首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
为实现自然环境下桃树缩叶病的检测,该研究提出了一种基于YOLOv5su的桃树缩叶病识别改进模型DLL-YOLOv5su。首先,针对桃树缩叶病目标特征变化较大的问题,在骨干网络最后一层C3模块中加入可变形自注意力模块(deformable attention,DA),使模型更加关注目标区域,降低背景对模型的影响,提高模型在复杂背景下的拟合能力。其次在SPPF(fast spatial pyramid pooling)模块中引入LSKA(large separable kernel attention)结构,大核卷积增大了模型的感受野,使模型能够关注更多信息。最后,提出了LAWD(lightweight adaptive weighted downsampling)模块,使用轻量化的下采样结构替换卷积模块,减少计算开销。在桃树缩叶病数据集上进行试验,结果显示,DLL-YOLOv5su模型权重大小为17.6MB,检测速度为83帧/s。识别准确率P、召回率R和平均精度均值mAP50分别达到了80.7%、73.1%和80.4%,相较于原始YOLOv5su分别提高了4.2、2.4和4.3个百分点。与YOLOv3-tiny、Faster R-CNN、YOLOv7和YOLOv8相比mAP50分别高出了28.5、11.8、2.1和4.1个百分点。改进模型识别精度高,误检、漏检率低,检测速度满足实时检测的要求,可以为桃树缩叶病的实时监测和预警提供参考。  相似文献   

2.
目标检测与分割是实现黄花菜智能化采摘的关键技术,原始目标检测算法容易出现漏检、误检等问题,无法满足自然环境下生长的黄花菜采摘要求。该研究提出一种基于改进YOLOv7-seg的黄花菜目标检测与实例分割识别算法模型(YOLO-Daylily)。通过在YOLOv7-seg骨干网络(backbone)中引入CBAM(convolutional block attention module)注意力机制模块,降低背景等干扰因素的影响;在ELAN(efficient layer aggregation networks)模块中采用PConv(partial convolution)替换原有的3×3卷积层,减少冗余计算和内存访问,提升对目标黄花菜特征提取的能力。颈部网络(neck)采用坐标卷积(CoordConv)替换PA-FPN(path aggregation-feature pyramid networks)中1×1卷积层,增强模型对位置的感知,提高掩膜(mask)鲁棒性。在改进的PA-FPN结构中采用残差连接方法将浅层特征图几何信息与深层特征图语义信息特征相结合,提高模型对目标黄花菜的检测分割性能。消融试验表明:改进后的算法检测准确率、召回率和平均精度分别达到92%、86.5%、93%,相比YOLOv7-seg基线算法分别提升2.5、2.3、2.7个百分点;分割准确率、召回率和平均精度分别达到92%、86.7%、93.5%,比基线算法分别提升0.2、3.5、3个百分点。与Mask R-CNN、SOLOv2、YOLOV5-seg、YOLOv5x-seg算法相比,平均精度分别提升8.4、12.7、4.8、5.4个百分点。改进后的模型减少了漏检、误检等情况,对目标定位更加精准,为后续黄花菜智能化采摘实际应用提供理论支持。  相似文献   

3.
针对破壳鸡蛋(破口蛋和裂纹蛋)缺陷差异性大,在线检测要求实时,以及人工检测依靠主观经验且检测速度慢、检测精度不高等问题,该研究提出一种基于改进的YOLOv7(You Only Look Once v7)模型的破壳鸡蛋在线实时检测系统。即以YOLOv7网络为基础,将YOLOv7网络的损失函数CIoU(complete-IoU)替换为WIoUv2(wise-IoU),在骨干网络(backbone)中嵌入坐标注意力模块(coordinate attention,CA)和添加可变形卷积DCNv2(deformable convnet)模块,同时将YOLOv7网络中的检测头(IDetect)替换为具有隐式知识学习的解耦检测头(IDetect_Decoupled)模块。在PC端的试验结果表明,改进后的模型在测试集上平均精度均值(mean average precision,mAP)为94.0%,单张图片检测时间为13.1 ms,与模型改进之前相比,其mAP提高了2.9个百分点,检测时间仅延长1.0 ms;改进后模型的参数量为3.64×107,较原始模型降低了2.1%。最后通过格式转换并利用ONNXRuntime深度学习框架把模型部署至设备端,在ONNXRuntime推理框架下进行在线检测验证。试验结果表明:该算法相较原始YOLOv7误检率降低了3.8个百分点,漏检率不变,并且在线检测平均帧率约为54帧/s,满足在线实时性检测需求。该研究可为破壳鸡蛋在线检测研究提供技术参考。  相似文献   

