首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
施用生活污泥改良滩涂土壤理化性状的探讨   总被引:4,自引:2,他引:2  
采用符合土地改良用标准的生活污泥为材料,通过田间小区随机区组试验,研究了生活污泥的不同施用量(0、75、150、300、600 t/hm2)对滩涂土壤部分理化性质的影响。结果表明,施用生活污泥可显著改善滩涂土壤的理化性状。随着污泥施用量的提高,滩涂土壤的容重、密度、pH值逐渐下降,有机质、全氮、全磷、速效氮、速效磷、CEC均呈上升趋势,全钾、速效钾无显著变化。滩涂土壤的细菌、放线菌数量随污泥施用量的提高呈上升趋势。  相似文献   

2.
The residual effects of adding 40 t ha–1 sewage sludge (SL) to a degraded soil cropped with barley were investigated after 9 and 36 months in a field experiment under semiarid conditions. The principal soil properties were apparently still affected by SL amendment 9 months after application but the effects disappeared after 36 months. With respect to control soil humic acids (HAs), the SL-HA was characterized by higher contents of S- and N-containing groups, smaller contents of acidic groups, a prevalent aliphaticity, extended molecular heterogeneity, and smaller degrees of aromatic polycondensation and humification. Amendment with SL caused an increase in N, H, S and aliphaticity contents and a decrease in C/N ratios and O and acidic functional group contents in soil HAs isolated 9 months after SL application. These effects tended to decrease after 36 months, most probably because the slightly humified SL-HA was mineralised over time through extended microbial oxidation, while only the most recalcitrant components such as S-containing and aromatic structures were partially accumulated by incorporation into soil HA. Microbial biomass, basal respiration, metabolic quotient and enzymatic activities increased in soil 9 months after SL application, possibly because of increased soil microbial metabolism and enhanced mineralisation processes. After 36 months these properties returned to values similar to those of the unamended soil, presumably due to the loss of energy sources.  相似文献   

3.
Various urban and industrial sewage sludges were applied to a soil at two doses (50 and 100 t ha−1 y−1) during eight years in a field experiment. The soil was analysed at two depths (0–30 and 30–60 cm) for extractable cadmium and nickel. In general these trace metal increased with dosage. However, cadmium formed complexes with organic matter and nickel bound to iron and manganese oxides. Hence, the available fractions of these metals constituted a small proportion of the total content. The results obtained show a low risk of contamination due to the available fractions of these metals at sludges dosages of up to 100 t ha−1. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
造纸污泥堆肥对酸性土壤铝污染的影响   总被引:2,自引:0,他引:2  
通过盆栽试验,研究在砖红壤中施加富含铝盐的造纸污泥堆肥后,土壤-作物体系中的铝毒效应。试验结果表明:盆栽初期,添加造纸污泥堆肥各处理土壤中的总酸溶性铝和总单核铝浓度较CK呈显著上升趋势,并随堆肥用量的增加而增加;随着种植时间推移,各处理(除了CK)总酸溶性铝和总单核铝浓度显著降低,且在盆栽结束时各处理总酸溶性铝浓度均低于原砖红壤中总酸溶性铝浓度;在整个盆栽期间,总单核铝是土壤中活性铝的主要存在形态;添加堆肥的各处理玉米植株的根部和地上部分铝含量均显著小于CK,玉米的生长状况均优于CK,说明在酸性土壤中添加造纸污泥堆肥,能起到很好的肥效作用,且不会对玉米生长形成铝毒效应,其中10%为本试验的最佳配比;另外,土壤理化性质测定结果显示:添加造纸污泥堆肥能有效减缓土壤酸化、增加土壤有机质和有效磷含量,提高土壤质量。  相似文献   

