首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
Effect of soil formation on packing and on vertical stresses in soils The relationship between void ratio and vertical stress was investigated for 34 profiles (loess, glacial till, sands) mostly under forest and some under meadows. Development in terrestric forest soils obviously results in ?non overconsolidated”? structure. The stress distributions as a function of depth partly point to constant shear parameters, partly to differences in the profile, especially clear in the case of Podsol and Sandbraunerde. Whereas the absolute value of the void ratio can be explained by the soil-own shear parameters, the decrease of void ratio as a result of equal load increments will be explained by the extent of translation, which is necessary to increase the mean number of grain contacts.  相似文献   

2.
Depth‐dependent soil bulk density (BDS) is usually affected by soil‐specific factors like texture, structure, clay mineralogy, soil organic‐matter content, soil moisture content, and composition of soil solution and is also affected by external factors like overburden‐stress history or hydrological fluxes. Generally, the depth‐dependent BDS cannot be predicted or extrapolated precisely from a limited number of sampling depths. In the present paper, an easy method is proposed to estimate the state of soil mechanical stress by analyzing the packing characteristics of the profile using soil bulk‐density data. Results for homogeneous loess profiles exposed to the site‐specific climatic conditions show that the depth‐dependent relation of void ratio vs. weight of overburden soil can be described systematically so that deviations from the noncompacted reference state can be detected. We observed that precompaction increased from forest soils (reference) to agricultural soils with decreasing depth.  相似文献   

3.
The conduction of water by soil is fundamental to the way in which soils transport nutrients and pollutants into groundwater. The derivation of relations between water flow and void structure has relied on the implicit assumption that water flows through aligned unconnected cylindrical capillary tubes. We describe a three‐dimensionally interconnected model of void structure, called Pore‐Cor, which simulates the intrusion of a non‐wetting fluid and drainage of a wetting fluid. The model is calibrated by fitting it to the water retention curves of a sandy soil at four depths. The experimental drainage pressures are related to the radii of the entries to the voids by the Laplace equation. The necessities of using this equation, and of employing a simplified void geometry, introduce major approximations into the modelling. Nevertheless, the model is sufficiently precise and versatile to predict trends in other properties usefully. It is illustrated in this work by a close correlation between a predicted and experimental change in saturated hydraulic conductivity with depth, and a realistic unsaturated hydraulic conductivity curve. The saturated and unsaturated hydraulic values are shown to be much more realistic than those predicted by the aligned cylinders model. In addition, the simulations by Pore‐Cor indicate that the void network within the sandy soil is acting in a structured rather than a random manner. The Pore‐Cor model is currently being used to explain the matrix‐flow characteristics of tracers and pollutants.  相似文献   

4.
Soil deformation is increasingly important in crop production since nowadays weights of agricultural machines exceed the bearing capacity of most soils. Often this is counteracted by distributing the weight over more axles leading to an increase in wheeling frequency. Machine passages during one year can, depending on the crop and equipment used, range between two and five times for the majority of the field and up to twenty times and more for a wheeling track. These add up to hundreds of loading events for a crop‐rotation period. In this study, we investigated the effect of multiple loading with the same load in a cyclic‐compression test on soil‐pore‐volume change. The tests were conducted on homogenized soil samples with varying texture and undisturbed soil samples from a field experimental site comparing conventional and conservation‐tillage systems. Of particular interest was the question whether there is significant plastic soil deformation for soil stresses that remained sufficiently below the precompression stress, which is commonly neglected. Our results show that especially for cohesive soils, the assumption of fully elasticity in the recompression range may not be justified since those soils show distinct cyclic‐creep behavior. We found that deformation under cyclic loading follows a logarithmic law. We used the slope of the logarithmic fit of void‐ratio changes vs. loading cycles as a parameter to characterize the sensitivity of soils to cyclic compression. The results suggest that for characterizing the mechanical stability of soils that show cyclic creep, we have (with respect to long‐term deformation effects) to consider both precompression stress and cyclic compressibility.  相似文献   

5.
6.
The shrinkage of the peat soils that accompanies the soil moisture changes is an important feature of such soils and has strong influence on their physical attributes and soil water management. The relationships between soil moisture and volume are often described using shrinkage characteristic curves by relating void ratio (volume of voids per unit volume of solids) to moisture ratio (volume of water per volume of solids). For conversion of soil volume changes into cracks volume and subsidence, a dimensionless shrinkage geometry factor is used. The paper presents results of volumetric shrinkage behavior and the geometry factor at various loads in sedge and alder peat soils. The measurements were conducted on undisturbed soil samples without applying a load and with loads corresponding to field overburden. The shape of the shrinkage characteristics of such soils were completely different from those of clay soils. The application of loads did not significantly influence the shrinkage characteristics curve. The applied load strongly influenced on relationship between shrinkage geometry factor and the moisture ratio, showing higher values of subsidence and lower values of crack volume in comparison with unloaded conditions.  相似文献   

