首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In laboratory adsorption experiments, the comparison of podzol Bs horizons from coastal and inland moderately-impacted catchments with those from a severely-acidified inland region has demonstrated the effect of marine inputs on SO4 2– -retention. Moderate sea-salt inputs and low acid deposition leads to the retention of most of the SO4 2– and the release of soluble Mg2+; increasing the marine salt loading causes the development of a selectivity towards retention of acidic SO4 2– and the retention of Mg2+. In the highly-impacted soil, the marine input caused a decrease in SO4 2– retention in open moorland soils. The opposite occurred under forest, due to the ion-exchange of marine Mg2+ for soil Al3+, increasing soil acidity towards the pH0 (Gillman and Uehara, 1980), which is depressed below that of its moorland equivalent.  相似文献   

2.
Abstract

The advanced classification of brown forest soils (BFS) is based on the specific properties of these soils, including the acid ammonium oxalate extractable aluminum (Alox) and lithic fragment contents, as well as their vertical distributions in the soil profile. In the present study, these properties were used to classify BFS, resulting in four types: (1) H-Alox-NGv BFS, (2) H-Alox-Gv BFS, (3) M-Alox BFS, (4) L-Alox BFS. H-Alox-NGv BFS is derived from volcanic ash characterized by a high Alox content and no lithic fragment, whereas L-Alox BFS is derived from weathered bedrock and has a low Alox content. H-Alox-Gv BFS and M-Alox BFS are derived from mixtures of volcanic ash and weathered bedrock. H-Alox-Gv BFS is characterized by high Alox content and many lithic fragments, whereas M-Alox BFS has moderate Alox content. H-Alox-NGv BFS and black soils (BLS) develop from accumulated volcanic ash, as indicated by declining Alox and clay content with decreasing depth in the surface horizons, as a result of successive additions of less-weathered volcanic ash to the soil surface.  相似文献   

3.
Soil organic carbon (SOC) inventories are important tools for studying the effects of land‐use and climate change and evaluating climate‐change policies. A detailed inventory of SOC in the agricultural soils of the federal state of Baden‐Württemberg was therefore prepared based on the highest‐resolution geo‐referenced soil, land‐use, and climate data (BÜK200 inventory). In order to estimate the quality of different approaches, C inventories of the region were also prepared based on data from the National Inventory Report (UBA, 2003) and by applying the IPCC (1997) method to the two data sets. Finally, the BÜK200 inventory was used to estimate potentials of no‐tillage agriculture (NT) and peatland restoration to contribute to C sequestration and greenhouse‐gas (GHG)‐emission mitigation since both measures are discussed in this context. Scenario assumptions were change to NT on 40% of the cropland and restoration of 50% of cultivated peatlands within 20 years. On average, grasslands contained 9.5 kg C m–2 to 0.3 m depth as compared to only 6.0 kg C m–2 under cropland, indicating strong land‐use effects. The SOC content depended strongly on waterlogging and elevation, thus reflecting reduced C mineralization under aquic moisture regimes and low temperatures. Comparison of the BÜK200 inventory with the approach used for UBA (2003) showed high inconsistencies due to map resolution and SOC contents, whereas the IPCC method led to fairly good agreements. Results on the simulated effects of NT and peatland restoration suggested that 5%–14% of total agricultural GHG emissions could be abated with NT whereas peat restoration appeared to have a minor mitigation potential (0.2%–2.7%) because the total area of cultivated organic soils was too small to have larger impact.  相似文献   