4.
为解决自然环境中番茄叶片病虫害检测场景复杂、检测精度较低,计算复杂度高等问题,提出一种SLP-YOLOv7-tiny的深度学习算法。首先,将主干特征提取网络中部分3×3的卷积Conv2D(2D convolution)改为分布偏移卷积DSConv2D(2D Depthwise Separable Convolution),以减少网络的计算量,并且使计算速度更快,占用内存更少;其次,将无参数注意力机制(parameter-free attention module, SimAM)融合到骨干特征提取网络中,加强模型对病虫害特征的有效提取能力和特征整合能力;最后,将原始YOLOv7-tiny的CIOU损失函数,更替为Focal-EIOU损失函数,加快模型收敛并降低损失值。试验结果表明,SLP-YOLOv7-tiny模型整体识别精准度、召回率、平均精度均值mAP0.5(IOU阈值为0.5时的平均精度)、mAP0.5~0.95(IOU阈值从0.5到0.95之间的所有值进行平均计算的平均精度)分别为95.9%、94.6%、98.0%、91.4%,与改进前YOLOv7-tiny相比,分别提升14.7、29.2、20.2、30个百分点,同时,计算量降低了62.6%,检测速度提升了13.2%。与YOLOv5n、YOLOv5s、YOLOv5m、YOLOv7、YOLOv7-tiny、Faster-RCNN、SSD目标检测模型相比,mAP0.5分别提升了2.0、1.6、2.0、2.2、20.2、6.1和5.3个百分点,而计算量大小仅为YOLOv5s、YOLOv5m、YOLOv7、Faster-RCNN、SSD的31.5%、10.6%、4.9%、4.3%、3.8%。结果表明SLP-YOLOv7-tiny可以准确快速地实现番茄叶片病虫害的检测,且模型较小,可为番茄叶片病虫害的快速精准检测的发展提供一定的技术支持。  相似文献   

5.
针对非结构化环境下香梨识别准确率低,检测速度慢的问题,该研究提出了一种基于改进YOLOv8n的香梨目标检测方法。使用Min-Max归一化方法,对YOLOv3-tiny、YOLOv5n、YOLO6n、YOLOv7-tiny和YOLOv8n评估选优;以YOLOv8n为基线,进行以下改进:1)使用简化的残差与卷积模块优化部分C2f(CSP bottleneck with 2 convolutions)进行特征融合。2)利用simSPPF(simple spatial pyramid pooling fast)对SPPF(spatial pyramid pooling fast)进行优化。3)引入了PConv(partial convolution)卷积,并提出权重参数共享以实现检测头的轻量化。4)使用Inner-CIoU(inner complete intersection over union)优化预测框的损失计算。在自建的香梨数据集上,指标F0.5分数(F0.5-score)和平均精度均值(mean average precision, mAP)比原模型分别提升0.4和0.5个百分点,达到94.7%和88.3%。在GPU和CPU设备上,检测速度分别提升了34.0%和24.4%,达到了每秒99.4和15.3帧。该模型具有较高的识别准确率和检测速度,为香梨自动化采摘提供了一种精确的实时检测方法。  相似文献   