7.
Any soil deformation induced by agricultural machinery is transmitted three‐dimensionally and the “kneading effect” of tractor wheeling further rearranges soil particles and aggregates anisotropically. In this work, we investigated how heterogeneous soil structure remained 10 y after a complete wheeling of fields in 1995 with a single pass of 2 × 2.5 Mg and of 6 × 5 Mg on a silty loam Luvisol derived from loess. Control plots received no tractor wheeling. We also analyzed how soil physical properties responded to the tractor wheeling under two management systems: continuous conservation tillage (chisel plow = CS) with mulch cover and conventional tillage (plowing to 25 cm depth annually = CT). We compared three sampling dates: done before wheeling in 1995, after wheeling in 1995, and in 2004. Results showed that applying tractor wheeling in 1995 not only reduced total soil‐pore volume but also increased soil strength as expressed by precompression stress. The reduction of total pore volume at 30 cm depth was more pronounced in CS than in CT. After 10 y of continuous use of the two tillage systems, the precompression stress of the wheeled soils was greater in the vertical direction than in the horizontal direction. This anisotropy of soil strength and its load dependency were also more pronounced in CS than in CT. The effect of wheeling on the fluxes of gas and water was covered up by the effects of biochannels, causing a prevailing vertical passage. From this study, we conclude that heavy, agricultural machinery causes soil degradation, which is more evident in CS than in CT.  相似文献   

8.
Interaction between mechanically and hydraulically affected soil strength depending on time of loading Soil‐deformation analysis often only considers the direct effects of mechanical stress on changes in void ratio or pore functions while the interaction between hydraulic and mechanical processes is seldomly mentioned. Thus, we analyzed the effect of mechanical stress and time of soil settlement on changes in soil strength and the corresponding interactions between stress‐dependent changes in pore water pressure on precompression stress for a clayey silt. Disturbed samples with a bulk density of 1.4 g cm–3 and a water content of 25 g (100 g)–1 were compressed for four time steps (10–240 min) at eight stresses (20–400 kPa) with four replications. During the experiments, the changes of pore water pressure and void ratio were registered. With increasing time of stress application, we determined an increased soil strain. The higher the stress‐application time, the smaller gets the void ratio and the precompression stress value. Parallel to these variations in settlement, we also found changes in the pore‐water‐pressure values. This is a consequence of decreasing pore diameter while the water saturation increases. Thus, the proportion of neutral stresses on total stress increases which coincides with a change of water suction (= unsaturated) conditions up to even positive pore‐water‐pressure values (from less negative to positive pore water pressure values). From our experiments, we can conclude that the changes in pore‐water‐pressure values already occur at normal stress values smaller than the precompression stress. This underlines the increasing sensitivity of soil deformation processes close to the internal soil strength. The results support the idea, that in order to quantify the mechanical strength of structured unsaturated soils, we always have to determine the changes in pore‐water‐pressure values, too.  相似文献   

9.
Re‐cultivated soils (previously piled soils used as the final surface cover in renovation of open cast mine sites) are particularly susceptible to compaction, which is why a simple estimate of mechanical strength is necessary for land management. In this study, therefore, precompression stress (?6 kPa matric potential) was determined for a total of 20 soil layers from 9 repeatedly cultivated areas of arable land in North Rhine–Westphalia (Germany), along with the aggregate density/dry bulk density ratio (as a measure of density heterogeneity) and air capacity (as a soil ecological parameter). These results are contrasted with the determination of packing density. Packing density (PD) is an integrated parameter that combines various properties (aggregate size, cohesion of the soil structure, root distribution, biogenic macropores and aggregate arrangement) and is assessed visually in the field. Packing density levels range between 1 (very loose soil) and 5 (very highly compacted). There is a strongly negative relationship between packing density and both the aggregate density/dry bulk density ratio and air capacity. Conversely, mechanical precompression stress increases with packing density. Ranges of the individual parameters can be assigned to each of the packing density levels. Packing density level 3 represents an optimization with regard to mechanical soil stability whilst maintaining minimum air capacity requirements (5–8 Vol.‐%).  相似文献   

