首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dominance of a resistance trait can be defined as a measure of the relative position of the phenotype of the heterozygote RS compared with the phenotype of the two corresponding homozygotes, SS and RR. This parameter has been shown to have primary importance in the dynamics of pesticide resistance evolution. Literature on insecticide resistance suggests that dominance levels in the presence of insecticide vary greatly from completely recessive to completely dominant. With insecticides, both the chemical applied and the dosages used have been demonstrated to affect the dominance. By contrast, almost all herbicide resistances have been found to be inherited as partially to totally dominant traits. This discrepancy between weeds and insects may partly result from the methodologies applied to measure the dominance, ie a single dose for herbicide versus several doses for insecticide. Using two well-known resistances (csr1-1 and csr1-2) to acetolactate synthase (ALS) inhibitors in Arabidopsis thaliana (L) Heynh (mouse-ear cress), we used several herbicide doses to determine the dominance level to six ALS-inhibiting herbicides. The dominance level in the presence of herbicide varied from completely dominant to completely recessive, depending on the resistance allele and the herbicide tested. The dominance of the csr1-1 and csr1-2 resistance alleles ranged from 0 (completely recessive) to 1.1 (dominant) and from 0 to 0.3 (partially dominant), respectively. The recessivity of some resistance alleles in the presence of herbicide could lead to the development of improved resistance management in order to delay or avoid herbicide resistance evolution, especially in the control of outcrossing weed species.  相似文献   

2.
3.
BACKGROUND: Imidazolinone-tolerant oilseed rape (Brassica napus L.) varieties are currently grown in Canada, North America, Chile and Australia with high acreage. A Europe-wide introduction has started and will be pushed further for both spring and winter varieties. The primary aim of this study was to evaluate the impact of imidazolinone tolerance for future volunteer oilseed rape control in subsequent crops, particularly winter wheat. RESULTS: A greenhouse bioassay showed cross-tolerance of imidazolinone-tolerant oilseed rape towards sulfonylureas, triazolopyrimidines and sulfonylaminocarbonyltriazolinones (resistance factors between 5 and 775), with a homozygous variety expressing a much higher tolerance level compared with a heterozygous variety. Calculated ED90 values suitable for controlling tolerant plants were always much higher than the recommended herbicide dose. Generally, results were confirmed under field conditions, but with higher efficacies than expected in some cases (e.g. florasulam). Herbicides with an alternative mode of action were found to be effective in controlling imidazolinone-tolerant volunteers in subsequent winter wheat crops. CONCLUSION: Herbicide strategies have to be adjusted for volunteer control in subsequent crops if imidazolinone-tolerant oilseed rape varieties are to be grown. However, agronomic tools (harvest date, harvest technique, tillage) should be used conscientiously in the first place to keep volunteer oilseed rape densities at the lowest possible level. Copyright © 2012 Society of Chemical Industry  相似文献   

4.
An acetolactate synthase (ALS)‐resistant Amaranthus retroflexus biotype was collected in a soyabean crop after repeated exposure to imazethapyr and thifensulfuron‐methyl in north‐eastern Italy. Studies were conducted to characterise the resistance status and determine alternative post‐emergence herbicides for controlling this biotype. Whole‐plant bioassay revealed that the GR50 values were 1898‐ and 293‐fold higher than those observed for the biotype susceptible to imazethapyr and imazamox respectively. The biotype also displayed high cross‐resistance to sulfonylureas. Molecular analysis demonstrated that a single nucleotide substitution had occurred in domain B (TGG to TTG at position 574), conferring a change from the amino acid tryptophan to leucine in the resistant biotype. However, herbicides with other modes of action (PSII, 4‐HPPD and PPO inhibitors) provided excellent control. The GR50 ratios for metribuzin, terbuthylazine and mesotrione were close to 1 and treatments with fomesafen gave 100% control of both susceptible and resistant biotypes at the recommended field dose. This study documents the first case of an imidazolinone and ALS‐resistant biotype in European crops and identifies the post‐emergence herbicide options available for managing this troublesome weed in soyabean crops. Alternative management strategies are also discussed.  相似文献   