5.
Abstract. Two field trials were established in 1991 to determine the effects on crop yield, N uptake, soil moisture content and heavy metal concentration of applying de-inked paper mill sludge (DPMS) over the period 1991 to 1993. In the first year, during decomposition of the DPMS, N immobilization occurred resulting in loss of cereal yield ( P < 0.05) at low rates of N fertilizer. Approximately 40 kg extra N fertilizer/ha was required per 100t DPMS/ha to compensate for this N immobilization. Soil volumetric moisture content was increased ( P < 0.001) by c. 20% at both sites by 200 and 300t DPMS/ha. DPMS did not significantly increase ( P > 0.05) soil concentrations of total Zn, Cu and Pb. Soil nitrate concentrations after harvest were reduced ( P < 0.01) by c. 17 mg N/kg per 100t DPMS/ha with increasing rates of DPMS up to 200 t/ha. In the second year following the DPMS application, there were no significant effects on grain yield indicating that very little or no N was immobilized. By the third year, the soil N supply was 7 kg N/ha higher where a single dressing of 100t DPMS/ha had been applied compared to the control. This resulted in an overall yield increase of 7% ( P < 0.10). Soil N supply was lower (N.S.) but crop yields were similar ( P > 0.05) to the control where single dressings of 200 and 300t DPMS/ha had been applied.  相似文献   

6.
In many regions worldwide, silvopastoral systems are implemented to enable sustainable land use allowing short, medium, and long‐term economic returns. However, the short‐term production in silvopastoral systems is often limited due to nonappropriate soil‐fertility management. This study evaluated the effects of two doses of lime (0 and 2.5 t CaCO3 ha–1) and three sewage‐sludge treatments (0, 200, and 400 kg total N ha–1 y–1 applied in 2 consecutive years) on soil characteristics (soil pH, soil organic matter [SOM], soil nitrogen, cation‐exchange capacity [CEC]), pasture production, and tree growth in a silvopastoral system of Populus × canadensis Moench in Galicia, northern Spain during 6 years after establishment. Soil pH increased during the experimental period for all treatments, although this effect was more pronounced after lime application. Changes in SOM and soil nitrogen content were not consistent over time, but sewage‐sludge application seemed to result in higher values. Higher CEC was found for treatments with lime and sewage‐sludge application. Following incorporation of lime and sewage sludge, pasture production was significantly enhanced (cumulative pasture production 51.9 t DM ha–1 for Lime/N400 compared to 39.0 t DM ha–1 for No lime/N0). This higher pasture production also affected tree growth due to more severe competition between pasture and tree resulting in slower tree growth. Liming and application of sewage sludge are relevant measures to improve soil fertility and thereby optimizing the overall production of silvopastoral systems. However, it is important not to overintensify pasture production to ensure adequate tree growth.  相似文献   

7.
Abstract. Restoration of landfill sites to a vegetated after-use is severely compromised if soil-forming materials (SFMs) have to be used as substitute growing media for the restoration cap, owing partly to their poorly-developed structure. The effects of crushed brick material (brick), composted green-waste organic matter (OM) and potassium chloride salt (KCl) in a clay SFM were assessed at the Brogborough Landfill Site (Shank Group plc) in the county of Bedfordshire, UK. Soil structure was characterized three times in a two-year experimental period through measuring drainage water release and aggregate stability and size distribution. Crushed brick and composted OM at 100 t ha−1 improved the ability of the clay to release water by drainage. In addition, the composted OM was associated with an increase in the size of stable aggregates, whereas the brick amendment reduced the overall aggregate stability. The KCl amendment had no consistent effect. Some beneficial structural improvements were thus associated with the brick and OM amendments, although these were rarely significant at the 5% level and the effects declined over time in the absence of vegetation and re-application. Nevertheless, incorporation of crushed brick and organic amendments may offer a potential structure-improving option in clay SFMs prior to vegetation establishment.  相似文献   

8.
The behaviour of metals mainly depends on soil p H, carbonate contents and contamination level, which should be considered for the management of contaminated soils. In this study, kitchen garden topsoils(0–25 cm) were sampled from the area around three smelters in France, with different Cd and Pb contamination levels. Effect of a phosphate amendment(a mixture of diammonium phosphate and hydroxyapatite) on the environmental availability and phytoavailability of Cd and Pb was evaluated by different chemical extractions and cultivating lettuce(Lactuca sativa L.), respectively. Changes in the distribution of Cd and Pb were found in most contaminated soils after phosphate amendment. An increase of Cd and Pb in the residual phase was highlighted in almost all carbonated contaminated soils, whereas a decrease of Pb in the exchangeable, water and acid-soluble phase was observed in most contaminated soils with the lowest carbonate contents. The concentrations of extractable Cd and Pb using calcium chloride and acetic and citric acids generally decreased after the soil amendment. Lettuces grown on amended soils were acceptable for human consumption as regard to Pb concentration. In contrast, some lettuces were unacceptable for human consumption, since the concentrations of Cd in the leaves were higher than the European legislation limit. Surprisingly, in carbonated soils with very low concentration of Cd, the Cd concentrations in lettuce reached up to the European legislation limit, making the lettuce unacceptable for human consumption.Our study highlighted the fact that the total metal concentration in soils does not always allow to predict the metal accumulation in the edible parts of vegetables in order to make a judgement about their acceptability or unacceptability for human consumption.  相似文献   