4.
The soil microbial biomass and activity were estimated for seven field (intensive and extensive management), grassland (dry and wet), and forest (beech, dry and wet alder) sites. Three of the sites (wet grassland, dry and wet alder) are located on a lakeshore and are influenced by lake water and groundwater. Four different methods were selected to measure and characterize the microbial biomass. Values of microbial biomass (weight basis) and total microbial biomass per upper horizon and hectare (volume basis) were compared for each site.Fumigation-extraction and substrate-induced respiration results were correlated but dit not give the same absolute values for microbial biomass content. When using the original conversion factors, substrate-induced respiration gave higher values in field and dry grassland soils, and fumigation-extraction higher values in soils with low pH and high water levels (high organic content). Results from dimethylsulfoxide reduction and arginine ammonification, two methods for estimating microbial activity, were not correlated with microbial biomass values determined by fumigation-extraction or substrate-induced respiration in all soils examined. In alder forest soils dimethylsulfoxide reduction and arginine ammonification gave higher values on the wet site than on the dry site, contrary to the values estimated by fumigation-extraction and substrate-induced respiration. These microbial activities were correlated with microbial biomass values only in field and dry grassland soils. Based on soil dry weight, microbial biomass values increased in the order intensive field, beech forest, extensive field, dry grassland, alder forest, wet grassland. However, microbial biomass values per upper horizon and hectare (related to soil volume) increased in agricultural soils in the order intensive field, dry grassland, extensive field, wet grassland and in forest soils in the order beech, wet alder, dry alder. We conclude that use of the original conversion factors with the soils in the present study for fumigation-extraction and substrate-induced respiration measurements does not give the same values for the microbial biomass. Furthermore, dimethylsulfoxide reduction and arginine ammonification principally characterize specific microbial activities and can be correlated with microbial biomass values under specific soil conditions. Further improvements in microbial biomass estimates, particularly in waterlogged soils, may be obtained by direct counts of organisms, ATP estimate, and the use of 14C-labelled organic substrates. From the ecological viewpoint, data should also be expressed per horizon and hectare (related to soil volume) to assist in the comparison of different sites.  相似文献   

5.
The effect of temperatures of −2.5 to +20 °C on the biodegradation of concentrations 0.2-50 μg cm−3 of pentachlorophenol (PCP), phenanthrene, pyrene and 2,4,5-trichlorophenol (TCP) was studied in soils sampled from an agricultural field and a relatively pristine forest in Helsinki, Finland. At the temperatures simulating seasonal variation of boreal soil temperatures [Heikinheimo, M., Fougstedt, B., 1992. Statistic of Soil Temperature in Finland. Meteorological Publications 22. Finnish Meteorological Institute, Helsinki, Finland], the response of mineralization of PCP, phenanthrene and 2,4,5-TCP was the most effective in the rhizosphere fraction of the forest humus soil at the substrate concentrations of ?5 μg cm−3. In the control incubation, performed at constant temperature of +20 °C, the mineralization yields of the model pollutants were highest in the agricultural soil with the highest applied substrate concentration (50 μg cm−3). The results suggest that the high level of pollutant mineralization at +20 °C resulted from the apparent adaptation of the soil microbial community to the high substrate concentration. No such adaptation occurred when the soils were incubated at temperatures simulating the actual boreal soil temperatures. The present results stress the role of adjusting the incubation conditions to environmentally relevant values, when assessing biodegradation of anthropogenic organic compound in boreal soils.  相似文献   

6.
Journal of Soils and Sediments - In urban areas, humans shape the surface, (re-)deposit natural or technogenic material, and thus become the dominant soil formation factor. The 2015 edition of the...  相似文献   

7.
Soils with cool, moist winters and relatively warm, dry summers, a Mediterranean climate, are recognized as having a xeric moisture regime in Soil Taxonomy. These soils are classified mostly in taxa that use the formative element “xer” in the name. Soil series with either a xeric moisture regime or an aridic regime bordering on a xeric moisture regime make up more than 48,640,000 hectares in the western part of the United States. They are classified in the orders of Mollisols (20,080,000 ha), Aridisols (11,200,000 ha), Alfisols (5,320,000 ha), Inceptisols (4,800,000 ha), Entisols (4,400,000 ha), Vertisols (1,520,000 ha), Andisols (960,000 ha), and Ultisols (960,000 ha).  相似文献   

8.
Abstract

Nine pedons representing the major soils of an 80,000 ha area in Yenagoa, Niger Delta, Nigeria, were classified and evaluated for maize, plantain and oil palm cultivation. The soils were identified as low activity clay (LAC) Ultisols (Kanhapludult and Kandiudult) or Acrisols (FAO, UNESCO) with hydromorphism reaching the A‐horizon in most cases. They were mainly derived from alluvial materials. The presence of an argillic B‐horizon in all the pedons indicated that the depositions were not recent. Most of the soils were sandy at he top but clayey in the subsoils although a few have either sandy or clayey texture throughout the profile. Organic matter content in the A‐horizon was 2.30–4.50%. The pH was between strongly acidic (3.5) to slightly acidic (5.0). The CEC in the B‐horizon was low (<24 cmol kg‐1) in the sandy soils and moderate (>24 cmol kg‐1) in the clayey soils. The exchange complex was dominated by Ca (2–17 cmol kg‐1), followed by Mg (1–8 cmol kg‐1), while K was low (0.07–0.22 cmol kg‐1) to fairly high (>0.66 cmol kg‐1). The base saturation was just moderate (50–92%). The soils were marginally suitable (S3) for maize, with about 20% of the area not suitable (N1) presently. The main constraints to arable cultivation were heavy rainfall, imperfect or poor drainage, and low base saturation. They are moderately suitable (S2) for plantain due to low base saturation, short dry season, and unfavorable texture which was light in some and too heavy in others. For oil palm, the soils were moderately (S2) to highly (S1) suitable, though the short dry season, low base saturation and poor drainage could pose as limitations. Obviously, with good drainage and proper fertility management high yields of maize, plantain and oil palm could be obtained on these soils. Such studies should be made to cover the entire Niger Delta in order to provide data to justify the preservation of all prime agricultural soils in the area from being lost to the oil industry.  相似文献   

