首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimation of the amount of root exudates and simultaneous identification of their composition in non‐sterile soil is a challenging objective in rhizosphere research. We coupled 3 methods: (1) labeling of corn in 14CO2 atmosphere to separate root‐derived and soil‐derived organic substances in the rhizosphere, (2) a previously developed leaching method to collect rhizodeposits, and (3) pyrolysis field ionization mass spectrometry (Py‐FIMS) to investigate the molecular‐chemical composition of rhizodeposits. Eluted rhizodeposits accounted for 2.8 % (Loam) and 0.97 % (nutrient solution in quartz sand) of recovered 14C and showed clear differences in composition between the growth substrates. The 14CO2 evolved mostly by root respiration accounted for 3.5–4.0 % without significant differences according to growth substrate or diurnal dynamics. Principal component analysis of the Py‐FI mass spectra of leachates showed a clear diurnal dynamics of the amount and the composition of corn rhizodeposits collected during day‐time and night‐time. Differences originated mostly from signals assigned to carbohydrates, sterols, and peptides. This approach is recommended for forthcoming studies of rhizodeposition in different soil substrates, crops grown, and time‐series of exudate sampling.  相似文献   

2.
The composition of root‐derived substances is of great importance for the understanding of processes in the rhizosphere. Therefore, methods allowing a comprehensive collection and chemical analysis of the organic root exudates are necessary. In this study, we compare different methods with regard to their suitability to collect and characterize root exudates. Because the percolation or water logging method failed to quantitatively extract root exudates, a dipping method was developed which allowed an almost complete sampling of coldwater‐soluble root exudates. By 14CO2 labeling of the shoots the composition of root exudates was found to be influenced by plant species and growth stage. In comparison to pea plants maize plants had a higher share of carboxylic acids and a lower share of sugars. Younger maize plants exuded considerably higher amounts of 14C labeled organic substances per g root dry matter than older ones. During plant development the relative amount of sugars decreased at the expense of carboxylic acids. The described methods are well suited for the elucidation of the influence of growth factors on root exudation.  相似文献   

3.
The intimate relationships between plant roots, rhizosphere, and soil are fostered by the release of organic compounds from the plant into soil through various forms of rhizodeposition and the simultaneous harvesting of nutrients from the soil to the plant. Here we present a method to spatially track and map the migration of plant‐derived carbon (C) through roots into the rhizosphere and surrounding soil using laser ablation‐isotope ratio mass spectrometry (LA‐IRMS). We used switchgrass microcosms containing soil from field plots at the Kellogg Biological Station (Hickory Corners, Michigan, USA) which have been cropped with switchgrass since 2008. We used a 13CO2 tracer to isotopically label switchgrass plants for two diel cycles and tracked subsequent movement of labeled C using the spatially specific (< 100 µm resolution) δ13C analysis enabled by LA‐IRMS. This approach permitted assessment of variable C flow through different roots and enabled mapping of spatial variability of C allocation to the rhizosphere. Highly 13C‐enriched C (consistent with production during the 13CO2 application period) extended ≈ 0.5–1 mm from the root into the soil, suggesting that the majority of recent plant‐derived C was within this distance of the root after 48 h. Tracking the physical extent of root exudation into the rhizosphere can help evaluate the localization of plant‐microbe interactions in highly variable subsurface environments, and the use of the isotopic label can differentiate freshly fixed C (presumably from root exudates) from other types of subsurface C (e.g., plant necromass and microbial turnover). The LA‐IRMS technique may also serve as a valuable screening technique to identify areas of high activity for additional microbial or geochemical assays.  相似文献   

4.
Separate determination of root respiration and rhizomicrobial respiration is one of the most interesting, important, and methodologically complicated problems in the study of the carbon budget in soils and the subdivision of the CO2 emission from soils into separate fluxes. In this review, we compare the main principles, the advantages and disadvantages, and the results obtained by the methods of component integration, substrate-induced respiration, respiratory capacity, girdling, isotope dilution, model rhizodeposition, modeling of the 14CO2 efflux dynamics, exudates elution, and the δ13C measurements of the microbial biomass and CO2. Summarizing the results of the determinations performed by these methods, we argue that about 40% of the rhizosphere CO2 efflux is due to root respiration and about 60% of this efflux is due to the respiration of microorganisms decomposing root exudates.  相似文献   

