首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Development of necrotic granulomas in response to Mycobacterium bovis infection in cattle is pathognomonic for bovine tuberculosis. Previously our laboratory reported on M. bovis granuloma classification by stage of lesion advancement within bovine lymph nodes and developed immunohistochemical markers to further characterize these granulomas. In this study of bovine lymph node granulomas we applied this classification system to assess the dynamics of vaccination challenge. Lymph nodes collected from cattle vaccinated with M. bovis bacillus Calmette-Guerin (BCG) and subsequently challenged with virulent M. bovis were compared to lymph nodes from unvaccinated, challenged cattle. Expression of interferon-gamma (IFN-gamma), transforming growth factor-beta (TGF-beta), type I procollagen and cell marker identification of T cells, B cells, macrophages and WC1(+)gammadelta TCR+ cells were assessed. Granulomas formed in vaccinated cattle were greatly reduced in number, area, degree of necrosis and peripheral fibrosis and contained fewer Langhans' giant cells, acid fast bacilli, WC1(+)gammadelta TCR+ cells and less TGF-beta expression in comparison to controls. B cells clustered intensely along the outer granuloma margins within vaccinated calves, with significantly more IFN-gamma producing cells identified in the medullary regions of lymph nodes from BCG-vaccinated animals compared to unvaccinated controls. This may be indicative of immune activation and surveillance in regions not directly associated with ongoing disease. Lymph node evaluation using light microscopy and immunohistochemical markers is useful to assess the immune response and discriminate granulomas to determine vaccine efficacy and disease severity.  相似文献   

2.
Delayed-type hypersensitivity (DTH) skin-testing with mycobacterial antigens is often used as a means of identifying Mycobacterium bovis-infected cattle. Better understanding of the cellular basis underlying the DTH reaction is required if diagnostic methods are to be improved upon. Previous studies have shown that gamma delta T-cells, particularly those bearing the WC1 molecule, are present at an early stage of developing DTH responses and that such cells may modulate the developing immune response immediately following M. bovis-infection. However, their role, if any, in the DTH response remains unclear. In the present study we have used an in vivo model to deplete WC1(+) gamma delta T-cells, from cattle with established M. bovis-infection, prior to skin-testing. Results indicate that, although WC1(+) gamma delta T-cells do infiltrate the skin-test site in normal calves, they do not appear to be essential for the development of DTH skin swelling, as indicated by effective development of skin responses in calves depleted of circulating WC1(+) gamma delta T-cells.  相似文献   

3.
Anaplasma phagocytophilum infection in sheep is characterized by an immune suppression as indicated by impaired antibody response, reduced lymphocyte response and reduced oxidative burst. The effect of A. phagocytophilum infection on leucocyte populations, especially lymphocytes, was therefore investigated in six sheep experimentally infected with A. phagocytophilum, and compared with leucocyte populations from control animals.To investigate the ability of the infection to interfere with the cellular and humoral responses to specific antigens, the animals were vaccinated with commercial vaccines at the time of experimental infection, and monitored for 56 days.There were reduced percentages of gammadelta T-cells and CD4+ T-cells in peripheral blood of infected animals throughout the study period, and these cell populations showed a down-regulation of CD25 expression; while there was a relative increase in CD8+ T-cells. The reduction in CD25+ gammadelta T-cells involved a subpopulation of WC1+ gammadelta T-cells. During the first 2 weeks of the study there were reduced percentages of B-cells and leukocytes expressing MHC II and CD11b, though this decrease changed to a relative increase later in the study. The relative reductions in leucocyte populations corresponded with the observed leucopenia during the first 3 weeks post-infection, which involved lymphocyte, neutrophil and eosinophil subsets [Vet. Immunol. Immunopathol. 86 (2002) 183]. There was a reduced expression of CD11b and CD14 on granulocytes during the first 2 weeks of the study, which corresponded with the previously reported leucopenia involving neutrophils and eosinophils. Antibody responses to vaccines, lymphocyte in vitro proliferative responses to antigens and mitogens, and in vitro IFN-gamma responses to antigens were reduced up to 4 weeks after infection.  相似文献   

4.
Despite highly successful eradication efforts in several countries, Mycobacterium bovis infection of cattle remains a significant health concern worldwide. Immune mechanisms of resistance to and/or clearance of M. bovis infection of cattle, however, are unclear. Recent studies have provided evidence supporting a role for CD4(+), CD8(+), and gammadelta TCR(+) T cells in the response of cattle to M. bovis. In the present study, we utilized a flow cytometric-based proliferation assay to determine the relative contribution of individual lymphocyte subsets in the response to M. bovis infection and/or sensitization with mycobacterial purified protein derivative (PPD). Peripheral blood mononuclear cells (PBMC) from M. bovis-infected cattle proliferated in response to in vitro stimulation with M. bovis PPD. CD4(+) T cells and gammadelta TCR(+) cells were the predominate subsets of lymphocytes responding to PPD. gammadelta TCR(+) cells also proliferated in non-stimulated cultures; however, the gammadelta TCR(+) cell proliferative response of infected cattle was significantly (p<0.05) greater in PPD-stimulated cultures as compared to non-stimulated cultures. Intradermal injection of PPD for comparative cervical testing (CCT) induced a boost in the in vitro proliferative response of CD4(+) but not gammadelta TCR(+) cells of infected cattle. Administration of PPD for CCT also boosted interferon-gamma (IFN-gamma) production by PBMC of infected cattle following in vitro stimulation with M. bovis PPD. Injection of PPD for CCT did not, however, elicit a proliferative or IFN-gamma response in cells isolated from non-infected cattle. These data indicate that CD4(+) and gammadelta TCR(+) cells of M. bovis-infected cattle proliferate in a recall response to M. bovis PPD and that the CD4(+) cell response is boosted by intradermal injection with PPD for CCT.  相似文献   

