首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field lysimeter study was conducted to investigate the effect of initial soil salinity and salinity level of brackish subirrigation water on tuber weight and tuber size of three potato (Solanum tuberosum L.) cultivars (Kennebec, Norland and Russet Burbank) under simulated arid conditions. Both saline and non-saline initial soil conditions were simulated in a total of 36 lysimeters. Eighteen lysimeters were flushed with fresh water (0.2 dS/m), while the remaining 18 lysimeters were flushed with brackish water (2 dS/m). For each soil condition, two subirrigation water concentrations, 1 and 9 dS/m, were used in nine lysimeters each. For each subirrigation water treatment, three potato cultivars were grown. In all lysimeters, water table was maintained at 0.4 m from the soil surface. Arid conditions were simulated by covering the lysimeter top with plastic mulch, allowing the potato shoots to grow through a cut in the mulch. The average root zone salinities (ECw) were found to be 1.2 and 1.5 dS/m in non-saline lysimeters subirrigated with 1 and 9 dS/m waters, respectively. The corresponding salinities were 3.2 and 3.7 dS/m in the saline lysimeters. Across cultivars, there was no significant effect of either initial soil salinity or subirrigation water salinity on total tuber weight. However, the weight of Grade A tubers was higher in non-saline soil than in saline soil. Kennebec and Russet Burbank Grade A tuber weights were not affected by the initial soil salinity. On the contrary, a significant reduction in Grade A and total tuber weight under initially saline soil was evident for the Norland cultivar.  相似文献   

2.
Saline groundwater is often found at shallow depth in irrigated areas of arid and semi-arid regions and is associated with problems of soil salinisation and land degradation. The conventional solution is to maintain a deeper water-table through provision of engineered drainage disposal systems, but the sustainability of such systems is disputed. This shallow groundwater should, however, be seen as a valuable resource, which can be utilised via capillary rise (i.e. sub-irrigation). In this way, it is possible to meet part of the crop water requirement, even where the groundwater is saline, thus decreasing the need for irrigation water and simultaneously alleviating the problem of disposing of saline drainage effluent. Management of conditions within the root zone can be achieved by means of a controlled drainage system.A series of lysimeter experiments have permitted a detailed investigation of capillary upward flow from a water-table controlled at shallow depth (1.0 m) under conditions of moderately high (5 mm/day) evaporative demand and with different levels of salinity. Experiments were conducted on a wheat crop grown in a sandy loam soil. Groundwater salinity was held at values from 2 to 8 dS/m while supplementary (deficit) irrigation was applied at the surface with salinity in the range 1-4 dS/m.Our experiments show that increased salinity decreased total water uptake by the crop, but in most treatments wheat still extracted 40% of its requirement from the groundwater, similar to the proportion reported for non-saline conditions. Yield depression was limited to 30% of maximum when the irrigation water was of relatively good quality (1 and 2 dS/m) even with saline groundwater (up to 6 dS/m). Crop water productivity (grain yield basis) was around 0.35 kg/m3 over a wide range of salinity conditions when calculated conventionally on the basis of total water use, but was generally above 1.0 kg/m3 if calculated on the basis of irrigation input only.  相似文献   

3.
The salt and water balances at Konanki pilot area in Nagarjunasagar project right canal command in Andhra Pradesh State of India were analysed using SALTMOD. The model was calibrated by using two-year data collected in the pilot area. From the calibration, the leaching efficiencies of the root and transition zone were estimated as 65% and the out going natural sub-surface drainage was determined as 50 mm per year. The model predicts that the root zone soil water salinity will be reduced to 4, 3 and 2.5 dS/m (from an initial value of 11.5 dS/m) during the first, second and third seasons within six years after installation of the drainage system. Next, the situation prior to the installation of the drainage system was reconstructed using the model. Finally, sensitivity analyses were made to study the effects of varying drain depth, spacing and amount of irrigation water applied on root zone salinity and depth to water table. Here, the model predicted that closer than the present spacing or further deepening of the drains from the present depth of 1 m to 1.4 m will not have any better influence on the reduction of the root zone salinity than in the present situation. These simulations also suggested that by applying 80% of the present amount of irrigation water, the root zone salinity can be brought down to 5 and 4 dS/m by second and fourth years, respectively and this will in turn reduce the problem of water logging and salinity to some extent.  相似文献   