5.
Partitioning the root‐derived CO2 efflux from soil (frequently termed rhizosphere respiration) into actual root respiration (RR, respiration by autotrophs) and rhizomicrobial respiration (RMR, respiration by heterotrophs) is crucial in determining the carbon (C) and energy balance of plants and soils. It is also essential in quantifying C sources for rhizosphere microorganisms and in estimation of the C contributing to turnover of soil organic matter (SOM), as well as in linking net ecosystem production (NEP) and net ecosystem exchange (NEE). Artificial‐environment studies such as hydroponics or sterile soils yield unrealistic C‐partitioning values and are unsuitable for predicting C flows under natural conditions. To date, several methods have been suggested to separate RR and RMR in nonsterile soils: 1) component integration, 2) substrate‐induced respiration, 3) respiration by excised roots, 4) comparison of root‐derived 14CO2 with rhizomicrobial 14CO2 after continuous labeling, 5) isotope dilution, 6) model‐rhizodeposition technique, 7) modeling of 14CO2 efflux dynamics, 8) exudate elution, and 9) δ13C of CO2 and microbial biomass. This review describes the basic principles and assumptions of these methods and compares the results obtained in the original papers and in studies designed to compare the methods. The component‐integration method leads to strong disturbance and non‐proportional increase of CO2 efflux from different sources. Four of the methods (5 to 8) are based on the pulse labeling of shoots in a 14CO2 atmosphere and subsequent monitoring of 14CO2 efflux from the soil. The model‐rhizodeposition technique and exudate‐elution procedure strongly overestimate RR and underestimate RMR. Despite alternative assumptions, isotope dilution and modeling of 14CO2‐efflux dynamics yield similar results. In crops and grasses (wheat, ryegrass, barley, buckwheat, maize, meadow fescue, prairie grasses), RR amounts on average to 48±5% and RMR to 52±5% of root‐derived CO2. The method based on the 13C isotopic signature of CO2 and microbial biomass is the most promising approach, especially when the plants are continuously labeled in 13CO2 or 14CO2 atmosphere. The “difference” methods, i.e., trenching, tree girdling, root‐exclusion techniques, etc., are not suitable for separating the respiration by autotrophic and heterotrophic organisms because the difference methods neglect the importance of microbial respiration of rhizodeposits.  相似文献   

6.
The soil organic matter plays a key role in ecological soil functions, and has to be considered as an important CO2 sink on a global scale. Apart from crop residues (shoots and roots), left over on the field after harvest, carbon and nitrogen compounds are also released by plant roots into the soil during vegetation, and undergo several transformation processes. Up to now the knowledge about amount, composition, and turnover of these root‐borne compounds is still very limited. So far it could be demonstrated with different plant species, that up to 20 % of photosynthetically fixed C are released into the soil during vegetation period. These C amounts are ecological relevant. Depending on assimilate sink strength during ontogenesis, the C release varies with plant age. A large percentage of these root‐borne substances were rapidly respired by microorganisms (64—86 %). About 2—5 % of net C assimilation was kept in soil. The root exudates of maize were mainly water‐soluble (79 %), and in this fraction about 64 % carbohydrates, 22 % amino acids/amides and 14 % organic acids could be identified. Plant species and in some cases also plant cultivars varied strongly in their root exudation pattern. Under non‐sterile conditions the exuded compounds were rapidly stabilized in water‐insoluble forms and bound preferably to the soil clay fraction. The binding of root exudates to soil particles also improved soil structure by increasing aggregate stability. Future research should focus on quantification and characterization of root‐borne C compounds during the whole plant ontogenesis. Apart from pot experiments with 14CO2 labeling, it is necessary to conduct model field experiments with 13CO2 labeling in order to be able to distinguish between CO2 originating from the soil C pool and rhizosphere respiration, originating from plant assimilates. Such a separation is necessary to assess if soils are sources or sinks of CO2. The incorporation of root‐borne C (14C, 13C) into soil organic matter of different stability is also of particular interest.  相似文献   

7.
The input of labeled C into the pool of soil organic matter, the CO2 fluxes from the soil, and the contribution of root and microbial respiration to the CO2 emission were studied in a greenhouse experiment with continuous labeling of oat plants with 13CO2 using the method of the natural 13C abundance in the air. The carbon of the microbial biomass composed 56 and 39% of the total amounts of 13C photoassimilates in the rhizosphere and in the bulk soil, respectively. The contribution of root respiration to the CO2 emission from the soil reached 61–92%, including 4–23% of the rhizomicrobial respiration. The contribution of the microbial respiration to the total CO2 emission from the soil varied from 8 to 39%. The soil organic matter served as the major carbon-containing substrate for microorganisms in the bulk soil and in the rhizosphere: 81–91% of the total amount of carbon involved in the microbial metabolism was derived from the soil organic matter.  相似文献   