10.
《Soil Use and Management》2018,34(3):380-387
The measurement of bulk density in gravelly soils (>15% soil particles >2 mm) is more time‐consuming than for other soils. The excavation method, usually employed for measurement of bulk density in gravelly soils, includes excavating a void and calculating volume of the void from the weight and density of the material (e.g. sand and plaster cast) used to fill the void. A 3‐dimensional (3D) scanning system was developed to measure the volume of the void created when using the excavation method. The 3D scanning system combined a time‐of‐flight camera (Kinect ™), the KinectFusion algorithm, MeshLab and a portable computer to produce a 3D model of the void or plaster cast. Experiments were completed at three field sites where soil gravel (>2 mm) content ranged from 35 to 71% to assess the performance of the system. The void volume measured using the 3D scanning system was highly correlated with measurements using the plaster cast method (r  = 0.99). The cumulative time taken to measure soil bulk density using 3D scanning was significantly (<  0.001) less than for the sand replacement at 0–10, 10–20, 20–30 and 30–40 cm depth. The faster measurement of subsurface bulk density is a significant advantage of the 3D scanning system; the time taken to measure bulk density to 40 cm in 10 cm increments using the 3D scanning system was about one‐third of the sand method.  相似文献   

11.
Prediction of soil strength of arable soils and stress dependent changes in ecological properties based on soil maps Based on a database of at present 160 mechanical soil profile datasets, the site and horizon dependent mechanical soil strength expressed as precompression stress can be predicted by multiple regression analysis and used for documentation in maps at different scales. Stress dependent changes in air permeability or air capacity can be derived for the virgin compression stress range as well as the effect of stress propagation in soils or stress attenuation capacity and depth dependent changes of ecological properties. Thus, areas with defined mechanical sensitivity as a function of depth can be derived and recommendations for site adjusted farming techniques can be given. In addition it allows the agricultural machine industry to develop site adjusted machines to support the ideas of good farming practice, defined by the soil protection law of Germany.  相似文献   

12.
Soil acidification caused by long‐term nitrogen (N) fertilizer applications has been a growing concern for dryland crop production in both tilled and no‐till soils in the Pacific Northwest (PNW). Many no‐till soils have stratified soil pH in the 5–10 cm depth due to repeated N fertilizer applications at this depth. In the PNW, the practice of liming to correct low soil pH is complicated due to lack of affordable lime sources and because the inherent difficulty in ameliorating stratified soil acidity in no‐till systems. An intact soil‐column incubation study was conducted to investigate whether mixing lime materials with lignin‐containing black liquor—a by‐product from the pulp industry—could elevate soil pH change in both conventional and no‐till systems and expedite vertical downward movement of lime in no‐till system. Results indicate that mixing lime with black liquor has the potential to not only elevate the increase in soil pH in both conventional till and no‐till systems, but also accelerate downward movement of lime to correct soil pH below the soil surface. Mixing agricultural lime or super fine micro lime with black liquor increased soil pH to a depth of 25–30 cm within 147 days after surface application to a no‐till soil.  相似文献   

13.
Bulk density data of about 150 soil profiles from America, Europe and Asia were used to obtain the regression curve of void ratio ? as a function of vertical stress σz. For virgin soils straight lines were obtained if a linear scale was used for ? and a logarithmic scale for σz. The slope of these lines was steepest for forest zone soils, less steep in soils of high-grass zones and flattest in short-grass soils. This difference is attributed to varying amounts of loosening by bio- and cryoturbation. Thus the compaction state of virgin soils is that of normal compaction caused by pedogenic processes which are superimposed on previous strong overconsolidation due to desiccation. Against this background agricultural land use creates overconsolidation in the upper soil layers, which is particularly pronounced when the previous bioturbate action has been strong. Young soil deposits cannot develop normal compaction, because of the lack of previous drying of the whole profile.  相似文献   

14.
A 762‐mm‐diameter pipe 1,886 km long was installed to transfer crude oil in the USA from North Dakota to Illinois. To investigate the impact of construction and restoration practices on long‐term soil productivity and crop yield, vertical soil stresses induced by a Caterpillar (CAT) pipe liner PL 87 (475 kN vehicle load) and semi‐trailer truck (8.9 kN axle load) were studied in a farm field. Soil properties (bulk density and cone penetration resistance) were measured on field zones within the right‐of‐way (ROW) classified according to construction machine trafficking and subsoil tillage (300‐mm‐depth tillage and 450‐mm‐depth tillage in two repeated passes) treatments. At 200 mm depth from the subsoiled surface, the magnitude of peak vertical soil stress from trafficking by the semi‐truck trailer and CAT pipe liner PL 87 was 133 kPa. The peak vertical soil stress at 400 mm soil depth appeared to be influenced by vehicle weight, where the Caterpillar pipe liner PL 87 created soil compaction a magnitude of 1.5 greater than from the semi‐trailer truck. Results from the soil bulk density and soil cone penetration resistance measurements also showed the ROW zones had significantly higher soil compaction than adjacent unaffected corn planted fields. Tillage to 450 mm depth alleviated the deep soil compaction better than the 300‐mm‐depth tillage as measured by soil cone penetration resistance within the ROW zones and the unaffected zone. These results could be incorporated into agricultural mitigation plans in ROW construction utilities to minimize soil and crop damage.  相似文献   