4.
Two-year lysimeter experiments were conducted to determine groundwater contributions by safflower (Carthamus tinctorius L.) crop. The plants were grown in twenty columns each with a diameter of 0.40 m packed with Silty Clay soil. The experiments were carried out in a complete randomized blocks design with four replicates. In each experiment, five treatments were applied by maintaining groundwater salinity to a control treatment with EC 1 dS/m, while the groundwater salinity of the other treatments was 2, 5, 8 and 10 dS/m, and 0.8 m water table level, respectively. The use of groundwater as a part of crop evapotranspiration was characterized by using daily measurements of the water level in Mariotte tubes. The extra magnitude of irrigation water requirement for each treatment was applied by water with EC of 1 dS/m. The results of experiments showed that for different control treatments with 1 dS/m, 2, 5, 8 and 10 dS/m, the groundwater contributions were achieved as 59, 51, 38, 32 and 19% of the total plant water requirements, respectively.  相似文献   

5.
A 3-year column lysimeter experiment was conducted with cotton (Gossypium hirsutum L.) to determine the influence of shallow groundwater salinity on groundwater uptake. Nonsaline (0.3 dS m−1) irrigation water was applied at 7-day intervals throughout the growing season, with the cotton allowed to use stored soil water and groundwater as root water uptake permitted. Groundwater salinities ranging from 0.3 dS m−1 electrical conductivity (ECw) to 30.8 dS m−1 were evaluated. Water for leaching was applied following harvest each year in amounts adequate to produce a nonsaline soil profile at the beginning of each year. Equations were developed to describe relationships between day of year, growth stage or growing degree days and shallow groundwater uptake. Groundwater contributed about 30 to 42% of seasonal total evapotranspiration (ET) in treatments with groundwater salinity ≤ 20 dS m−1 but declined to 12 to 19% of total ET at higher salinity levels.  相似文献   

6.
Changes in the hydrologic balance in many irrigation areas, including those in the Murray Basin, Australia, have resulted in high watertables and salinity problems. However, where suitable aquifers exist, groundwater pumping and subsequent irrigation application after mixing with surface waters (referred to as conjunctive water use) can control salinity and watertable depth and improve productivity of degraded land. In order to assess where conjunctive water use will successfully control salinity, it is necessary to estimate the effects of pumped groundwater salinity on rootzone salinity. A simple steady rate model is derived for this purpose from mass conservation of salt and water. The model enables an estimate to be made of rootzone salinity for any particular salinity level of the groundwater being used in conjunction with surface water; this enables calculation of the required crop salt tolerance to prevent yield reductions. The most important input parameters for the model are groundwater salinity, the annual depth of class A pan evaporation, the annual depth of rainfall, the salinity of irrigation water, and a leaching parameter. For model parameters nominated in this paper, where groundwater salinity reaches 5 dS/m a crop threshold salt tolerance greater than 1.6 dS/m is required to avoid yield reductions. Where groundwater salinity approaches 10 dS/m, a crop threshold tolerance of 3 dS/m is required. Whilst the model derived indicates that rootzone salinity is sensitive to groundwater salinity, rootzone salinity is insensitive to leaching for leaching fractions commonly encountered (0.1 to 0.4). The insensitivity to leaching means that it could be expected that similar yields could be attained on heavy or light textured soils. This insensitivity also implies that there is no yield penalty from increasing the mass of pumped salt by pumping to achieve maximum watertable control in addition to leaching. The model developed is also used to estimate yield reductions expected under conjunctive use, for any particular levels of groundwater salinity and crop salt tolerance.  相似文献   