8.
The presence of plants induces strong accelerations in soil organic matter (SOM) mineralization by stimulating soil microbial activity – a phenomenon known as the rhizosphere priming effect (RPE). The RPE could be induced by several mechanisms including root exudates, arbuscular mycorrhizal fungi (AMF) and root litter. However the contribution of each of these to rhizosphere priming is unknown due to the complexity involved in studying rhizospheric processes. In order to determine the role of each of these mechanisms, we incubated soils enclosed in nylon meshes that were permeable to exudates, or exudates & AMF or exudates, AMF and roots under three grassland plant species grown on sand. Plants were continuously labeled with 13C depleted CO2 that allowed distinguishing plant-derived CO2 from soil-derived CO2. We show that root exudation was the main way by which plants induced RPE (58–96% of total RPE) followed by root litter. AMF did not contribute to rhizosphere priming under the two species that were significantly colonized by them i.e. Poa trivialis and Trifolium repens. Root exudates and root litter differed with respect to their mechanism of inducing RPE. Exudates induced RPE without increasing microbial biomass whereas root litter increased microbial biomass and raised the RPE mediating saprophytic fungi. The RPE efficiency (RPE/unit plant-C assimilated into microbes) was 3–7 times higher for exudates than for root litter. This efficiency of exudates is explained by a microbial allocation of fresh carbon to mineralization activity rather than to growth. These results suggest that root exudation is the main way by which plants stimulated mineralization of soil organic matter. Moreover, the plants through their exudates not only provide energy to soil microorganisms but also seem to control the way the energy is used in order to maximize soil organic matter mineralization and drive their own nutrient supply.  相似文献   

9.
A natural‐13C‐labeling approach—formerly observed under controlled conditions—was tested in the field to partition total soil CO2 efflux into root respiration, rhizomicrobial respiration, and soil organic matter (SOM) decomposition. Different results were expected in the field due to different climate, site, and microbial properties in contrast to the laboratory. Within this isotopic method, maize was planted on soil with C3‐vegetation history and the total CO2 efflux from soil was subdivided by isotopic mass balance. The C4‐derived C in soil microbial biomass was also determined. Additionally, in a root‐exclusion approach, root‐ and SOM‐derived CO2 were determined by the total CO2 effluxes from maize (Zea mays L.) and bare‐fallow plots. In both approaches, maize‐derived CO2 contributed 22% to 35% to the total CO2 efflux during the growth period, which was comparable to other field studies. In our laboratory study, this CO2 fraction was tripled due to different climate, soil, and sampling conditions. In the natural‐13C‐labeling approach, rhizomicrobial respiration was low compared to other studies, which was related to a low amount of C4‐derived microbial biomass. At the end of the growth period, however, 64% root respiration and 36% rhizomicrobial respiration in relation to total root‐derived CO2 were calculated when considering high isotopic fractionations between SOM, microbial biomass, and CO2. This relationship was closer to the 50% : 50% partitioning described in the literature than without fractionation (23% root respiration, 77% rhizomicrobial respiration). Fractionation processes of 13C must be taken into account when calculating CO2 partitioning in soil. Both methods—natural 13C labeling and root exclusion—showed the same partitioning results when 13C isotopic fractionation during microbial respiration was considered and may therefore be used to separate plant‐ and SOM‐derived CO2 sources.  相似文献   

10.
Although extreme climatic events such as drought have important consequences for belowground carbon (C) cycling, their impact on the plant-soil system of mixed plant communities is poorly understood. Our objective was to study the effect of drought on C allocation and rhizosphere-mediated CO2 fluxes under three plant species: Lolium perenne, Festuca arundinacea and Medicago sativa grown in monocultures or mixture. The conceptual approach included 14CO2 pulse labeling of plants grown under drought and optimum water conditions in order to be able to follow above- and belowground C allocation. After 14C pulse labeling, we traced 14C allocation to shoots and roots, soil and rhizospheric CO2, dissolved organic carbon (DOC) and microbial biomass.Drought and plant community composition significantly affected assimilate allocation in the plant-soil system. Drought conditions changed the source sink relationship of monocultures, which transferred a relatively larger portion of assimilates to their roots compared to water sufficient plants. In contrast, plant mixture showed an increase in 14C allocation to shoots when exposed to drought.Under drought stress, root respiration was reduced for all monocultures except under the legume species. Microbial respiration remained similar in all cases showing that microbial activity was less affected by drought than root activity. This may be explained by strongly increased assimilate allocation to easily available exudates or rhizodeposits under drought. In conclusion, plant community composition may modify the impact of climatic changes on carbon allocation and belowground carbon fluxes. The presence of legume species attenuates drought effects on rhizosphere processes.  相似文献   