6.
为解决自然环境中苹果叶片病害检测场景复杂、小目标病害检测难度高以及模型参数大无法在移动端和嵌入式设备部署等问题,提出一种基于YOLOv5s的苹果叶片小目标病害轻量化检测方法。该方法将YOLOv5s的骨干网络更改为ShuffleNet v2轻量化网络,引入CBAM(convolutional block attention module)注意力模块使模型关注苹果叶片小目标病害,添加改进RFB-s(receptive field block-s)支路获取多尺度特征,提高苹果叶片病害检测精度,并更改边界框回归损失函数为SIoU(scylla-intersection over union),增强病斑定位能力。试验表明改进后的YOLOv5s模型在IoU大于0.5时的平均精度均值(mean average precision,mAP0.5)和每秒传输帧数(frame per second,FPS)分别达到90.6%和175帧/s,对小目标的平均检测准确率为38.2%,与基准模型YOLOv5s相比,其mAP0.5提升了0.8个百分点,参数量减少了6.17 MB,计算量减少了13.8 G,对小目标的检测准确率提高了3个百分点。改进后的YOLOv5s目标检测模型与Faster R-CNN、SSD、YOLOv5m、YOLOv7、YOLOv8和YOLOv5s目标检测模型相比,具有最小的参数量和计算量,对小目标病害叶斑病和锈病的检测准确率分别提高了1.4、4.1、0.5、5.7、3.5、3.9和1.5、4.3、1.2、2.1、4、2.6个百分点,该方法为真实自然环境下苹果叶片病害尤其是小目标病害的轻量化检测提供参考依据。  相似文献   

7.
针对复杂环境下柑橘果实大量重叠、枝叶遮挡且现有模型参数量大、计算复杂度高等问题,提出了一种基于改进YOLOv8n的柑橘识别模型YOLOv8-MEIN。首先,该研究设计了ME卷积模块并使用它改进YOLOv8n的C2f模块。其次,为了弥补CIoU损失函数在检测任务中泛化性弱和收敛速度慢的问题,使用Inner-CIoU损失函数加速边界框回归,提高模型检测性能。最后,在自建数据集上进行模型试验对比,试验结果表明,YOLOv8-MEIN模型交并比阈值为0.5的平均精度均值mAP0.5值为96.9%,召回率为91.7%,交并比阈值为0.5~0.95的平均精度均值mAP0.5~0.95值为85.8%,模型大小为5.8MB,参数量为2.87M。与原模型YOLOv8n相比,mAP0.5值、召回率、mAP0.5~0.95值分别提高了0.4、1.0、0.6个百分点,模型大小和参数量相比于原模型分别降低了3.3%和4.3%,为柑橘的自动化采摘提供技术参考。  相似文献   

8.
基于多模态图像的自然环境下油茶果识别   总被引:1,自引:1,他引:0  
针对自然条件下油茶果生长条件复杂,存在大量遮挡、重叠的问题,提出了一种基于RGB-D(red green blue-depth)多模态图像的双主干网络模型YOLO-DBM(YOLO-dual backbone model),用来进行油茶果的识别定位。首先,在YOLOv5s模型主干网络CSP-Darknet53的基础上设计了一种轻量化的特征提取网络。其次,使用两个轻量化的特征提取网络分别提取彩色和深度特征,接着使用基于注意力机制的特征融合模块将彩色特征与深度特征进行分级融合,再将融合后的特征层送入特征金字塔网络(feature pyramid network,FPN),最后进行预测。试验结果表明,使用RGB-D图像的YOLO-DBM模型在测试集上的精确率P、召回率R和平均精度AP分别为94.8%、94.6%和98.4%,单幅图像平均检测耗时0.016 s。对比YOLOv3、YOLOv5s和YOLO-IR(YOLO-InceptionRes)模型,平均精度AP分别提升2.9、0.1和0.3个百分点,而模型大小仅为6.21MB,只有YOLOv5s大小的46%。另外,使用注意力融合机制的YOLO-DBM模型与只使用拼接融合的YOLO-DBM相比,精确率P、召回率R和平均精度AP分别提高了0.2、1.6和0.1个百分点,进一步验证该研究所提方法的可靠性与有效性,研究结果可为油茶果自动采收机的研制提供参考。  相似文献   