7.
In situ use of groundwater by alfalfa   总被引:1,自引:0,他引:1  
Disposal of saline drainage water is a significant problem for irrigated agriculture. One proposal is to recycle drainage water to irrigate salt tolerant crops until the volume has been reduced sufficiently to enable final disposal by evaporation. Part of this concept requires in situ crop water reuse from shallow groundwater; and data is needed to quantify the potential use of groundwater by alternative crops. A column lysimeter study was initiated to determine the potential crop water use from shallow groundwater by alfalfa as a function of groundwater quality and depth to groundwater. The results demonstrated that up to 50% of the crop water use could be met from shallow groundwater (<1.2 m) with an electrical conductivity less than 4 dS/m, and that the potential crop water use from deeper groundwater (2 m) increased over the years. The columns with high salinity (>4 dS/m) in the shallow groundwater experienced increased salinity in the soil profile with time, which resulted in reduced crop water use from shallow groundwater. Yields decreased with time as the groundwater salinity increased and periodic leaching will be required for in situ use to be a sustainable practice. Statistical analysis of crop yield demonstrated that there was significant use of groundwater with an EC of 6 dS/m for a few years.  相似文献   

8.
In order to study the effects of drip irrigation with saline water on waxy maize, three years of field experiments were carried out in 2007-2009 in North China Plain. Five treatments with average salinity of irrigation water, 1.7, 4.0, 6.3, 8.6, and 10.9 dS/m were designed. Results indicated that the irrigation water with salinity <10.9 dS/m did not affect the emergence of waxy maize. As salinity of irrigation water increased, seedling biomass decreased, and the plant height, fresh and dry weight of waxy maize in the thinning time decreased by 2% for every 1 dS/m increase in salinity of irrigated water. The decreasing rate of the fresh ear yield for every 1 dS/m increase in salinity of irrigation water was about 0.4-3.3%. Irrigation water use efficiency (IWUE) increased with the increase in salinity of irrigation water when salinity was <10.9 dS/m. Precipitation during the growing period significantly lightened the negative impacts of irrigation-water salinity on the growth and yield. Soil salinity in depth of 0-120 cm increased in the beginning of irrigation with saline water, while it was relatively stable in the subsequent year when salinity of irrigation water was not higher than 4.0 dS/m and the soil matric potential (SMP) at 0.2 m directly underneath the drip emitter was controlled above −20 kPa.  相似文献   

9.
Salt tolerance of mature Williams Bon Cretien pear trees was assessed in a field trial on a duplex, slowly permeable clay loam. The trees were irrigated with a range of salinities; electrical conductivity of irrigation water (ECw) of 0.2 to 1.4 dS/m by flood for seven years or 0.2 to 2.1 dS/m by microjet sprinklers for nine years. Water-table levels were maintained below 3 m by a groundwater pump. Yield and leaf ion content were assessed during the treatment period. Aspects of growth and physiology were monitored in the 0.2 and 2.1 dS/m microjet treatments during the seventh irrigation season.Soil profile salinities varied between 3.0 and 4.3 dS/m for the most saline flood treatment and from 1.5 to 2.6 dS/m for the most saline microjet treatment. Soil sodicity (sodium absorption ratio) increased during the experiment, reaching a maximum of 9 in the most saline treatments. The salinity treatments caused reduced yields after seven years. In the most saline treatment (ECw = 2.1 dS/m, microjet-irrigated), yield decreased to about 60 and 50% of the control in the eighth and ninth years, respectively, and 40% of trees were dead in the ninth year. Leaf ion concentrations (in January) of the most saline treatment were at excess levels (>0.1% Cl and >0.02% Na) from 1982 to 1990. There were significant (P<0.01) negative linear relationships between yield in 1990 and leaf Na and Cl, measured both in 1990 and in 1989. During the seventh season of saline irrigation, lateral shoot growth was reduced, leaves and fruit were smaller and leaf fall was earlier in the 2.1 dS/m treatment compared with the control. Dawn and midday water potential and osmotic potential were not significantly affected by saline irrigation. Midday CO2-assimilation rates (A) and leaf conductance to water vapour diffusion (g) were similar for 2.1 dS/m irrigated and control trees, however there was a trend towards a reduction in A and g of these salt-treated trees late in the irrigation season when leaf Na and Cl had increased to 250 and 240 mM (tissue water basis) respectively.  相似文献   