11.
Separation of root and microbial respiration: Comparison of three methods   总被引:1,自引:0,他引:1  
In a laboratory experiment, the following methods of separating the soil CO2 flux into the root respiration and the respiration of the rhizosphere and nonrhizosphere microorganisms were compared: (1) root exclusion, (2) component integration, and (3) 14C pulse labeling. Depending on the method used, the combined contribution of the rhizosphere microorganisms and roots varied from 18 to 40% of the total CO2 emission; the contribution of the roots alone was 8–19%, and that of the nonrhizosphere microorganisms was 51–82%. The nonisotope methods (1 and 2) gave similar results of the separation. The pulse labeling of plants satisfactorily separated the root and microbial respiration, but it is unsuitable for determining the respiration of the nonrhizosphere microorganisms. Advantages and disadvantages of each method are discussed.  相似文献   

12.
We examined the impact of long-term cattle grazing on soil processes and microbial activity in a temperate salt marsh. Soil conditions, microbial biomass and respiration, mineralization and denitrification rates were measured in upper salt marsh that had been ungrazed or cattle grazed for several decades. Increased microbial biomass and soil respiration were observed in grazed marsh, most likely stimulated by enhanced rates of root turnover and root exudation. We found a significant positive effect of grazing on potential N mineralization rates measured in the laboratory, but this difference did not translate to in situ net mineralization measured monthly from May to September. Rates of denitrification were lowest in the grazed marsh and appeared to be limited by nitrate availability, possibly due to more anoxic conditions and lower rates of nitrification. The major effect of grazing on N cycling therefore appeared to be in limiting losses of N through denitrification, which may lead to enhanced nutrient availability to saltmarsh plants, but a reduced ability of the marsh to act as a buffer for land-derived nutrients to adjacent coastal areas. Additionally, we investigated if grazing influences the rates of turnover of labile and refractory C in saltmarsh soils by adding 14C-labelled leaf litter or root exudates to soil samples and monitoring the evolution of 14CO2. Grazing had little effect on the rates of mineralization of 14C used as a respiratory substrate, but a larger proportion of 14C was partitioned into microbial biomass and immobilized in long- and medium-term storage pools in the grazed treatment. Grazing slowed down the turnover of the microbial biomass, which resulted in longer turnover times for both leaf litter and root exudates. Grazing may therefore affect the longevity of C in the soil and alter C storage and utilization pathways in the microbial community.  相似文献   

13.
The input dynamics of labeled C into pools of soil organic matter and CO2 fluxes from soil were studied in a pot experiment with the pulse labeling of oats and corn under a 13CO2 atmosphere, and the contribution of the root and microbial respiration to the emission of CO2 from the soil was determined from the fluxes of labeled C in the microbial biomass and the evolved carbon dioxide. A considerable amount of 13C (up to 96% of the total amount of the label found in the rhizosphere soil) was incorporated into the biomass of the rhizosphere microorganisms. The diurnal fluctuations of the labeled C pools in the microbial biomass, dissolved organic carbon, and CO2 released in the rhizosphere of oats and corn were related to the day/night changes, i.e., to the on and off periods of the photosynthetic activity of the plants. The average contribution of the corn root respiration (70% of the total CO2 emission from the soil surface) was higher than that of the oats roots (44%), which was related to the lower incorporation of rhizodeposit carbon into the microbial biomass in the soil under the corn plants than in the soil under the oats plants.  相似文献   

14.
Sources of CO2 efflux from soil and review of partitioning methods   总被引:7,自引:0,他引:7  
Five main biogenic sources of CO2 efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO2 efflux from the soil including: root-derived CO2, plant-derived CO2, SOM-derived CO2, rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO2 from plant-derived CO2, measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO2 and for interpreting the sources of CO2 and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO2 efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO2 efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and insitu root respiration; continuous and pulse labeling, 13C natural abundance and FACE, and radiocarbon dating and bomb-14C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO2 evolved by decomposition of plant residues and by priming effects to be estimated. All these methods have been evaluated according to their inherent disturbance of the ecosystem and C fluxes, and their versatility under various conditions. The shortfalls of existing approaches and the need for further development and standardization of methods are highlighted.  相似文献   