9.
针对名优茶智能采摘中茶叶嫩梢识别精度不足的问题,该研究对YOLOv8n模型进行优化。首先,在主干网络中引入动态蛇形卷积(dynamic snake convolution,DSConv),增强模型对茶叶嫩梢形状信息的捕捉能力;其次,将颈部的路径聚合网络(path aggregation network,PANet)替换为加权双向特征金字塔网络(bi-directional feature pyramid network,BiFPN),强化模型的特征融合效能;最后,在颈部网络的每个C2F模块后增设了无参注意力模块(simple attention module,SimAM),提升模型对茶叶嫩梢的识别关注度。试验结果表明,改进后的模型比原始模型的精确率(precision,P)、召回率(recall,R)、平均精确率均值(mean average precision,mAP)、F1得分(F1 score,F1)分别提升了4.2、2.9、3.7和3.3个百分点,推理速度为42 帧/s,模型大小为6.7 MB,满足低算力移动设备的部署条件。与Faster-RCNN、YOLOv5n、YOLOv7n和YOLOv8n目标检测算法相比,该研究提出的改进模型精确率分别高出57.4、4.4、4.7和4.2个百分点,召回率分别高出53.0、3.6、2.8和2.9个百分点,平均精确率均值分别高出58.9、5.0、4.6和3.7个百分点,F1得分分别高出了56.8、3.9、3.7和3.3个百分点,在茶叶嫩梢检测任务中展现出了更高的精确度和更低的漏检率,能够为名优茶的智能采摘提供算法参考。  相似文献   

10.
现有的目标检测算法检测茶叶嫩芽的精度较低,为提高茶叶嫩芽的检测精度,该研究提出一种基于改进YOLOv5s网络模型的茶叶嫩芽检测算法。该算法将骨干特征提取网络中的空间金字塔池化结构(spatial pyramid pooling-fast,SPPF)替换为空洞空间卷积池化金字塔结构(atrous spatial pyramid pooling,ASPP),增强模型对不同分辨率下目标的识别能力;针对茶叶嫩芽的小目标特征,在颈部网络中引入可加权重的双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),提高特征融合的效率,同时在颈部网络中的每个集中综合卷积模块(concentrated-comprehensive convolution block,C3)后添加卷积注意力模块(convolutional block attention module,CBAM)来提高模型关注小目标特征的能力。试验结果表明,改进后获得的Tea-YOLOv5s比原模型的准确率(precision,P)、召回率(recall,R)和平均精度值(mean average precision,mAP)分别高出4.4、0.5和4个百分点,且模型鲁棒性强,在多个场景下茶叶嫩芽的检测中具有更高的置信度分数。改进后的模型可为茶叶的产量估计和茶叶采摘机器人的嫩芽识别奠定基础。  相似文献   

11.
在复杂果园环境中,传统机器视觉算法难以处理光影变化、遮挡、杂草等因素的干扰,导致导航道路分割不准确。针对此问题,该研究提出了一种改进YOLOv7的果园内导航线检测方法。将注意力机制模块(convolutional block attention module,CBAM)引入到原始YOLOv7模型的检测头网络中,增强果树目标特征,削弱背景干扰;在ELAN-H(efficient layer aggregation networks-head,ELAN-H)模块和Repconv(re-parameterization convolution,Repconv)模块之间引入SPD-Conv(space-to-depth,non-strided convolution,SPD-Conv)模块,提高模型对低分辨率图像或小尺寸目标的检测能力。以树干根部中点作为导航定位基点,利用改进YOLOv7模型得到两侧果树行线的定位参照点,然后利用最小二乘法拟合两侧果树行线和导航线。试验结果表明,改进YOLOv7模型检测精度为95.21%,检测速度为42.07帧/s,相比于原始YOLOv7模型分别提升了2.31个百分点和4.85帧/s,能够较为准确地识别出树干,且对树干较密的枣园图像也能达到较好的检测效果;提取到的定位参照点与人工标记树干中点的平均误差为8.85 cm,拟合导航线与人工观测导航线的平均偏差为4.90 cm,处理1帧图像平均耗时为0.044 s,能够满足果园内导航需求。  相似文献   