10.
进行暗管排水条件下微咸水灌溉田间试验,设置3种暗管埋深,分别为80 cm(D1)、120 cm(D2)以及无暗管排水(D0),3种微咸水浓度,其电导率分别为0.78 dS/m(S1),3.75 dS/m(S2)和6.25 dS/m(S3),共9个处理,每个处理3组重复.试验结果表明:暗管排水措施可以有效排除微咸水灌溉过程中土壤中累积的盐分;在玉米全生育期内,暗管埋深D1条件下,3种浓度微咸水S1,S2和S3灌溉时根系土壤电导率分别下降了39.00%,31.56%和29.43%,暗管埋深D2条件下,根系土壤电导率则分别下降了31.91%,18.08%和7.44%;夏玉米干物质累积量、穗棒累积量和穗棒质量分配率及最终产量均随着微咸水浓度的升高而降低;在相同微咸水浓度下,不同暗管埋设条件下的夏玉米最终产量从大到小依次为D1,D2,D0;3种暗管埋设条件下的作物需水量从大到小依次为D0,D2,D1的规律;暗管埋深80 cm的处理(D1)下夏玉米水分利用效率最高,而未埋设暗管的处理(D0)水分利用效率最低;当暗管埋设条件一定时,夏玉米水分利用效率随微咸水浓度的升高呈逐渐降低的趋势.  相似文献   

11.
The effect of irrigation with saline (0.1-7.6 dS m-1) water on the growth of six cultivars of lucerne was assessed over four irrigation seasons at Tatura, Victoria, Australia. Measurements made in the study included shoot dry matter production, shoot ion concentrations, flowering incidence, root distribution and soil salinity and sodicity levels. After four seasons, soil ECe levels had risen to 4.2 dS m-1 at the beginning of the irrigation season and this increased to around 6 dS m-1 at the end of the season for the highest salinity irrigation treatment (7.6 dS m-1). The soils in the two most saline irrigation treatments also became sodic (SAR1:5>3) by the third and fourth seasons. By the second season, cultivars differed significantly in salt tolerance as defined by the rate of decline in dry matter production. The cultivars CUF 101 and Validor were consistently the most salt-tolerant cultivars, although cv. Southern Special produced the greatest amount of dry matter over all salinity treatments. Root densities at depths from 0 to 60 cm were greater under saline (2.5 and 7.6 dS m-1) than under non-saline conditions (0.1 dS m-1). Flower production was increased by salinity. It was concluded that, despite the presence of intraspecific variation for salt tolerance, it is detrimental to irrigate lucerne with water at electrical conductivities greater than 2.5 dS m-1 on a red-brown earth in southern Australia.  相似文献   

12.
Summary Many irrigated lands in semi-arid regions of the world are underlain with saline high water tables. Water management is critical to maintain crop productivity under these conditions. A multi-seasonal, transient state model was used to simulate cotton and alfalfa production under various irrigation management regimes. The variables included in-season water application of 1.0 or 0.6 potential evapotranspiration (PET), and 18 or 33 cm pre-irrigation amounts for cotton. The water table was initially at a 1.5m depth and a 9 dS/m salinity. A impermeable lower boundary at 2.5 m depth was imposed. Irrigation water salinity was 0.4 dS/m. Climatic conditions typical to the San Joaquin Valley of California were used for PET and precipitation values. The simulations were for no-lateral flow and also lateral flow whereby the water table was raised to its initial level prior to each irrigation event. Uniform application of 1.0 PET provided for relative cotton lint yields and alfalfa yields of 95% or more for at least 4 years. In-season irrigation of cotton with 0.6 PET had higher yields when associated with a 33 cm rather than an 18 cm pre-irrigation. Lateral flow provided for higher cotton lint yields production than the no-lateral flow case for each pre-irrigation treatment. The beneficial effects of lateral flow diminished with time because of the additional salt which accumulated and became detrimental to crop production. Substantial alfalfa yield reductions occurred after the first year when irrigation was set at 0.6 PET regardless of other conditions. Evaporation losses from the soil during the cotton fallow season were higher when the soil water content entering the fallow season were higher.Research was supported by the University of California Salinity/ Drainage Task Force  相似文献   