15.
The dynamics of C partitioning with Lolium perenne and its associated rhizosphere was investigated in plant-soil microcosms using 14C pulse-chase labelling. The 14CO2 pulse was introduced into the shoot chamber and the plants allowed to assimilate the label for a fixed period. The microcosm design facilitated independent monitoring of shoot and root/soil respiration during the chase period. Partitioning between above- and below-ground pools was determined between 30 min and 168 h after the pulse, and the distribution was found to vary with the length of the chase period. Initially (30 min after the pulse), the 14C was predominantly (99%) in the shoot biomass and declined thereafter. The results indicate that translocation of recent photoassimilate is rapid, with 14C detected below ground within 30 min of pulse application. The translocation rate of 14C below ground was maximal (6.2% h-1) between 30 min and 3 h after the pulse, with greatest incorporation into the microbial biomass detected at 3 h. After 3 h, the microbial biomass 14C pool accounted for 74% of the total 14C rhizosphere pool. By 24 h, approximately 30% of 14C assimilate had been translocated below ground; thereafter 14C translocation was greatly reduced. Partitioning of recent assimilate changed with increasing CO2 concentration. The proportion of 14C translocated below ground almost doubled from 17.76% at the ambient atmospheric CO2 concentration (450 ppm) to 33.73% at 750 ppm CO2 concentration. More specifically, these changes occurred in the root biomass and the total rhizosphere pools, with two- and threefold 14C increases at an elevated CO2 concentration compared to ambient, respectively. The pulselabelling strategy developed in this study provided sufficient sensitivity to determine perturbations in C dynamics in L. perenne, in particular rhizosphere C pools, in response to an elevated atmospheric CO2 concentration.  相似文献   

16.
While it is well known that soil moisture directly affects microbial activity and soil organic matter (SOM) decomposition, it is unclear if the presence of plants alters these effects through rhizosphere processes. We studied soil moisture effects on SOM decomposition with and without sunflower and soybean. Plants were grown in two different soil types with soil moisture contents of 45% and 85% of field capacity in a greenhouse experiment. We continuously labeled plants with depleted 13C, which allowed us to separate plant-derived CO2-C from original soil-derived CO2-C in soil respiration measurements. We observed an overall increase in soil-derived CO2-C efflux in the presence of plants (priming effect) in both soils. On average a greater priming effect was found in the high soil moisture treatment (up to 76% increase in soil-derived CO2-C compared to control) than in the low soil moisture treatment (up to 52% increase). Greater plant-derived CO2-C and plant biomass in the high soil moisture treatment contributed to greater priming effects, but priming effects remained significantly higher in the high moisture treatment than in the low moisture treatment after correcting for the effects of plant-derived CO2-C and plant biomass. The response to soil moisture particularly occurred in the sandy loam soil by the end of the experiment. Possibly, production of root exudates increased with increased soil moisture content. Root exudation of labile C may also have become more effective in stimulating microbial decomposition in the higher soil moisture treatment and sandy loam soil. Our results indicate that moisture conditions significantly modulate rhizosphere effects on SOM decomposition.  相似文献   

17.
Intercropping with aerobic rice or arbuscular mycorrhizal fungi (AMF) colonization alleviated watermelon wilt disease, which is likely attributed to rice root exudates or AMF depressing watermelon wilt pathogen. However, it is unclear whether rice root exudates transfers to watermelon rhizosphere soil and whether AMF affects the transfer of rice root exudates to watermelon rhizosphere soil. A rhizobox experiment, with aerobic rice under 14?CO2, was conducted to investigate the effect of AMF colonization on carbon (C) transfer from rice to watermelon and on phosphorus (P) uptake by both watermelon and rice. The rhizobox was separated into labelling side (L side) and sampling side (S side) by inserting nylon mesh in the middle of the box. The L side was planted with aerobic rice, and the S side was aerobic rice (monocropping) or watermelon (intercropping). When 14?CO2 was added to rice canopy at the L side, 14?C activities of rice roots and rhizosphere soils in the L side were increased by intercropping with watermelon or AMF colonization. The 14?C was detected in roots and rhizosphere soils of rice and watermelon in the S side, but no differences were found among different treatments. 14?C activities in leaves were improved by AMF inoculation in the S side, regardless of rice or watermelon. Mycorrhizal colonization stimulated P absorption and translocation to rice in intercropping system. These findings suggest that AMF colonization could increase C transfer from rice to watermelon while intercropping with watermelon could promote AMF colonization and P uptake by rice.  相似文献   

