首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.  相似文献   

2.
谷子锈病是谷子上的一种流行性强、毁灭性大的病害,严重影响谷子生产.种植抗病品种是防治锈病最经济有效的方法,但谷子抗锈病种质资源非 常贫乏,而且高抗锈病的材料其农艺性状又很差.很难通过传统育种方法培育抗锈病品种,因此克隆谷子抗锈病基因尤为重要.目前克隆到的许多植 物抗病基因编码的氨基酸序列都有一定的保守结构域.根据抗病基因保守结构域,已克隆的抗病基因主要分为5类,其中最主要的是NBS-LRR(nu- leotide-binding site leucine-rich epeat)和STK(Se-rine/Threonine protein kinase)类.因而根据抗病基因保守结构域设计引物,从植物的DNA中扩增植物的抗病基因同源序列RGA(resistance geneanalogs)更加快捷有效,目前通过RGA方法克隆植物抗病基因已有报道[1,2].  相似文献   

3.
[目的]从黄龙病耐病寄主植物cDNA中筛选抗病基因相关序列并对其进行表达分析研究。[方法]根据已克隆的植物抗性基因表达产物NBS-LRR保守区域设计简并引物,以耐HLB的柑橘属柚cDNA为模板扩增RGAs,并进行实时荧光定量PCR。[结果]通过RFLP分析及克隆测序共得到5个NBS类抗病基因相似序列(RGAs)片段,在GenBank上登录号为HM777043~HM777047。通过Clustalx、DNAMAN等软件分析5个RGAs及其推导的氨基酸的相似性,结果显示它们均含有典型NBS-LRR类抗性基因所具有的保守区域:P-loop、Kinase-2a、GL-PLAL,其与已克隆的烟草N、亚麻L6、拟南芥RPS2、RPS5、RPP8、RPM1等抗病基因在保守区域氨基酸水平上的相似性为19.71%~42.86%。根据得到的序列设计特异性引物,对5个RGAs在HLB侵染过程中的表达进行定量PCR,结果显示嫁接病芽接穗后的8次连续采样中5个RGA的表达受到不同程度的调控。[结论]表明5个RGAs可能与黄龙病的侵染有关。  相似文献   

4.
广东甘蔗黄叶病田间调查及病原病毒的分子检测   总被引:2,自引:0,他引:2  
 广东省粤北和粤西蔗区多个县市的田间甘蔗上观察到甘蔗黄叶病(Sugarcane yellow leaf disease,SYLD)典型症状,目前该病仅局部分布,但部分田块病株率为5%~80%,发病品种有青皮果蔗、黑皮果蔗、新台糖系列品种、粤糖79/177和粤糖93/159等。采集发病田间显症叶片、无症叶片和在病叶上取食的甘蔗绵蚜(Ceratovacuna lanigera)样品,抽提总RNA,以基于甘蔗黄叶病毒(Sugarcane yellow leaf virus,SCYLV) CP基因序列的特异引物进行一步RT-PCR和巢式PCR扩增,并对扩增产物进行核苷酸序列测定和BLAST比对。结果显示,RT-PCR及巢式PCR产物核苷酸序列与分离自巴西的SCYLV B1株系相应区段同一率为100%;一步RT-PCR可从约70%的显症叶片样品中检测到SCYLV,而病田中的无症叶片样品以及在病叶上取食的单头甘蔗绵蚜样品需经巢式PCR扩增方可检测到SCYLV,阳性率分别为1%~5%和83%。本研究表明,广东省栽培甘蔗已受到SCYLV侵染,甘蔗绵蚜携带SCYLV。  相似文献   