5.
BACKGROUND: The acetolactate synthase (ALS)-inhibiting herbicide sulfosulfuron is registered in Australia for the selective control of Hordeum leporinum Link. in wheat crops. This herbicide failed to control H. leporinum on two farms in Western Australia on its first use. This study aimed to determine the level of resistance of three H. leporinum biotypes, identify the biochemical and molecular basis and develop molecular markers for diagnostic analysis of the resistance. RESULTS: Dose-response studies revealed very high level (>340-fold) resistance to the sulfonylurea herbicides sulfosulfuron and sulfometuron. In vitro ALS assays revealed that resistance was due to reduced sensitivity of the ALS enzyme to herbicide inhibition. This altered ALS sensitivity in the resistant biotypes was found to be due to a mutation in the ALS gene resulting in amino acid proline to serine substitution at position 197. In addition, two- to threefold higher ALS activities were consistently found in the resistant biotypes, compared with the known susceptible biotype. Two cleaved amplified polymorphic sequence (CAPS) markers were developed for diagnostic testing of the resistant populations. CONCLUSION: This study established the first documented case of evolved ALS inhibitor resistance in H. leporinum and revealed that the molecular basis of resistance is due to a Pro to Ser mutation in the ALS gene.  相似文献   

6.
7.
8.
Sagittaria trifolia L. is one of the most serious weeds in paddy fields in Japan. Since the late 1990s, severe infestations of S. trifolia have occurred following applications of sulfonylurea herbicides in Akita prefecture. In this study, two accessions of S. trifolia, R1 and R2, were collected from paddy fields with severe infestations and their resistance profiles were determined in comparison to a susceptible accession, S1. R1 and R2 were highly resistant to bensulfuron‐methyl. R1 was also highly resistant to pyrazosulfuron‐ethyl, but R2 was susceptible. Relative to S1, R1 had an amino acid substitution at the Pro197 residue of acetolactate synthase (ALS), a well‐known mutation that confers sulfonylurea resistance, suggesting that R1 has a target‐site‐based resistance (TSR) mechanism. The sequence of the ALS gene in R2 was identical to that in S1. A Southern blot analysis indicated that there was only one copy of the ALS gene in S1 and R2. These results suggest that R2 has a non‐target‐site‐based resistance (NTSR) mechanism. R2 was moderately resistant to imazosulfuron but susceptible to thifensulfuron‐methyl. R2 and S1 were susceptible to pretilachlor, benfuresate, MCPA‐ethyl and bentazon. The results reveal the occurrence of two sulfonylurea‐resistant biotypes of S. trifolia that show different mechanisms of cross‐resistance to sulfonylureas related to TSR in R1 and NTSR in R2.  相似文献   

9.
Resistance to herbicides inhibiting acetolactate synthase (ALS) has been increasing at a faster rate than in any other herbicide group. The great majority of these cases are due to various single-nucleotide polymorphisms in the ALS gene endowing target site resistance. Many diagnostic techniques have been devised in order to confirm resistance and help producers to adopt the best management strategies. Recent advances in DNA technologies coupled with the knowledge of sequence information have allowed the development of accurate and rapid diagnostic tests. While whole plant-based diagnostic techniques such as seedling bioassays or enzyme-based in vitro bioassays provide accurate results, they tend to be labour- and/or space-intensive and will only respond to the particular herbicides tested, making resolution of cross-resistance patterns more difficult. Successful DNA-based diagnosis of ALS inhibitor resistance has been achieved with three main techniques, (1) restriction fragment length polymorphism, (2) polymerase chain reaction amplification of specific alleles and (3) denaturing high-performance liquid chromatography. All DNA-based techniques are relatively rapid and provide clear identification of the mutations causing resistance. Resistance based on non-target mechanisms is not identified by these DNA-based methods; however, given the prevalence of target site-based ALS inhibitor resistance, this is a minor inconvenience.  相似文献   