18.
The Turnover of Plant Roots during the Growth Period and its Influence on “Soll Respiration” Mustard and wheat plants were grown under 14CO2, their roots being tightly separated from the shoot sphere. Root formation, root respiration, and root decomposition could thus be followed during the plant development by radiometric methods. The total quantity of organic root matter in soil at harvest time turned out to be 20–50% larger than the amount of root residues as determined by ordinary washing procedures. Depending on the plant and duration of the experiment, an additional amount of up to three times more than this remaining root carbon was already mineralized during the vegetation period. Only one fifth of this 14CO2-production could be attributed to the respiration of living root tissue, all the remainder seemed to be due to the microbial decomposition of dead roots, root residues and root excretions. Root respiration and root decomposition together produced almost four fifths of the total evolving CO2-quantity, whilst the contribution from soil organic matter breakdown did not exceed one fourth of it. According to these data, the total rhizo-deposition amounts to 3–4 times as much organic substance than what can be found as root residues at harvest time. This rich supply of readily decomposable organic matter leads to a most intensive turnover in the rhizosphere, which should be of considerable influence on the dynamic processes in soil.  相似文献   

19.
A greenhouse experiment was conducted by growing oats (Avenasativa L.) in a continuously 13CO2 labeled atmosphere. The allocation of 13C-labeled photosynthates in plants, microbial biomass in rhizosphere and root-free soil, pools of soil organic C, and CO2 emissions were examined over the plant's life cycle. To isolate rhizosphere from root-free soil, plant seedlings were placed into bags made of nylon monofilament screen tissue (16 μm mesh) filled with soil. Two peaks of 13C in rhizosphere pools of microbial biomass and dissolved organic carbon (DOC), as well as in CO2 emissions at the earing and ripeness stages were revealed. These 13C maxima corresponded to: (i) the end of rapid root growth and (ii) beginning of root decomposition, respectively. The δ13C values of microbial biomass were higher than those of DOC and of soil organic matter (SOM). The microbial biomass C accounted for up to 56 and 39% of 13C recovered in the rhizosphere and root-free soil, respectively. Between 4 and 28% of 13C assimilated was recovered in the root-free soil. Depending on the phenological stage, the contribution of root-derived C to total CO2 emission from soil varied from 61 to 92% of total CO2 evolved, including 4-23% attributed to rhizomicrobial respiration. While 81-91% of C substrates used for microbial growth in the root-free soil and rhizosphere came from SOM, the remaining 9-19% of C substrates utilized by the microbial biomass was attributable to rhizodeposition. The use of continuous isotopic labelling and physical separation of root-free and rhizosphere soil, combined with natural 13C abundance were effective in gaining new insight on soil and rhizosphere C-cycling.  相似文献   

20.
Exudates are part of the total rhizodeposition released by plant roots to soil and are considered as a substantial input of soil organic matter. Exact quantitative data concerning the contribution of exudates to soil C pools are still missing. This study was conducted to reveal effects of 13C‐labeled exudate (artificial mixture) which was regularly applied to upper soil material from two agricultural soils. The contribution of exudate C to water‐extractable organic C (WEOC), microbial biomass C (MBC), and CO2‐C evolution was investigated during a 74 d incubation. The WEOC, MBC, and CO2‐C concentrations and the respective δ13C values were determined regularly. In both soils, significant incorporation of artificial‐exudate‐derived C was observed in the WEOC and MBC pool and in CO2‐C. Up to approx. 50% of the exudate‐C amounts added were recovered in the order WEOC << MBC < CO2‐C in both soils at the end of the incubation. Newly built microbial biomass consisted mainly of exudates, which substituted soil‐derived C. Correspondingly, the CO2‐C evolved from exudate‐treated soils relative to the controls was dominated by exudate C, showing a preferential mineralization of this substrate. Our results suggest that the remaining 50% of the exudate C added became stabilized in non‐water‐extractable organic fractions. This assumption was supported by the determination of the total organic C in the soils on the second‐last sampling towards the end of the incubation. In the exudate‐treated soils, significantly more soil‐derived C compared to the controls was found in the WEOC on almost all samplings and in the MBC on the first sampling. This material might have derived from exchange processes between the added exudate and the soil matrix. This study showed that easily available substrates can be stabilized in soil at least in the short term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号