5.
Sugarcane yellow leaf virus (SCYLV) is the causal agent of the sugarcane disease Yellow leaf (YL), which was first reported in Hawaii. The presence of SCYLV was detected by tissue blot immunoassay and the Hawaiian sugarcane cultivars fell into susceptible cultivars (with SCYLV) and resistant cultivars (without SCYLV). RT-PCR showed recently that the resistant cultivars also contain the virus, however with a 100-fold lower virus titre than in the susceptible cultivars. SCYLV is present as whole genome (6 kb) or as two subgenomic sequences of 2.4 and 1.0 kb. Virus preparations from three Hawaiian cultivars (one resistant and two susceptible) were fully sequenced and the sequences were aligned to published, full and partial sequences. The phylograms corroborate previous findings that the so-called YLS-segment, which codes for the coat protein, shows the least genetic diversity, whereas the other sequence fragments A–D, representing the ORFs 0–5, expressed a two-fold higher diversity. The Hawaiian SCYLV-strains clustered together next to the Peru strain, apart from the BRA-strains and well apart from the REU-strains. We propose that the Hawaiian SCYLV should be considered as an independent group together with the Peru strain and known as HAW-PER. The sequences from the two susceptible cultivars had a deletion of 48 to 54 nt in ORF1, which codes for the gene silencing suppressor and a RNA-dependent RNA-polymerase. It is speculated that this deletion is important for the high proliferation rate of the virus in the susceptible plants.  相似文献   

6.
为明确南疆温室番茄黄化曲叶病的病毒种类,利用双生病毒的兼并引物通过PCR扩增,对采集的20个番茄病株进行了分子检测.从20个病株中均扩增到约500 bp的目标片段,对其中4株进行克隆和测序,其相互间序列同源性为97.1% ~99.3%,与番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)的同源性较高,为98.6% ~ 99.5%.随机选取莎车分离物KS2-5进行全基因组的克隆和测序,KS2-5 DNA全长为2781 nt(序列号:JQ807735),具有典型的双生病毒基因组特征,与TYLCV其它分离物同源性达到98.9%~99.5%,而与其它粉虱传双生病毒的序列同源性较低,为68.3% ~75.5%,表明危害南疆温室番茄的病毒种类为番茄黄化曲叶病毒TYLCV.  相似文献   

7.
甘蔗黄叶病是由甘蔗黄叶病毒(Sugarcane yellow leaf virus,SCYLV)引起的一种病毒病害,在全球主要甘蔗种植国家或地区普遍发生,危害日益严重。SCYLV经甘蔗蚜虫以持久性方式传播,在寄主植株内主要侵染韧皮部组织。该病毒起源于黄症病毒科属间基因重组,被国际病毒分类命名委员会确认为黄症病毒科马铃薯卷叶病毒属成员。文章综述了甘蔗黄叶病毒生物学特征、病害发生和危害、病原鉴定和检测、分子进化和遗传多样性、基因组结构和基因功能以及抗病转基因等方面研究进展,并对甘蔗黄叶病抗病育种和防治措施作了讨论。  相似文献   

8.
ABSTRACT To investigate disease resistance gene analogs (RGAs) encoding coiled-coil-nucelotide-binding site-leucine-rich repeats (CC-NBS-LRR) proteins in western white pine, degenerate primers targeting the conserved motifs in the NBS domain were designed to amplify RGAs from genomic DNA and cDNA. Sixty-one distinct RGAs were identified with identities to well-known R proteins of the CC-NBS-LRR subfamily. These RGAs exhibited variation of putative amino acid sequences from 13% to 98%, representing a complex CC-NBS-LRR subfamily. A phylogenetic tree constructed from the amino acid sequence alignment revealed that these 61 RGAs were grouped with other CC-NBS-LRR members from angiosperms, and could be further divided into six classes with an identity threshold of 68%. To map RGAs, RGA polymorphisms and a modified amplified fragment length polymorphism (AFLP) method with incorporated sequences from the NBS domain were used to reveal NBS or NBS-AFLP markers. RGA polymorphism study revealed that three off the identified RGAs were not linked to the Cr2 gene imparting resistance to white pine blister rust. However, the AFLP strategy, using bulk segregant analysis (BSA) and haploid segregation analysis, identified 11 NBS-AFLP markers localized in the Cr2 linkage, the closest two to the gene being 0.41 cM and 1.22 cM away at either side. Eight of these markers showed significant amino acid sequence homologies with RGAs.  相似文献   