9.
重庆地区紫色土锗的背景含量及分布特征   总被引:3,自引:0,他引:3  
对重庆地区分布的5种主要紫色土的116个背景土壤剖面,261个土样中的锗含量及分布进行了研究,结果表明:紫色土中锗的含量服从对数正态分布,几何均值为0.67×/÷1.4 mg/kg,算术均值为(0.71±0.26)mg/kg,略低于世界土壤平均值(1.0 mg/kg).背景土壤剖面C层锗含量高于A层、B层,但在燃煤所致降尘和酸雨重污染地区及某冶炼厂附近土壤(灰棕紫泥属)中,其表层锗含量明显高于底层,亦高于其它非污染地区同属土壤表层,因此,局部地区土壤可能存在锗污染问题,值得重视.紫色土壤锗含量与土壤阳离子交换量(CEC),Cu含量呈显著负相关,与土壤Pb,As含量呈显著正相关,而与土壤pH、有机质(OM)、碳酸盐含量及土壤其它化学成分(Hg,CA,Zn,Al_2O_3,Fe_2O_3,K_2O.Na_2O,CaO.MgO,Mn,Cr,Ni,TiO_2)间相关性很差.  相似文献   

10.
Red soils in Greece are distributed throughout the country, but they occur more frequently in the southern provinces and constitute important soil resources supporting several land utilization types. They can be grouped into two categories: the autochthonous and the allochthonous. The former soils are found on hard limestone and on basic igneous rocks in sloping mountainous or hilly landscapes. Moreover, they can be found on mica schists and gneisses in locations adjacent to marble or calcareous mica schists.Allochthonous red soils are wide-spread on late Tertiary and Pleistocene surfaces in the lowlands. Many of these deep deposits have red strata, a few decimeters to several meters thick, or red-colored and fine-textured layers interbedded with light colored deposits of marl, or conglomerates and also with thick strata enriched with calcareous concretions. They are distributed in the thermo- and meso-mediterranean bioclimatic zones. These sites have a common feature, the gently sloping terrain that ensures efficient drainage.There are some differences in chemical and physical properties and in the clay mineralogy of the two groups of Greek red soils. Palygorskite is present in some soils developed on basic rocks; the clay minerals of the allochthonous soils on Pleistocene and late Pliocene seems to be mixed with micas in significant amounts.Soil forming factors required for the formation of red soils are: (a) parent material containing iron-bearing minerals, and rich in bases, (b) slope gradients and/or water permeabilities of the bed-rock securing excessive drainage and (c) vegetation cover that does not produce high amounts of, and deeply distributed organic matter.The allochthonous red soils have likely inherited their color from their parent materials that were transported from the originally formed residual soils on hard limestone. The soils retain the red color in the thermo-mediterranean zone only on sloping terrains. The soils on these landscapes are frequently stratified.The Greek red soils belong to the great groups of: Rhodoxeralfs, Palexeralfs, Xerochrepts, Orthents. Large portions of the allochthonous soils have been desertified or have been severely degraded and their extensive exploitation is not recommended.Soil management practices applied in the allochthonous soils include erosion control, preservation of organic matter, minimum tillage, split application of nitrogen using non-acidifying fertilizers, irrigation, soil water conservation and sheltered agriculture.  相似文献   