9.
The use of spent coffee grounds (SCG) as organic amendment is a triple solution: a reuse of this bio-residue (6 millions of tons per year), an increase in soil organic carbon (SCG contain 82% of carbohydrates and 13% of proteins) and a decrease in CO2 emissions into the atmosphere. Thus, we investigate the effect of SCG on soil and plants in an in vitro assay. The variables considered were SCG dose (2.5 and 10%), two agricultural soils (Calcisol and Luvisol), and four cultivation times (15, 30, 45 and 60 days). The chemical and physicochemical soil properties, SEM images and growth parameters were analyzed. The highest dose of SCG increased organic carbon, total N and available K and P by 286%, 188%, 45%, and 9%, respectively, while decreasing lettuce growth by 233% compared to control. The SEM study revealed that SCG particles are incorporated into soil aggregates and microorganisms grow over them, which is also corroborated by a 10-times increase of soil respiration rate. The behavior of both soils differs for some SCG effects. In conclusion, SCG have a great potential to increase soil fertility and further investigations are needed in order to improve the use of SCG as amendment.  相似文献   

10.
A synthetic, water‐soluble iron‐porphyrin [meso‐tetra(2,6‐dichloro‐3‐sulfonatophenyl) porphyrinate of Fe(III) chloride] has recently been proposed as a biomimetic catalyst in the process of oxidative polymerization of terrestrial humic acids, to increase their conformational stability and thus contribute to a reduction of soil CO2 release into the atmosphere. This study was aimed at investigating changes in selected soil chemical properties, CO2 efflux, and maize root morpho‐topology after the addition of iron‐porphyrin as a microcosm‐style experiment, located in a greenhouse. The addition of mature compost was also included as an experimental factor in order to reveal synergistic effects in regard to freshly added organic materials. Iron‐porphyrin determined a negligible effect on soil organic budget in both unplanted and planted microcosms. Conversely, the biomimetic catalyst was found to have significant and contrasting effects on soil respiration, apparently reflecting different iron porphyrin–plant–compost interactions. Consequently, iron‐porphyrin significantly reduced CO2 efflux from the bare (unplanted) soil, which was, conversely, stimulated in maize‐planted microcosms. Additionally, combined iron‐porphyrin and compost addition synergistically acted in increasing soil respiration in planted microcosms. Moreover, root biomass was increased with the addition of iron‐porphyrin, and a further effect on maize root morphology was noted when used in combination with compost; notably the length of coarse and fine roots increased. We hypothesized that the efficacy of iron‐porphyrin in reducing CO2 efflux from soil may be mediated by morphological changes in the plant‐root system.  相似文献   

11.
半干旱土添加有机改良剂后有机质的化学结构变化   总被引:1,自引:0,他引:1  
A 9-month incubation experiment using composted and non-composted amendments derived from vine pruning waste and sewage sludge was carried out to study the effects of the nature and stability of organic amendments on the structural composition of organic matter (OM) in a semi-arid soil.The changes of soil OM,both in the whole soil and in the extractable carbon with pyrophosphate,were evaluated by pyrolysis-gas chromatography and chemical analyses.By the end of the experiment,the soils amended with pruning waste exhibited less organic carbon loss than those receiving sewage sludge.The non-composted residues increased the aliphatic-pyrolytic products of the OM,both in the whole soil and also in the pyrophosphate extract,with the products derived from peptides and proteins being significantly higher.After 9 months,in the soils amended with pruning waste the relative abundance of phenolic-pyrolytic products derived from phenolic compounds,lignin and proteins in the whole soil tended to increase more than those in the soils amended with sewage sludge.However,the extractable OM with pyrophosphate in the soils amended with composted residues tended to have higher contents of these phenolic-pyrolytic products than that in non-composted ones.Thus,despite the stability of pruning waste,the composting of this material promoted the incorporation of phenolic compounds to the soil OM.The pyrolytic indices (furfural/pyrrole and aliphatic/aromatic ratios) showed the diminution of aliphatic compounds and the increase of aromatic compounds,indicating the stabilization of the OM in the amended soils after 9 months.In conclusion,the changes of soil OM depend on the nature and stability of the organic amendments,with composted vine pruning waste favouring humification.  相似文献   