9.
本文旨在探讨核苷酸结合位点和富含亮氨酸重复(NBS-LRR)类基因参与甘蔗抗梢腐病菌侵染应答机制,为后续克隆关键抗病基因以及研究抗病机理提供理论依据。试验利用Illumina高通量转录组测序技术检测高抗梢腐病品种‘粤糖94-128’和高感梢腐病品种‘桂糖37号’接种前后NBS-LRR类抗梢腐病基因的表达情况,然后设计引物对显著差异表达基因进行不同接种时期下的荧光定量PCR验证。结果表明,16个NBS-LRR类基因在甘蔗叶片受到梢腐病菌侵染后持续上调表达,但表达趋势存在两种情况,13个基因在诱导后7 d显著或极显著上调表达,3个基因在诱导7 d后上调表达不显著,在诱导14 d后才显著上调表达。据此可将其分为瞬时基础防御基因(0~7 d)和滞后特异性防御基因(14~21 d),确定NBS-LRR类基因参与甘蔗防御梢腐病菌的侵染。  相似文献   

10.
Sugarcane yellow leaf virus, the causal agent of yellow leaf, is transmitted from plant to plant by aphids. Understanding and evaluating the epidemic risks due to spread of yellow leaf by aphids is an important feature for sugarcane production. Four distinct sugarcane trials were set up with disease-free plants to study the relationship between spread of yellow leaf, the vector dynamics and environmental conditions that may favour yellow leaf epidemics. The study was performed by surveys of vector populations and determination of plant infections. Sugarcane cultivar SP71-6163, highly susceptible to yellow leaf, was analyzed spatially at different dates in all four trials and compared to commercial cultivars in two of the four trials. These surveys allowed us to identify a correlation between the aphid dynamics in the field and yellow leaf progress. Additionally, a negative correlation was found between rainfall during the first weeks after transferring sugarcane plants to the field and aphid dispersal within the field. This later result revealed an impact of rainfall on aphid invasion and subsequent plant infection by SCYLV. If aphids are the key factor for disease spread, plant response varied also according to cultivar resistance with high variation depending on rain conditions.  相似文献   

11.
During surveys of sugarcane fields in western and central Cuba from December 2001 to March 2003, the delphacid planthopper Saccharosydne saccharivora was the most prevalent of the Auchenorrhyncha fauna surveyed. Individuals of S. saccharivora collected tested positive for the sugarcane yellow leaf phytoplasma (SCYLP). Saccharosydne saccharivora were reared in cages and used for experimental transmission studies of SCYLP. The S. saccharivora were given acquisition-access feeds of 72 h on SCYLP-infected canes collected from the field followed by an inoculation-access period of 15 days on healthy sugarcane seedlings. Symptoms of yellow leaf syndrome developed on 24 out of 36 plants, 7–12 months postinoculation. None of the 36 healthy seedlings that were inoculated with S. saccharivora fed on phytoplasma-free sugarcane developed symptoms. All phytoplasma-positive sugarcane and S. saccharivora samples showed identical RFLP patterns and had 99·89% similarity in their 16S/23S spacer-region sequences, but only 92·6–93·6% similarity with other phytoplasmas. Sequences were deposited with GenBank [accession numbers: AY725237 ( S. saccharivora ) and AY257548 (sugarcane)]. Phylogenetic analysis suggested that the phytoplasmas from sugarcane and S. saccharivora are putative members of a new 16Sr phytoplasma group. This is the first report of vector transmission of a phytoplasma associated with sugarcane yellow leaf syndrome and the first time that S. saccharivora has been shown to vector a phytoplasma.  相似文献   

12.
13.
14.
Two sugarcane cultivars (R570 and SP71-6163) naturally infected by Sugarcane yellow leaf virus (SCYLV) were each imported from several geographical locations into a sugarcane yellow leaf-free environment (Montpellier, France). Plants were grown as plant cane for 5–6 months and the experiment was repeated for three consecutive years (2003–2005) in a greenhouse. Several sugarcane-growth and disease characteristics were monitored to identify variation in pathogenicity of SCYLV. Depending on their geographical origin, sugarcane cvs R570 and SP71-6163 were infected by SCYLV genotypes BRA-PER or REU, or a mixture of the two. Severity of symptoms did not vary between plants of cv. R570, but variation in disease severity between plants of cv. SP71-6163 from different geographical locations suggested the occurrence of pathogenic variants of SCYLV. For each sugarcane cultivar, differences in stalk length, number of stalk internodes, virus titre in the top visible dewlap leaf, and percentage of infection of leaf and stalk phloem vessels were also found between plants from different geographical origins. However, these differences were not always reproducible from one year to another, suggesting occurrence of different plant responses to SCYLV isolates under varying environmental conditions.  相似文献   