11.
The Phuket, Thung Wa and Huai Pong soils of this study form the Phuket catena and are extensive in Narathiwat province in the southern part of peninsular Thailand where they were studied in the field and sampled. The Phuket soils on the higher-lying positions and the Huai Pong soils on the nearly-level, lower positions, have developed argillic horizons and are Ultisols. The Thung Wa soils, which occur on intermediate positions and receive sediments from upslope, have cambic horizons and are classified as Inceptisols.All soils formed from Late Cretaceous or Early Tertiary granite or from sediments derived frome these granites under a tropical rain forest climate. They contain kaolinite as the predominant clay mineral and are highly leached, with base saturation of less than 35% in their B horizons. Cation exchange capacities are less than 6 mequiv. per 100 g soil and exchange acidity and exchangeable aluminium are high. Field and thin-section studies as well as particle-size analysis indicate considerable clay translocation from A to B horizons in the Phuket and Huai Pong soils and little clay movement in the Thung Wa soils.  相似文献   

12.
Characteristics of the predominant bacteria isolated in November and May from the forest soils of both dry and wet types under natural vegetation were studied.

Although Gram-negative rods were the most abundant bacteria in both soil types and in both seasons, their contents were less and other bacteria especially spore-forming ones increased in May.

Among Gram-negative rods in the soil of the dry type in November, the most predominant was those with nonchromogenic rods motile with polar flagella which grew in a simple synthetic media containing glucose or p-hydroxybenzoate and ammonium as the sole carbon and nitrogen sources. In May, the ratio of the bacteria which require amino nitrogen or those with more chomplex nutritional requirement increased. In the soil of moderately wet type, the difference in kinds of bacteria between the two seasons was not so clear as that in the dry type.

Most of Bacillus species obtained in these soils were those requiring amino acids or other growth factors among which B. cereus was most abundant.  相似文献   

13.
Abstract. A database of 1065 fields in all parts of Finland, two soil profiles (augerhole borings) per field, was screened for acid sulfate (a.s.) soils. Each field represented 2100 14;ha of cultivated land. Soil pH and redox potential were determined in the field, at intervals of 10 14;cm, to a depth of 200 14;cm. Of the maximum of 124 profiles considered as a.s. soils according to the Soil Taxonomy and ILRI (International Institute of Land Reclamation and Improvement) systems, 46 profiles exhibited pH <3.5. These represented 48 14;000 14;ha of land. More than half of these severely acidic soils were associated with reduced subsoils and probably contained actively oxidizing sulfidic materials within 150 14;cm of the soil surface, while the remaining profiles were oxidized at least down to 150 14;cm. Using Soil Taxonomy criteria, the total area of cultivated a.s. soils was 67 14;000–130 14;000 14;ha. The minimum estimates exclude soils that may be leached or too low in sulfide to meet the criteria of a.s. soils. Application of the ILRI system produced an estimate of 61 14;000–130 14;000 14;ha. In the maximum estimate, 27% of the profiles were raw, 61% ripe and 12% potential a.s. soils. According to the FAO/UNESCO system, the area of cultivated a.s. soils (pH <3.5 or assumed sulfidic materials) is considerably less: 43 14;000–78 14;000 14;ha. All these estimates are only a fraction of the area considered to be covered by a.s. soils by established Finnish criteria. The choice of estimate has important economic implications for liming subsidies and planning regulations for the drainage of a.s. soils.  相似文献   

14.
We investigated different types of phosphatase activity (phosphomono-, phosphodi-, phosphotriesterase, inorganic pyrophosphatase) in five forest soils in Vorarlberg, Austria. Phosphatase activity was determined both in soils and in soil extracts prepared with different solutions (distilled water, 0.1M sodium pyrophosphate at pH 7, 0.1M sodium phosphate buffer/1M KCl at pH 6.5, and a modified universal buffer at pH 4, 6.5, 9, and 11). High phosphomonoesterase activity in these soils indicated a severe deficiency in available P. Acidic phosphomonoesterase prevailed over alkaline phosphomonoesterase activity. Phosphodiesterase was highest in the least acidic soil but no general trend towards an optimum pH was recognized. Phosphotriesterase activity was observed in only two of the five soils and favoured an alkaline optimum pH; this activity was not detected in strongly acid soils. Inorganic pyrophosphatase activity was high in soils with no phosphotriesterase. Phosphomonoesterase, phosphodiesterase and inorganic pyrophosphatase activities were much lower in soil extracts than in soils.  相似文献   