12.
为提高果园机器人自主导航和果园作业的质量、效率,该研究提出一种基于改进YOLOv3算法对果树树干进行识别,并通过双目相机进行定位的方法。首先,该算法将SENet注意力机制模块融合至Darknet53特征提取网络的残差模块中,SENet模块可增强有用特征信息提取,压缩无用特征信息,进而得到改进后残差网络模块SE-Res模块;其次,通过K-means聚类算法将原始YOLOv3模型的锚框信息更新。果树树干定位通过双目相机的左、右相机对图像进行采集,分别传输至改进YOLOv3模型中进行果树树干检测,并输出检测框的信息,再通过输出的检测框信息对左、右相机采集到的果树树干进行匹配;最后,通过双目相机三角定位原理对果树树干进行定位。试验表明,该方法能较好地对果树树干进行识别和定位,改进YOLOv3模型平均精确率和平均召回率分别为97.54%和91.79%,耗时为0.046 s/帧。在果树树干定位试验中,横向和纵向的定位误差均值分别为0.039 和0.266 m,误差比均值为3.84%和2.08%;与原始YOLOv3和原始SSD模型相比,横向和纵向的定位误差比均值分别降低了15.44、14.17个百分点和21.58、20.43个百分点。研究结果表明,该方法能够在果园机器人自主导航、开沟施肥、割草和农药喷洒等作业中进行果树识别和定位,为提高作业效率、保障作业质量奠定理论基础。  相似文献   

13.
疏果期苹果目标检测是实现疏果机械化、自动化需要解决的关键问题。为实现疏果期苹果目标准确检测,该研究以YOLOv7为基础网络,融合窗口多头自注意力机制(Swin Transformer Block),设计了一种适用于近景色小目标检测的深度学习网络。首先在YOLOv7模型的小目标检测层中添加Swin Transformer Block,保留更多小尺度目标特征信息,将预测框与真实框方向之间的差异考虑到模型训练中,提高模型检测精度,将YOLOv7中的损失函数CIoU替换为SIoU。最后利用Grad-CAM方法产生目标检测热力图,进行有效特征可视化,理解模型关注区域。经测试,该文模型的检测均值平均精度为95.2%,检测准确率为92.7%,召回率为91.0%,模型所占内存为81 MB,与原始模型相比,均值平均精度、准确率、召回率分别提高了2.3、0.9、1.3个百分点。该文模型对疏果期苹果具有更好的检测效果和鲁棒性,可为苹果幼果生长监测、机械疏果等研究提供技术支持。  相似文献   

14.
果实表型数据高通量、自动获取是果树新品种育种研究的基础,实现幼果精准检测是获取生长数据的关键。幼果期果实微小且与叶片颜色相近,检测难度大。为了实现自然环境下苹果幼果的高效检测,采用融合挤压激发块(Squeeze-and-Excitation block, SE block)和非局部块(Non-Local block, NL block)两种视觉注意机制,提出了一种改进的YOLOv4网络模型(YOLOv4-SENL)。YOLOv4模型的骨干网络提取高级视觉特征后,利用SE block在通道维度整合高级特征,实现通道信息的加强。在模型改进路径聚合网络(Path Aggregation Network, PAN)的3个路径中加入NL block,结合非局部信息与局部信息增强特征。SE block和NL block两种视觉注意机制从通道和非局部两个方面重新整合高级特征,强调特征中的通道信息和长程依赖,提高网络对背景与果实的特征捕捉能力。最后由不同尺寸的特征图实现不同大小幼果的坐标和类别计算。经过1 920幅训练集图像训练,网络在600幅测试集上的平均精度为96.9%,分别比SSD、Faster R-CNN和YOLOv4模型的平均精度提高了6.9百分点、1.5百分点和0.2百分点,表明该算法可准确地实现幼果期苹果目标检测。模型在480幅验证集的消融试验结果表明,仅保留YOLOv4-SENL中的SE block比YOLOv4模型精度提高了3.8百分点;仅保留YOLOv4-SENL中3个NL block视觉注意模块比YOLOv4模型的精度提高了2.7百分点;将YOLOv4-SENL中SE block与NL blocks相换,比YOLOv4模型的精度提高了4.1百分点,表明两种视觉注意机制可在增加少量参数的基础上显著提升网络对苹果幼果的感知能力。该研究结果可为果树育种研究获取果实信息提供参考。  相似文献   