15.
Sugarcane yellow leaf virus (SCYLV), a member of the Luteoviridae , is implicated in the sugarcane disease known as yellow leaf syndrome (YLS), which is characterized by yellowing of the leaf midrib followed by leaf necrosis and possible growth suppression. YLS is distributed worldwide and susceptible cultivars are commonly infected with SCYLV. However, not all cultivars infected with SCYLV show symptoms of YLS and some cultivars that show symptoms do so sporadically. Since it is difficult to obtain virus-free plants of susceptible cultivars, it has not been possible to study the factors involved in SCYLV infection nor the effects of infection on plant growth and yield. A tissue blot immunoassay was used to visualize in vivo presence of the virus so that virus-infected and virus-free plants could be distinguished. Meristem tip cultures were used to produce virus-free plantings of six SCYLV-susceptible sugarcane cultivars. Nearly all of the regenerated sugarcane lines remained virus-free over a period of up to 4 years, whether grown in isolated fields or in the glasshouse. Experimental re-infection of the virus-free plants by viruliferous aphids demonstrated that meristem tip culture did not affect susceptibility of sugarcane to SCYLV. Improved diagnosis and production of virus-free plants of SCYLV-susceptible cultivars will facilitate research to quantify the effect of the virus on yield and to analyse the processes involved in disease development.  相似文献   

16.
[目的]明确广西西部地区靖西(JX)、凌云(LY)、德保(DB)和乐业(LeY)等4个县市烟草曲叶病的病原。[方法]2010年5-6月分别从广西靖西、凌云、德保和乐业等县市采集具有典型曲叶症状的烟草叶片,用基于双生病毒DNA保守序列设计简并引物Bego-1和Bego-6对病叶组织总DNA抽提物进行PCR扩增和对PCR产物进行序列测定,用BLAST、Vector NTI、MEGA 4.0和Simplot program 3.2软件等进行病毒序列分析、系统进化树构建和病毒重组分析。[结果]从选取的9个表现典型曲叶症状的样品叶组织总DNA抽提物中均可扩增出约1500bp与预期大小相符的DNA片段。测序和序列比对分析显示,9个样品扩增产物核苷酸序列相似性为73.7%~99.2%,与已报道的双生病毒具较高的相似性。其中,JX-2与中国番茄曲叶病毒广西番茄分离物(G32)的相似性最高,达99.2%;JX-3和JX-5与云南胡椒曲叶病毒云南辣椒分离物(YN323)相似性最高,分别为92.5%和93.4%;LeY-1、LY-1、DB-1、JX-1、JX-4和JX-6则与中国番茄黄化曲叶病毒中国番茄分离物(CHI)和广西烟草分离物(G102)的相似性最高,均高于95.0%。基于PCR扩增产物及已报道的双生病毒属代表种相应核苷酸序列构建的系统进化树分析表明,9个广西烟草分离物分属3个簇群:中国番茄曲叶病毒簇、云南辣椒曲叶病毒簇和中国番茄黄化曲叶病毒簇。重组分析结果表明:JX-3是云南辣椒曲叶病毒和中国番茄曲叶病毒的重组病毒,JX-5是云南辣椒曲叶病毒和中国番茄黄化曲叶病毒的重组病毒。[结论]9个广西烟草分离物分属于4种双生病毒:中国番茄曲叶病毒和中国番茄黄化曲叶病毒,以及分别由上述两种病毒与云南辣椒曲叶病毒重组而来的2种重组病毒。其中,中国番茄曲叶病毒自然侵染烟草、云南辣椒曲叶病毒和中国番茄曲叶病毒及中国番茄黄化曲叶病毒的重组病毒等结果此前均未见报道。  相似文献   

