to investigate the behavior of these ions to understand the acidification of rain in Tokyo Metropolitan area. In this study, a long term trend of each ion concentration in precipitation and wet deposition was also investigated the base on the data we had observed at 7 sites for 10 years by the statistical method.  相似文献   

17.
The changes in ionic contents were studied in acidic precipitation samples collected for precipitation events in Taipei, which is near the sea. The storage cases under investigation include filtration, refrigeration, and light. Thus the experimental design leads all precipitation samples collected in the same rain event stored under different conditions. They were then analyzed six times successively within two months to provide the information containing potential ionic composition change. The measured constituents are H+, K+, Na+, Ca2+, Mg2+, NH4 +, NO3 ?, SO4 2?, and Cl?. The comparison of measured ionic concentrations corresponding to different storage methods yield no significant difference. The increases of NO3 ? and decreases of NH4 + with time were observed to be of similar magnitude, while the variation of pH values is significant. The presented study indicated the important role played by sample storage in determining the ionic composition of precipitation samples.  相似文献   

18.
Humus chemistry and respiration rate, ATP, ergosterol, and muramic acid concentration as measures of chemical properties, microbial activity, biomass, and indicators of fungal and bacterial biomass were studied in a long-term acid rain experiment in the far north of Finnish Lapland. The treatments used in this study were dry control, irrigated control (spring water, pH 6), and two levels of simulated acid rain (pH 4 and pH 3). Originally (1985–1988), simulated acid rain was prepared by adding both H2SO4 and HNO3 (1.9:1 by weight). In 1989 the treatments were modified as follows. In subarea 1 the treatments continued unchanged (H2SO4+HNO3 in rain to pH 4 and pH 3), but in subarea 2 only H2SO4 was applied. The plots were sampled in 1992. The acid application affected humus chemistry by lowering the pH, cation exchange capacity, and base saturation (due to a decrease in Ca and Mg) in the treatment with H2SO4+HNO3 to pH 4 (total proton load over 8 years 2.92 kmol ha-1), whereas the microbial variables were not affected at this proton load, and only the respiration rate decreased by 20% in the strongest simulated acid rain treatment (total proton load 14.9 kmol ha-1). The different ratios of H2SO4+HNO3 in subareas 1 and 2 did not affect the results.  相似文献   

19.
Data of the Multistate Atmospheric Power Production Pollution Study (MAP3S) and the National Atmospheric Deposition Program (NADP) were utilized to develop wet deposition spatial distribution patterns for the eastern United States for 1979. The ions of SO4 ?, NO3 ?, H+, and NH4 + were selected for study since they are the most prominent ones found in precipitation. Total wet deposition for 1979 was normalized to one centimeter of precipitation and objectively analyzed using the Synagraphic Mapping System (SYMAP) technique. Gradients of SO4 ? and NO3 ? were found to be essentially uniform, both to the east and west of the major pollution regions. An increased gradient in normalized deposition for SO4 ?, NO3 ?, and H+ was found in the Appalachian Mountain region. Estimates of total wet deposition were obtained by using the normalized deposition values in conjunction with precipitation as reported by the National Climatic Center. SYMAP analyses of the estimated total wet deposition were localized in nature due to precipitation variations between sites.  相似文献   

20.
Using thermodynamic data, the effect of SO2 and H+ on the deterioration of marble has been estimated. Theoretically, the partial pressure threshold of SO2 required for the marble deterioration in the SO2-marble system is in the order of 10?54 atm. The pH of rainwater for the deterioration of marble in the H+-marble system was calculated at about 7.8 for the dissociation of reaction products. The thermodynamic calculations showed that SO2-marble and H+-marble reactions are possible in the atmosphere, but that marble deteriorates faster by reacting with SO2 than with H+. Marble can deteriorate under normal atmospheric conditions and by natural rain. Acid deposition enhances the degree of the marble deterioration in the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号