12.
13.
Large concentrations of arsenic in soils, sediments, and freshwaters require risk assessment across the Central Alps and other regions. We measured arsenic concentrations in soil samples collected from 38 sites located in the Austrian Central Alps that had been contaminated due to mining and smelter activities and geogenic mineralization. Medians and ranges of arsenic concentrations (in mg kg—1) in the soil solid phase were: 77.1 (1—3000) for the total (Ast), 19.2 (0—726) for (NH4)2C2O4‐extractable (Aso), 2.35 (0—169) for (NH4)2HPO4‐extractable (Asp), and 0.143 (0—11.1) for (NH4)2SO4‐extractable (Ass) arsenic. Arsenic concentrations in soil solutions (Assol) collected from organic surface layers and mineral horizons at five selected sites using suction cups fitted with nylon membranes ranged from 0 to 171 μg l—1. Typically, the prevailing species of As in the soil solution was As(V). Assol was correlated with Ass (Assol = 0.279 + 15.6 Ass; r2 = 0.938; n = 17) and Ast (Assol = 1.272 + 0.043 Ast; r2 = 0.833; n = 17). Using these empirical models, Assol can be predicted quite accurately based on extraction with 0.05 M (NH4)2SO4 or total arsenic concentrations in the soil. Linking these models to drinking water standards (DWS) we propose soil standards for freshwater protection that vary for Ass (mg kg—1) between 0.62 (for DWS = 10 μg l—1 WHO) and 3.19 (for DWS = 50 μg l—1). Corresponding standards for Ast (mg kg—1) are 203 (DWS = 10 μg l—1) and 1133 (DWS = 50 μg l—1). These considerations demonstrate that changes in legislation on DWS may have dramatic impact on As concentrations in soil that are acceptable for groundwater protection.  相似文献   

14.
To reclaim a limestone quarry, 200 and 400 Mg/ha of municipal sewage sludge were mixed with an infertile calcareous substrate and spread as mine soil in 1992. Soil samples were taken 1 week later and again after 17 yr of mine soil rehabilitation so as to assess changes in the amount and persistence of soil organic carbon (SOC). Sludge application increased SOC as a function of the sludge rate at both sampling times. Seventeen years after the sludge amendments, the nonhydrolysable carbon was increased in the 400 Mg/ha of sludge treatment. The recalcitrance of SOC was less in sludge‐amended soils than in the control treatment at the initial sampling, but 17 yr later this trend had reversed, showing qualitative changes in soil organic carbon. The CO2‐C production had not differed between treatments, yet the percentage of mineralized SOC was less in the high sludge dose. When the size of active (Cactive) and slow (Cslow) potentially mineralizable C pools was calculated by curve fitting of a double‐exponential equation, the proportion of Cactive was observed to be smaller in the 400 Mg/ha sludge treatment. Soil aggregate stability, represented by the mean weight diameter of water‐stable soil aggregates, was significantly greater in mine soil treated with the high dose of sludge (18.5%) and SOC tended to be concentrated in macro‐aggregates (5–2 mm). Results suggest that SOC content in sludge‐amended plots was preserved due by (i) replacement of the labile organic carbon of sludge by more stable compounds and (ii) protection of SOC in aggregates.  相似文献   

15.
The influences of fly ash and fly‐ash–quicklime‐treated‐sludge mixtures (with fly‐ash doses of 40%, 80%, and 120% on dry‐weight basis) on the microbial numbers in soil and leachate were investigated by using 60 cm soil columns. Heterotrophic bacteria and total coliform numbers were determined in soil and leachate samples following an artificial rainfall event. The results indicated that land application of untreated sludge and fly‐ash–sludge mixtures appear to introduce large numbers of bacteria to leachates and soil. Although the numbers in leachates and soils were found to decrease with increasing ash ratios, they were still all significantly above the control levels. Application of alkaline‐stabilized and pasteurized sludge did not increase bacterial numbers significantly in soil and leachate. Distribution of heterotrophic bacteria through soil profile clearly showed no increase in soils amended with alkaline‐stabilized and pasteurized sludges. Additionally, no significant inhibitory effect of lignite fly ash on soil microbial population was observed.  相似文献   