17.
甘蔗黄叶病毒外壳蛋白基因克隆及其实时荧光RT-PCR检测   总被引:1,自引:0,他引:1  
 甘蔗黄叶病毒(Sugarcane yellow leaf virus, SCYLV)引起的甘蔗黄叶病是一种新的全球性病毒病害。本文以YLSCPF1和YLSCPR591为引物,采用RT-PCR方法克隆了甘蔗黄叶病毒福建分离物(CHN-FJ1)外壳蛋白(CP)基因,编码196个氨基酸。分析不同地理来源的SCYLV病毒分离物cp基因核苷酸及其推导编码的氨基酸序列,同源性达95%以上。根据cp基因的保守序列,设计1对特异性引物和TaqMan探针,建立了SCYLV的TaqMan实时荧光RT-PCR方法。结果表明,检测下限为初始质粒模板DNA 1 000拷贝/μL(约3.61 fg/μL),比常规PCR方法的灵敏度提高100倍。检测甘蔗花叶病毒、宿根矮化病菌和黑穗病菌,没有典型的扩增曲线和无Ct值。应用实时荧光RT-PCR、常规RT-PCR和组织印迹免疫杂交(TBIA)对田间甘蔗叶片样品进行检测,阳性检出率分别为100%、61.5%和69.2%,表明该方法比常规RT-PCR和TBIA具有更高的灵敏度,适合于对SCYLV的检测。  相似文献   

18.
19.
Sugarcane yellow leaf virus (ScYLV) is present in many sugarcane growing areas of the world. It is suspected to cause yellow leaf disease (formerly called YLS, yellow leaf syndrome) of sugarcane. This study investigated symptom expression in a selection of cultivars classified into three groups; ScYLV-susceptible/infected, ScYLV-resistant and intermediately infected cultivars grown in plantation fields in the islands of Hawaii. Incidence of yellow leaf symptoms was correlated, though not tightly, to the presence of ScYLV. The correlation is based on two factors: (i) only ScYLV-infected cultivars (from both susceptible and intermediate groups) showed severe symptom expression, and (ii) ScYLV-infected plants had four times higher symptom incidence than virus-free plants of the same cultivar. The yellow leaf symptom expression fluctuated, peaking at 200, 350, 500 and 600 days after planting. These symptom peaks were correlated with an increase of ScYLV content in the intermediately infected group of cultivars. No nutritional, environmental or field factor could be identified which clearly influenced symptom expression. It is speculated that the symptom expression is elicited by assimilate backup in the stalks and that the fluctuation of symptom expression is caused by the growth rhythm of mature sugarcane stalks.  相似文献   

20.
ABSTRACT A previously uncharacterized luteovirus was associated with one form of yellow leaf syndrome (YLS), a widespread disease of sugarcane (Saccharum sp.). The virus was named Sugarcane yellow leaf luteovirus (ScYLV), and was identified in major sugarcane-producing areas of the world. Typical disease symptoms were reproduced when ScYLV was transmitted by Melanaphis sacchari or Rhopalosiphum maidis from infected to healthy sugarcane, suggesting that this virus may be the causal agent of one form of YLS. The only known hosts of ScYLV are Saccharum and Erianthus spp. Virions of ScYLV were 24 to 29 nm in diameter in sodium phosphotungstate at pH 5.0, had a buoyant density of 1.30 g/cm(3) in Cs(2)SO(4), and contained a 5.8-kb genomic ssRNA. The capsid protein had an estimated relative molecular mass of 27 kDa and was not glycosylated. A polyclonal rabbit antiserum raised against ScYLV did not detect any of eight other luteoviruses by enzyme-linked immunosorbent assay or immunosorbent electron microscopy, but in immunoblot assays, antibodies to ScYLV detected the RPV serotype of Barley yellow dwarf luteovirus. It is concluded that ScYLV is a previously undescribed luteovirus that is biologically and serologically distinct from other members of the group and may be the causal agent of one form of YLS of sugarcane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号