13.
A field experiment was conducted for 10 years in the Nile Delta of Egypt to quantify the benefit of subsurface drainage on crop yield. During three crop rotations, subsurface drains at a spacing of 20 m and a depth of 1.5 m doubled the yield of cotton and rice and increased the yield of wheat and clover by 50%. No significant enhancement in crop yield was found from placing various envelope materials around the drains compared to no envelope. Drains of 75 mm diameter resulted in significantly lower yields (20% less) for cotton and rice than drains of 100 mm diameter but there were no yield differences for wheat and clover. Applying 10 Mg/ha of gypsum and deep plowing (25 cm deep) improved yields from 5 to 19% for all crops, cotton and clover having the largest yield improvement. Soil salinity to a depth of 1.5 m was reduced from an average 5.3–2.2 dS/m after 1 year of drainage without additional water being applied beyond the normal irrigation amounts and rainfall.  相似文献   

14.
Eight-year-old Murcott orange trees grown in greenhouse lysimeters filled with sandy soil were subjected to irrigation with saline water to investigate the influence of salinity on daily evapotranspiration (ET). The study was conducted in Japan from 1 August to 15 September 2000. The study duration was divided into three periods of about 2 weeks each. In period I, all lysimeters planted with a tree were irrigated with 60 mm of non-saline water at the water content of 70% of field capacity (FC). Salinity treatments for period II started on 14 August. The treatments during period II were as follows: Lysimeter 1 (L1) had 32 mm non-saline water with an electrical conductivity (ECI) of 1.0 dS/m applied. At the same time Lysimeter 2 (L2) had 32 mm of saline water with an ECI of 8.6 dS/m applied when the water content decreased to 70% of FC. Lysimeter 3 (L3) had 16 mm saline water (ECI=8.6 dS/m) applied at 85% of FC. The irrigation amounts during period II were equal to those corresponding to 1.2 times of water required to reach FC. Treatments in period III were the same as in period I.Daily ET was similar for all weighing lysimeters during period I. The average relative ET for L2 and L3 with respect to L1 (L2/L1 and L3/L1) were similar during this period, with a mean value of 0.99. During period II, ET from L1 was consistently higher than that from L2 and L3. In addition, L3 with a higher irrigation frequency because of irrigation at higher soil water content resulted in higher ET than L2. The average relative ET of period II was 0.71 and 0.88 for both L2 and L3. During the last half of period III, reductions occurred in the ET differences between the saline treatments (L2 and L3) and non-saline control (L1).Evaporation rates from soil did not exceed 0.7 mm per day. Transpiration rates from L1, L2 and L3 during period II varied between 6.3 and 3.1 mm per day, 4.5 and 2.2 mm per day, and 5.8 and 3.0 mm per day, respectively. The results reflected a tangible difference of water extraction by roots from individual soil layers. Maximum water uptake by these trees was observed at layer of 30–60 cm. Nevertheless, no clear differences in water extraction pattern between trees were observed.Approximately, 95% of drainage occurred during the first 2 days following irrigation. The electrical conductivity of soil water (ECS) and the electrical conductivity of drainage water (ECD) for the saline water treatments (L2 and L3), compared to the control (L1) were significantly different during period II. ECS values were 2–5 times higher in saline treatments compared to the control treatment. After irrigating trees with saline water, ECS increased from 5 to 14 and 16 dS/m in L2 and L3, respectively. Similarly, in both saline treatments, ECD values were greatly increased after irrigation. During period III, ECD values increased from 5 to 8 dS/m in L2, and from 3 to 11 dS/m in L3. By contrast, ECS declined from 14 to 5 dS/m in L2, and from 16 to 3 dS/m in L3 over the same period.  相似文献   