15.
A dune area of 2 km2 in the Negev (Israel) with an annual precipitation of 90 mm was mapped. The soils developed from eolic and fluviatile sediments were Arenosols, Calcisols. Solonchaks, Regosols and Fluvisols. The Arenosols of the dunes are more homogeneous in texture and salt content than the soils of the interdunal corridors: Besides the Fluvisols, also the Calcisols, Solonchaks and Regosols are stratified due to episodic flooding by a wadi, and are rich in salts and lime. The soils are of minor development. Aggregation and enrichment of lime, enrichment and movement of salts, and the enrichment of organic substances are indications of soil formation. The distribution of salts within the profiles was calculated by their solubility. High and low soluble salts appear together in thin layers of Calcisols, Solonchaks and Fluvisols, while the most-soluble salts appear in deeper layers. The salts, therefore, must have accumulated by lateral movement, precipitation and temporal flooding. Influence of groundwater can therefore be excluded. The Arenosols also show the same sequence of salt types, indicating the accumulation due to precipitation and eolic mass movement. Abandoned arable land sites did not show any different soil characteristics from the unused soils. On the basis of the distribution of salts in the profiles and soil types genesis and classification of the soils is discussed.  相似文献   

16.
Abstract

This study aimed to clarify pedogenetic processes and classification of yellowish Brown Forest Soils according to the Classification of Forest Soils in Japan and the Yellow Brown Forest soils according to the Unified Soil Classification System of Japan in the warm and cool temperate forest of Kyushu district, Japan. In addition, the study aimed to clarify a problem with the Unified Soil Classification System of Japan. Thirty-six soil profiles of Brown Forest Soils, including 13 yellowish Brown Forest Soils and 15 Yellow Brown Forest soils, were compared with regard to their chemical properties and the relationship with climatic conditions was assessed. The yellowish Brown Forest Soils had thin A horizons, low pH and low levels of free oxides in the B horizons, and a low amount of silica and a high aluminum and iron to silica ratio. These features were related to the paleo reddish weathering. The immaturely developed A horizon of the yellowish Brown Forest Soils was caused by these weathered, low-activity substances. The Yellow Brown Forest soils had low levels of active iron oxides and a low activity ratio of free iron oxides compared with the Haplic Brown Forest soils in the same thermal climatic conditions. The activity ratio of free iron oxides was correlated to mean annual air temperature with the carbon stocks and with many other chemical properties. Accordingly, classification of Brown Forest Soils was clearer according to thermal climatic conditions. The activity ratio of free iron oxides can become an effective index that distinguishes Yellow Brown Forest soils under warm temperate lucidophyllous forest and Haplic Brown Forest soils under cool temperate broad-leaved deciduous forest with considerable vertical soil zonality.  相似文献   

17.
Abstract

Properties of sesquioxides, clay mineralogical composition, and charge characteristics of the soils developed under broad-leaved evergreen forests in Okinawa Prefecture (subtropical climate) and the Kinki District (warm temperate climate) were studied with special reference to their pedogenetic processes in order to reexamine the corresponding parameters of Brown Forest soils and related soils in Japan.

The soils in Okinawa Prefecture were characterized by a higher degree of weathering as compared to the soils in the Kinki District. Major differences involved the values of the Fed/Fet ratio for the soil samples throughout the profile, and those of the ratios of (Fed-Feo)/Fet, CEC/clay, and (Feo + Alo)/ clay and the content of CaO plus Na2O for the B horizon. The soils in the Kinki District did not show andic soil properties, nor Al translocation in the profile and, both of which were characteristic of Brown Forest soils developed under cool temperate climatic conditions at high altitudes in the same District.

The difference in the degree of weathering were reflected on the charge characteristics at the very surface of the soils, i.e., the surface of the particles of the soils in Okinawa Prefecture exhibited a lower reactivity as compared with those of the soils in the Kinki District.  相似文献   

18.
19.
20.
Summary The F contamination of soils and Lumbricus spp. around a site of long-term industrial emission in southern Germany was examined. Among total, water extractable, and HCl-soluble fractions, the latter most appropriately characterized anthropogenic F accumulation. Based on the HCl-soluble fractions from 88 sampling sites, a contamination map consisting of three zones was established. F accumulation in the calcareous soils of the area was restricted to the top 40–50 cm and can be explained by precipitation as CaF2. Earthworms (Lumbricus spp.) collected from the different zones reflected the F contamination well in the significant correlations found between total F in earthworms with and without gut and the corresponding soils. The bioaccumulation of F in earthworms is obvious, and may become hazardous for the earthworms themselves and for other animals feeding on contaminated soil and/or its fauna. A significantly higher F value was recorded in the linings of earthworm tubes than in the corresponding soil. F translocation by earthworm burrowing may be a mechanism of subsoil contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号