10.
11.
为明确河南省部分地区的多花黑麦草Lolium multiflorum种群对乙酰辅酶A羧化酶(acetylCoA carboxylase,ACCase)和乙酰乳酸合成酶(acetolactate synthase,ALS)抑制剂类除草剂的抗性水平和抗性机理,采用整株生物测定法测定采自新乡市和驻马店市的多花黑麦草种群对ACCase抑制剂类除草剂精噁唑禾草灵、炔草酯、唑啉草酯和ALS抑制剂类除草剂甲基二磺隆、氟唑磺隆、啶磺草胺的抗性水平,并对多花黑麦草ACCase和ALS靶标酶编码基因进行克隆及氨基酸序列比对,分析其靶标抗性机理。结果显示,与多花黑麦草敏感种群HNXX01相比,HNZMD04和HNXX05种群对6种除草剂均产生了抗性,HNZMD04种群对精噁唑禾草灵和啶磺草胺的相对抗性倍数分别为44.65和40.31,对炔草酯和氟唑磺隆的相对抗性倍数分别为11.91和11.93;HNXX05种群对精噁唑禾草灵和氟唑磺隆的相对抗性倍数分别为27.70和25.67。HNZMD04和HNXX05抗性种群的ACCase基因均发生了D2078G突变,2个种群的突变率分别为55%和70%;HNZMD04...  相似文献   

12.
13.
14.
Field and greenhouse experiments were conducted in 2004 and 2005 to study weed control and the response of winter wheat to tank mixtures of 2,4-D plus MCPA with clodinafop propargyl. The field experiments were conducted at Yazd and Oroumieh, Iran, with factorial combinations of 2,4-D plus MCPA at 0, 975, and 1300 g ai ha−1 and with clodinafop propargyl at 0, 64, 80, 96, and 112 g ai ha−1 in four replications. The greenhouse experiments further evaluated the effect of these tank mixtures on weed control, where each herbicide mixture was considered as one treatment and the experiment was established in a randomized complete block design with four replications. In the field experiments, the herbicides were applied at wheat tillering, while in the greenhouse experiments they were applied at the beginning of the tillering stage and at the four-leaf stage of the grass and broadleaf weeds, respectively. The results indicated antagonistic effects between 2,4-D plus MCPA and clodinafop propargyl. The best tank mixture with regard to weed control efficacy was 2,4-D plus MCPA at 975 g ai ha−1 with clodinafop propargyl at 96 g ai ha−1. The wheat grain yield was also increased by the tank mixture of clodinafop propargyl with 2,4-D plus MCPA. Generally, to inhibit clodinafop propargyl efficacy reduction due to tank-mixing with 2,4-D plus MCPA, it is recommended that the application dose of 64 g ai ha−1 should be increased to 96 g ai ha−1.  相似文献   

15.
16.

BACKGROUND

Amaranthus palmeri is an aggressive annual weed native to the United States, which has become invasive in some European countries. Populations resistant to acetolactate synthase (ALS) inhibitors have been recorded in Spain and Italy, but the evolutionary origin of the resistance traits remains unknown. Bioassays were conducted to identify cross-resistance to ALS inhibitors and a haplotype-based genetic approach was used to elucidate the origin and distribution of resistance in both countries.

RESULTS

Amaranthus palmeri populations were resistant to thifensulfuron-methyl and imazamox, and the 574-Leu mutant ALS allele was found to be the main cause of resistance among them. In two Spanish populations, 376-Glu and 197-Thr mutant ALS alleles were also found. The haplotype analyses revealed the presence of two and four distinct 574-Leu mutant haplotypes in the Italian and Spanish populations, respectively. None was common to both countries, but some mutant haplotypes were shared between geographically close populations or between populations more than 100 km apart. Wide genetic diversity was found in two very close Spanish populations.