15.
Leaf chemical composition, growth and water use of Eucalyptus camaldulensis (Lake Albacutya provenance) were measured in the 4th year of a split-plot salinity by nutrition trial. The main plot consisted of irrigating with five different water salinities: 0.5 dS/m (S0.5), 2 dS/m (S2), 5 dS/m (S5), 7.5 dS/m (S7.5) and 10 dS/m (S10). The subplot treatments consisted either of annual additions of 200 kg N and 100 kg P per hectare (+ N + P) or no addition of nutrients (– N – P). Irrigation with water from a drainage system (treatments S2, S5, S7.5 and S10) added about a further 100 kg N/ha annually. Leaf concentrations of N and P were higher in the + N + P treatments. In S0.5, nutrient addition stimulated growth. In + N + P treatments, raising the irrigation salinity from 0.5 to 2.0 dS/m increased leaf Na and decreased the growth rate, however, further increases in salinity affected neither leaf Na nor growth. In – N – P, growth rate depression due to inadequate nutrition was overcome in S2 and S5 by the 100 kg/ha of N in the drainage water. At higher salinities, the N added by drainage water did not overcome the effect of inadequate nutrition. On days when the reference crop evapotranspiration (ETo) was less than 3 mm/day, the correlations between water use of trees in litres per day and ETo and between water use of trees in litres per day and the basal area of the tree butt were highly significant. On days when the ETo was 3 mm/day or greater, the correlation between tree water use and basal area was highly significant, but that between tree water use and ETo was not significant. Received: 15 March 1996  相似文献   

16.
Summary The salt tolerance of mature Santa Rosa plum trees was assessed on 20-year-old trees grown in the San Joaquin Valley of California. The experimental design consisted of six levels of irrigation water salinity (electrical conductivities of 0.3 to 8 dS/m) replicated five times with each replication consisting of ten trees. Salinity treatments imposed in March 1984 did not influence tree yields harvested in June 1984. In 1985, the second year of treatments, yield from the highest salt treatment (electrical conductivity of irrigation water, EC i , of 8 dS/m) was reduced by half; the number of fruit harvested was reduced 40%, and fruit size was reduced significantly. Foliar damage was so severe by the end of 1985 that nonsaline water was applied to the two highest salt treatments (EC i = 6 and 8 dS/m) in an attempt to restore tree vigor. In 1986 salt effects had become progressively worse on the continuing saline treatments. A linear piece-wise salt tolerance curve is presented for soil salinity values, expressed as the electrical conductivity of saturated extracts (EC e ) integrated to a soil depth of 1.2 m over a 2-year period. The salt tolerance threshold for relative yield (Y r ) based on 3 years of data was 2.6 dS/m and yield reduction at salinity levels beyond the threshold was 31% per dS/m (Y ir=100 – 31 [EC e – 2.6]j). Significant foliar damage occurred when leaf chloride concentrations surpassed 200 mmol/kg of leaf dry weight (0.7%). Sodium concentrations in the leaves remained below 10 mmol/kg (0.02%) until foliar damage became severe. This suggests that chloride was the dominant ion causing foliar damage.  相似文献   

17.
In irrigated agriculture, the production of biomass and marketable yield depend largely on the quantity and salinity of the irrigation water. The sensitivity of field-grown muskmelon (Cucumis melo L. cv. Galia) to water deficit was compared, using non-saline (ECi= 1.2 dS m–1) and saline (ECi=6.3 dS m–1) water. Drip irrigation was applied at 2-day intervals at seven different water application rates for each water quality, including a late water-stress treatment. Neutron scattering measurements showed that the soil layers below the root zone remained dry throughout the experiment, indicating negligible deep percolation. Thus, the sum of the seasonal amount of applied water and the change in soil moisture approximated the cumulative evapotranspiration (ET). Gradual buildup of water and salt stresses resulted in small treatment effects on the size of the vegetative cover and large effects on leaf deterioration and fruit production. Crop responses to salinity may result from an osmotic component of the soil water potential or from other salt effects on the crop physiology. Relating plant data to cumulative ET allowed a distinction to be made between the effect on water availability and specific salinity effects. The relation between fruit fresh weight and ET was not sensitive to ECi. The slopes for fruit dry weights were also insensitive to ECi but the intercept was larger for saline treatments. At any given ET saline water increased fruit number, increased fruit dry matter content and decreased fruit netting, in comparison with non-saline water. The combination of salinity and soil-water deficit was detrimental to fruit quality. Saline soil-water deficit decreased the percentage of marketable (netted) fruit and caused an early end to the period of marketable fruit production. Non-saline soil-water deficit increased the percentage of marketable fruit and had no effect on the duration of the production period. Late non-saline water stress caused a pronounced increase in the percentage of marketable fruit.  相似文献   