15.
Methods are described for measuring the changes in the horizontal and vertical distribution of packing state and cone resistance following the passage of wheels and tracks over prepared beds of soil. A gamma-ray transmission system was employed with automatically controlled scanning in a 2 × 2 cm grid in soil sections of 1.08 m length by 0.3 m depth, using a scintillator/photomultiplier detector assembly with stabilized pulse-height analysis and magnetic tape recording. Changes in cone resistance were measured in a 2 cm (vertical) by JO cm (horizontal) grid in a section 1.4 m length by 0.5 m depth using an electrically driven penetrometer with load and displacement simultaneously recorded on an XY plotter and magnetic tape. Results were analysed and displayed graphically by computer with packing state expressed by a number of optional properties (dry bulk density, total porosity, air-filled porosity, void ratio, or specific volume). Pronounced differences in packing state and soil strength were observed as a result of the passage of a two-wheel-drive tractor, with and without cage wheels, and a crawler tractor. Adding a cage wheel decreased slightly the compaction below the rubber tyre, but formed a partially compacted zone below the cage wheel. Increases of dry bulk density and soil strength were recorded below the crawler track but the values for these properties did not reach the maximum values found below the rubber tyre.  相似文献   

16.
Fragipan is a widely distributed subsoil horizon that induces severe limitations to plant growth and land use, mainly because of its high bulk density. In this work, we evaluated the pore‐size distribution through the analysis of the cumulative curve of intruded mercury volume in some soils with fragipan horizons. This approach provides information also about the arrangement of particles, thus we compared the results obtained for fragipan and nonfragipan horizons to relate porosity and particle arrangement with the specific physical properties of fragipans. The total volume of intruded mercury did not allow to discriminate between fragipan and nonfragipan horizons. However, from the variation of the pore volume as a function of the radius, two modal classes of pores were found, coarse and fine, respectively. The fine‐pore class arose from the arrangement of clay particles, and its volume was correlated to clay contents (r = 0.787) and to clay packing density (r = –0.621). The clay fractions in fragipans were less densely packed than in the other B horizons, even if they had similar clay contents. The coarser‐pore modal class is known to arise from the interactions between clay, silt, and sand particles, and its volume was different among horizons. Fragipan had a low volume of this modal pore class. In addition, a packing density for the coarser phase of 0.74, corresponding to a rhombohedral packing, was found only in fragipans. Thus, the low permeability and high bulk density of fragipans are linked to specific arrangements of the particles: an open packing of the clay phase is associated to an extremely dense packing of silt and sand. This combination is not present in any other soil horizon.  相似文献   

17.
Subsoil compaction is persistent and can affect important soil functions including soil productivity. The aim of this study was to develop recommendations on how to avoid subsoil compaction for soils exposed to traffic by machinery at field capacity. We measured the vertical stress in the tyre–soil contact area for two traction tyres at ca. 30‐ and 60‐kN wheel loads on a loamy sand at field capacity. Data on resulting stress distributions were combined with those from the literature for five implement tyres tested at a range of inflation pressures and wheel loads. The vertical stress in the soil profile was then predicted using the Söhne model for all tests in the combined data set. The predicted stress at 20 cm depth correlated with the maximum stress in the contact area, tyre inflation pressure, tyre–soil contact area and mean ground pressure. At 100 cm depth, the predicted vertical stress was primarily determined by wheel load, but an effect of the other factors was also detected. Based on published recommendations for allowable stresses in the soil profile, we propose the ‘50‐50 rule’: At water contents around field capacity, traffic on agricultural soil should not exert vertical stresses in excess of 50 kPa at depths >50 cm. Our combined data provide the basis for the ‘8‐8 rule’: The depth of the 50‐kPa stress isobar increases by 8 cm for each additional tonne increase in wheel load and by 8 cm for each doubling of the tyre inflation pressure. We suggest that farmers use this simple rule for evaluating the sustainability of any planned traffic over moist soil.  相似文献   