CONCLUSION

ALS-resistant A. palmeri populations were introduced to Italy and Spain from outside Europe. Populations from both countries have different evolutionary histories and originate from independent introduction events. ALS resistance then spread over short and long distances by seed dispersal. The higher number and genetic diversity among mutant haplotypes from the Spanish populations indicated recurrent invasions. The implementation of control tactics to limit seed dispersal and the establishment of A. palmeri is recommended in both countries. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

17.
For the purpose of better understanding the molecular mechanism of action of sulfonylurea and sulfonamide herbicides, the quantitative relationship between their structure and herbicidal activity against rape, Brassica campestris L, was analysed using physicochemical parameters and regression analysis and comparative molecular field analysis (CoMFA). The results showed that the structure–activity relationships of the two sets of compounds were identical, which suggested that the two different sets of compounds affect a common region of the receptor site. The CoMFA results were consistent with those derived from traditional QSAR analysis. Combining the traditional QSAR analysis with the CoMFA results, we can conclude that the variations in the herbicidal activity of the two sets of ALS inhibitors were governed dominantly by the three-dimensional steric and electrostatic field parameters of molecules participating in the interaction with the receptor site and there is apparently an optimum electronic property (Σσ or pKa) for the molecules to fit the receptor. © 1999 Society of Chemical Industry  相似文献   

18.
Herbicide‐resistant populations of Alopecurus myosuroides (black grass) have become widespread throughout the UK since the early 1980s. Previous observations in this laboratory have demonstrated that natural climatic fluctuations caused increases in endogenous glutathione S‐transferase (GST) enzyme activity in A. myosuroides plants as they mature, which is thought to be linked to herbicide resistance in this species. The present study has investigated the effects of plant growth at 10°C and 25°C, and reports GST specific activity and glutathione (GSH) pool size in resistant and susceptible A. myosuroides biotypes. Findings demonstrate differences in GST activity between resistant and susceptible populations, which are transient at lower growth temperatures. The GSH pool size was elevated at lower growth temperature in both biotypes. We speculate that these endogenous responses are part of a natural mechanism of acclimation to environmental change in this species and suggest that resistant plants are more able to adapt to environmental stress, as indicated in this instance by temperature change. These observations imply that the control of resistant A. myosuroides by graminicides may be more effective when applied at lower temperatures and at earlier growth stages.  相似文献   

19.
Three red rice ecotypes (Oryza spp), including LA 5, MS 5 and TX 4, were evaluated for acetolactate synthase resistance/tolerance to imazethapyr. The red rice ecotypes were compared with a tolerant line (CL-121), a resistant line (CL-161) and a conventional rice variety (Cypress). Based on enzymatic activity, the mean I(50) values were 1.5, 1.1, 1.5, 1.6, 20.8 and 590.6 microM imazethapyr, respectively, for LA 5, MS 5, TX 4, Cypress, CL-121 and CL-161. CL-161 was 32 times more resistant than CL-121 and at least 420 times more resistant than the average of the red rice ecotypes and Cypress. Results from the acetolactate synthase (ALS) assay showed that red rice ecotypes and Cypress had high susceptibility to imazethapyr when compared with the tolerant CL-121 and the resistant CL-161. Measurable enzymatic tolerance to ALS-inhibiting herbicides has not yet developed in these red rice ecotypes.  相似文献   

20.
Acetolactate synthase (ALS) inhibitors are the most resistance‐prone herbicide group. Rapid resistance diagnosis is thus of importance for their optimal use. We formulate rules to use the derived cleaved amplified polymorphic sequence method to develop molecular tools detecting a change at a given codon, the nature of which is unknown. We applied them to Alopecurus myosuroides (black grass) to develop assays targeting ALS codons A122, P197, A205, W574 and S653 that are crucial for herbicide sensitivity. These assays detected W574L or P197T, or both substitutions, in most plants analysed from a field where ALS inhibitors failed after 3 years of use. Similar assays can easily be set up for any species. Given the rapidity of selection for resistance to ALS inhibitors, these assays should be very useful in proactive herbicide resistance diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号