16.
Continuous application of sewage sludge (SS) as a source of organic matter, may increase available heavy metals (HMs) up to their critical levels. As a consequence their uptake by plants, risks of accumulation in food chain and groundwater pollution increases. To evaluate the effects of perlite and SS on total content and available fraction of iron (Fe), manganese (Mn), lead (Pb), copper (Cu), nickel (Ni), cadmium (Cd) and zinc (Zn) over 45 and 90 days a completely randomized pot experiment was conducted. Treatments consisted of SS (0, 2 and 4%) and combined SS and perlite levels (1:1, 1.5:0.5 and 0.5:1.5% SS:perlite). Mean available Fe, Ni, Cd, Mn and Zn fractions decreased over time by 7–27%, whereas, total contents did not change. Available HMs in SS-treated soils increased by 0.5–25%; whereas, only total Zn, Cu and Pb concentrations increased with SS application (although concentrations fall in the range of critical levels). The lowest (1.6 fold) and highest (22.1 fold) increases obtained for available Cu and Zn, respectively. Perlite could mitigate the adverse effect of high rate application of SS on amplification of HMs extractability. Therefore, their concomitant applications can be suggested considering the perlite durability and its positive effects on soil physical properties.  相似文献   

17.
Heavy metals (HMs) in domestic sewage sludge, applied to land, contaminate soils. Phytoremediation is the use of plants to clean‐up toxic HMs from soil. Chelating agents are added to soil to solubilize the metals for enhanced uptake. Yet no studies report the displacement of HMs in soil with sludge following solubilization with chelates. The objective of this work was to determine the uptake or leaching of HMs due to a chelate added to a soil from a sludge farm that had received sludge for 25 y. The soil was placed in long columns (105 cm long; ?? 39 cm) in a greenhouse. Columns either had a plant (hybrid poplar; Populus deltoides Marsh. × P. nigra L.) or no plant. After the poplar seedlings had grown for 144 d, the tetrasodium salt of the chelating agent EDTA was irrigated onto the surface of the soil at a rate of 1 g per kg of soil. Drainage water, soil, and plants were analyzed for three toxic HMs (Cd, Ni, Pb) and four essential HMs (Cu, Fe, Mn, Zn). At harvest, extractable and total concentrations of each HM in the soil with EDTA were similar to those in soil without EDTA. The chelate did not affect the concentrations of HMs in the roots or leaves. With or without plants, EDTA mobilized all seven HMs and increased their concentrations in drainage water. Lower concentrations of Cd, Cu, Fe, Ni, and Zn in leachate from columns with EDTA and plants compared to columns with EDTA and no plants showed that poplars can reduce groundwater contamination by intercepting these HMs in the soil. But the poplar plants did not reduce Pb and Mn in the leachate from columns with EDTA. Concentrations of Cd and Pb in the leachate mobilized by EDTA remained above drinking‐water standards with or without plants. The results showed that a chelate (EDTA) should not be added to a soil at a sludge farm to enhance phytoremediation. The chelate mobilized HMs that leached to drainage water and contaminated it.  相似文献   

18.
Experimental plots were laid out in a limestone quarry in Girona (Catalonia, Spain) to test the effects of sewage sludge on the soil microarthropod populations. Two different doses of sludge (7·5 per cent and 15 per cent) were applied to fertilize soil that was used to restore a quarry after opencast mining. Mean annual arthropod density increased when sludge was applied, but the 15 per cent dose caused an impoverishment of the community structure and a decrease of the soil oribatid diversity. Julidae (Diplopoda) and large predators of the mite family Parasitidae (Mesostigmata) were the most depressed taxa, whereas some groups depending on the availability or quality of organic matter (such as the immature Coleoptera or the Uropodidae), or on water availability (such as Collembola) were stimulated. Among the oribatids, Punctoribates sp. was the most depressed, whereas the more common little Oppias were significantly favoured. The application of sludge at a dose of 15 per cent must be avoided in order to preserve the soil biodiversity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号