18.
Influence of temporary stockpiling on the initial development of restored topsoils Due to increasing construction and open‐cast mining activities on fertile agricultural land, excavation, stockpiling, and restoration of soils have become important issues in soil protection. In this study, we performed a restoration experiment to investigate how the conditions during stockpiling may influence initial soil development and plant growth on a restored site. Four topsoils, which originated from two depths (with uninhibited and inhibited aeration) of a nontrafficked and a trafficked topsoil deposit, were repacked in strips and sown with three meadow‐seed mixtures in strips perpendicular to the soil strips. During stockpiling as well as during the first 2 years after restoration, we assessed the physical and mechanical properties of the topsoils and (after restoration) also plant growth. None of the investigated properties of the topsoils was influenced by the depth in the deposit. In contrast, the coarse porosity and compression index were lower, whereas the bulk density and precompression stress were higher in the trafficked than in the nontrafficked topsoil deposit. However, these differences largely disappeared already in the course of soil restoration. Contrary to our expectations, the plants grew better on the soil of the trafficked topsoil deposit than on the soil of the nontrafficked topsoil deposit in the year of restoration. This might be attributed to the extremely dry and hot summer of that year. In the course of the 2 years following restoration, also the differences in plant growth tended to disappear. The remaining differences in bulk density and plant growth could not be attributed to differences in stockpiling conditions. The results suggest a re‐examination of current soil restoration guidelines. The maximum permitted stockpiling heights for topsoils might be increased in order to reduce the areas required for temporary stockpiling.  相似文献   

19.
Abstract

A column study was conducted to determine the effect of city compost, lime, gypsum, and phosphate on cadmium (Cd) mobility in three well‐recognized benchmark soils of India [viz., (Islamnagar) Vertisol, (Amarpur) Inceptisol, and (Khala) Alfisol]. Columns made of PVC were filled with soil treated with different treatment doses [viz., 0.5% city compost, 1% city compost, 2% city compost, 2.5 t lime/ha, 5 t lime/ha, 2.5 t lime/ha+0.5% city compost, 2.5 t gypsum/ha, 2.5 t gypsum/ha+0.5% city compost, and 100 kg P2O5/ha as potassium phosphate (KH2PO4). The columns were leached with 100 mg L?1 Cd under saturated condition. The amount of water moving through the soils was measured as the pore volume. A delayed breakthrough curve (BTC) of Cd in the presence of lime has been observed in all the studied benchmark soil series. Among the treatments, lime application reduced the movement of Cd from surface soil to lower depth of soil to a large extent resulted in 9, 25, and 45% more retention of Cd in surface soil of the Islamnagar, Amarpur, and Khala series respectively. Explanation for reduced Cd mobility in limed soil can be derived from pH changes of soils. In comparison to control soil, phosphate application caused 6, 21, and 30% more retention of Cd in surface soil in the Islamnagar, Amarpur, and Khala series, respectively. Combined application of lime and city compost reduced the movement of Cd in the soil profile. It appears that organic matter controls the sorption of Cd in soils. The amount of Cd sorbed increased with increasing organic carbon content, but gypsum application may leach Cd beyond the root‐zone depth. A rapid breakthrough curve was observed under gypsum‐treated soils. Retardation factor revealed that a somewhat lower degree of Cd retention occurred in the Khala series, which might possibly be attributed to less clay content and low pH. Overall, the column study indicated that total Cd accumulation occurred up to depths of 5–7.5 cm, 7.5–10 cm, and 10–15 cm in soils of Islamnagar, Amarpur, and Khala series, respectively.  相似文献   

20.
Policy makers rely on risk‐based maps to make informed decisions on soil protection. Producing the maps, however, can often be confounded by a lack of data or appropriate methods to extrapolate using pedotransfer functions. In this paper, we applied multi‐objective regression tree analysis to map the resistance and resilience characteristics of soils onto stress. The analysis used a machine learning technique of multiple regression tree induction that was applied to a data set on the resistance and resilience characteristics of a range of soils across Scotland. Data included both biological and physical perturbations. The response to biological stress was measured as changes in substrate mineralization over time following a transient (heat) or persistent (copper) stress. The response to physical stress was measured from the resistance and recovery of pore structure following either compaction or waterlogging. We first determined underlying relationships between soil properties and its resistance and resilience capacity. This showed that the explanatory power of such models with multiple dependent variables (multi‐objective models) for the simultaneous prediction of interdependent resilience and resistance variables was much better than a piecewise approach using multiple regression analysis. We then used GIS techniques coupled with an existing, extensive soil data set to up‐scale the results of the models with multiple dependent variables to a national level (Scotland). The resulting maps indicate areas with low, moderate and high resistance and resilience to a range of biological and physical perturbations applied to soil. More data would be required to validate the maps, but the modelling approach is shown to be extremely valuable for up‐scaling soil processes for national‐level mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号