18.
为揭示平原水库周边无灌溉生态林地水盐分布特征,2013-2014连续两年开展生态林地的地下水埋深、矿化度、土壤含水率及含盐量逐月监测。结果表明:周边生态林地地下水埋深变化范围在1.18~1.82m之间,水位变化幅度不大,地下水位随季节性变化较小;地下水矿化度变化范围在0.42~4.92g/L之间,呈周期性变化。土壤水分含水量整体随着土层深度的增加而增加。土壤总盐含量在0.24~8.9g/kg之间变化,其中10~40cm土层含盐量变化最为显著,具有明显的盐分表聚现象。  相似文献   

19.
The field experiments were carried out in 2007 and 2008 to study the effects and strategies of drip irrigation with saline water for oleic sunflower. Five treatments of irrigation water with average salinity levels of 1.6, 3.9, 6.3, 8.6, and 10.9 dS/m were designed. For each treatment, 7 mm water was applied when the soil matric potential (SMP) 0.2 m directly underneath the drip emitters was below −20 kPa, except during the seedling stage. To ensure the seedling survival, 28 mm water was applied after sowing during the seedling stage. Results indicate that amount of applied water decreases as salinity level of irrigation water increases. The emergence will be delayed when the salinity level of irrigation water is higher than 6.3 dS/m, but these differences will be alleviated if there is rainfall during emergence period. The final emergence percentage is not changed when salinity level of irrigation is less than 6.3 dS/m, and the percentage decreases by 2.0% for every 1 dS/m increase when the salinity level of irrigation water is above 6.3 dS/m, but the decreasing rate will be reduced if there is rainfall. The plant height and yield decrease with the increase of salinity of irrigation water. The height of plants decreases by 0.6-1.0% for every 1 dS/m increase in salinity level of irrigation water. The yield decreases by 1.8% for every 1 dS/m increase in salinity level of irrigation water, and irrigation water use efficiency (IWUE) increases with increase in salinity of irrigation water. The soil salinity increases as the salinity of irrigation water increasing after drip irrigation with saline water in the beginning, but the soil salinity in soil profile from 0 to 120 cm depths can be maintained in a stable level in subsequent year irrigation with saline water. From the view points of yield and soil salt balance, it can be recognized even as the salinity level of irrigation water is as high as 10.9 dS/m, saline water can be applied to irrigate oleic sunflower using drip irrigation when the soil matric potential 0.2 m directly under drip emitter is kept above −20 kPa and the beds are mulched in semi-humid area.  相似文献   

20.
A validated agro-hydrological model soil water atmosphere plant (SWAP) was applied to formulate guidelines for irrigation planning in cotton–wheat crop rotation using saline ground water as such and in alternation with canal water for sustainable crop production. Six ground water qualities (4, 6, 8, 10, 12 and 14 dS/m), four irrigation schedules with different irrigation depths (4, 6, 8 and 10  cm) and two soil types (sandy loam and loamy sand) were considered for each simulation. The impact of the each irrigation scenario on crop performance, and salinization/desalinisation processes occurring in the soil profile (0–2 m) was evaluated through Water Management Response Indicators (WMRIs). The criterion adopted for sustainable crop production was a minimum of pre-specified values of ETrel (≥0.75 and ≥0.65 for wheat and cotton, respectively) at the end of the 5th year of simulation corresponding to minimum deep percolation loss of applied water. The extended simulation study revealed that it was possible to use the saline water upto 14 dS/m alternatively with canal water for cotton–wheat rotation in both sandy loam and loamy sand soils. In all situations pre-sown irrigation must be accomplished with canal water (0.3–0.4 dS/m). Also when the quality of ground water deteriorates beyond 10 dS/m, it was suggested to use groundwater for post-sown irrigations alternately with canal water. Generally, percolation losses increased with the increase in level of salinity of ground water to account for leaching and thus maintain a favourable salt balance in the root zone to achieve pre-specified values of ETrel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号