15.
为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8的轻量化小麦病害检测方法。首先,使用PP-LCNet模型替换YOLOv8网络结构的骨干网络,并在骨干网络层引入深度可分离卷积(depthwise separable convolution, DepthSepConv)结构,减少模型参数量,提升模型检测性能;其次,在颈部网络部分添加全局注意力机制(global attention mechanism, GAM)模块,强化特征中语义信息和位置信息,提高模型特征融合能力;然后,引入轻量级通用上采样内容感知重组(content-aware reassembly of features,CARAFE)模块,提高模型对重要特征的提取能力;最后,使用Wise-IoU(weighted interpolation of sequential evidence for intersection over union)边界损失函数代替原损失函数,提升网络边界框回归性能和对小目标病害的检测效果。试验结果表明,对于大田环境下所采集的小麦病害数据集,改进后模型的参数量及...  相似文献   

16.
基于改进YOLOv4模型的全景图像苹果识别   总被引:3,自引:3,他引:0  
苹果果园由于密植栽培模式,果树之间相互遮挡,导致苹果果实识别效果差,并且普通的图像采集方式存在图像中果实重复采集的问题,使得果实计数不准确。针对此类问题,该研究采用全景拍摄的方式采集苹果果树图像,并提出了一种基于改进YOLOv4和基于阈值的边界框匹配合并算法的全景图像苹果识别方法。首先在YOLOv4主干特征提取网络的Resblock模块中加入scSE注意力机制,将PANet模块中的部分卷积替换为深度可分离卷积,且增加深度可分离卷积的输出通道数,以增强特征提取能力,降低模型参数量与计算量。将全景图像分割为子图像,采用改进的YOLOv4模型进行识别,通过对比Faster R-CNN、CenterNet、YOLOv4系列算法和YOLOv5系列算法等不同网络模型对全景图像的苹果识别效果,改进后的YOLOv4网络模型精确率达到96.19%,召回率达到了95.47%,平均精度AP值达到97.27%,比原YOLOv4模型分别提高了1.07、2.59、2.02个百分点。采用基于阈值的边界框匹配合并算法,将识别后子图像的边界框进行匹配与合并,实现全景图像的识别,合并后的结果其精确率达到96.17%,召回率达到95.63%,F1分数达到0.96,平均精度AP值达到95.06%,高于直接对全景图像苹果进行识别的各评价指标。该方法对自然条件下全景图像的苹果识别具有较好的识别效果。  相似文献   

17.
为实现虾只机械剥壳环节裸肉虾与带壳虾自动分选,该研究提出一种基于改进YOLOv4模型的虾只肉壳辨识方法。将YOLOv4模型中CSP-Darknet53网络替换为GhostNet网络,增强模型自适应特征提取能力及简化模型参数计算量。在YOLOv4主干特征提取网络Resblock模块中引入轻量级注意力机制,增强主干特征提取网络的特征提取能力。将YOLOv4模型中GIoU损失函数替换为CIoU损失函数,提高模型预测框的回归效果。为检测改进效果进行了不同模型对比验证,轻量化结果表明改进YOLOv4模型参数量最少、计算量最小;消融试验表明改进YOLOv4模型的平均精度均值为92.8%,比YOLOv4模型提升了6.1个百分点。不同场景下应用改进YOLOv4模型进行虾只肉壳辨识性能试验。结果表明:同品种不同环境的虾只肉壳辨识总体平均准确率为95.9 %,同品种不同剥壳方式的虾只肉壳辨识准确率平均值为90.4 %,不同品种虾只肉壳辨识准确率平均值为87.2 %。研究结果可为裸肉虾与带壳虾自动分选提供技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号