5.
Three 10 months old cattle were infected by the intratracheal route with 10(6)cfu of a field strain of Mycobacterium bovis. Blood samples were regularly collected for in vitro IFN-gamma production after antigenic stimulation. Peripheral blood cells of infected animals produced IFN-gamma in response to crude M. bovis antigens (live and heat-inactivated BCG and protein-purified derivative (PPD)) 3-4 weeks after infection. The ratio of the response to bovine PPD versus avian PPD indicated a specific sensitisation for M. bovis antigens. Three months post-infection (PI), animals were culled and M. bovis was cultured from tubercle lesions. At different time points, the frequency of specific M. bovis IFN-gamma producing CD4+, CD8+ and WC1+ T-cells in the peripheral blood was examined by flow cytometry. Two colour immunofluorescence staining of intracellular IFN-gamma and bovine cell surface molecules showed that both CD4+ and CD8+, but not WC1+, T-cells produced IFN-gamma following stimulation with PPD, live or killed BCG.In two animals analysed, the relative percentage of circulating IFN-gamma producing CD8+ cells decreased between week 5 and week 9 PI. The same evolution was not observed for IFN-gamma secreting CD4+ cells. Magnetic positive selection of T-cells from infected animals showed that CD4+ T-cells produced specific IFN-gamma only in the presence of antigen presenting cells (APCs). Positively selected CD8+ T-cells secreted IFN-gamma only in the presence of recombinant human IL-2 and APCs. In vitro depletion of the CD4+ T-cells, but not the depletion of CD8+ or WC1+ T-cells, resulted in abrogation of the specific IFN-gamma production showing the key role of this cell population for the specific IFN-gamma production.  相似文献   

6.
7.
White-tailed deer are significant wildlife reservoirs of Mycobacterium bovis for cattle, predators, and, potentially, humans. Infection of cattle with M. bovis stimulates an antigen-specific T-cell response, with both CD4(+) and CD8(+) cells implicated in protective immunity. Few studies, however, have examined lymphocyte subset responses to experimental M. bovis infection of white-tailed deer. In this study, a flow cytometric proliferation assay was used to determine the relative contribution of individual peripheral blood mononuclear cell subsets of M. bovis-infected white-tailed deer in the recall response to M. bovis antigen. Naive deer were challenged with M. bovis by cohabitation with infected deer. These M. bovis-challenged deer developed significant in vivo (delayed-type hypersensitivity) and in vitro (proliferative) responses to M. bovis purified protein derivative (PPD). At necropsy, typical tuberculous lesions containing M. bovis were detected within lungs and lung-associated lymph nodes of infected deer. The predominant subset of lymphocytes that proliferated in response to in vitro stimulation with PPD was the CD4(+) subset. Minimal proliferative responses were detected from CD8(+), gamma delta TCR(+), and B-cells. Addition of monoclonal antibodies specific for MHC II antigens, but not MHC I or CD1 antigens, abrogated the proliferative response. Together, these findings indicate that while CD4(+) cells from infected deer proliferate in the recall response to M. bovis antigens, this response is not sufficient to clear M. bovis and immunologic intervention may require stimulation of alternate subsets of lymphocytes.  相似文献   

8.
Analysis of global gene expression in immune cells has provided unique insights into immune system function and response to infection. Recently, we applied microarray and serial analysis of gene expression (SAGE) techniques to the study of gammadelta T-cell function in humans and cattle. The intent of this review is to summarize the knowledge gained since our original comprehensive studies of bovine gammadelta T-cell subsets. More recently, we have characterized the effects of mucosal infection or treatment with microbial products or mitogens on gene expression patterns in sorted gammadelta and alphabeta T-cells. These studies provided new insights into the function of bovine gammadelta T-cells and led to a model in which response to pathogen-associated molecular patterns (PAMPs) induces 'priming' of gammadelta T-cells, resulting in more robust responses to downstream cytokine and/or antigen signals. PAMP primed gammadelta T-cells are defined by up-regulation of a select number of cytokines, including MIP1alpha and MIP1beta, and by antigens such as surface IL2 receptor alpha (IL-2Ralpha) and CD69, in the absence of a prototypic marker for an activated gammadelta T-cell, IFN-gamma. Furthermore, PAMP primed gammadelta T-cells are more capable of proliferation in response to IL-2 or IL-15 in the absence of antigen. PAMPs such as endotoxin, peptidoglycan and beta-glucan are effective gammadelta T-cell priming agents, but the most potent antigen-independent priming agonists defined to date are condensed oligomeric tannins produced by some plants.  相似文献   

9.
The present study was undertaken to characterize the immune system of llamas and alpacas and establish the basis for an immunodeficiency disorder affecting juvenile llamas. Flow cytometric (FC) analysis of the immune system with a panel of monoclonal antibodies (mAbs) revealed the immune system of llamas and alpacas is similar in leukocyte subset composition to that in ruminants. Peripheral blood mononuclear cells in adults are comprised of surface immunoglobulin (sIg(+)) B-cells (31%+/-8 S.D.), alphabeta T-cells (27%+/-12 S.D.), WC1(+) gammadelta T-cells (16%+/-11 S.D.), and 5-16% monocytes. In contrast to cattle, goats, and sheep, however, the frequency of WC1(+) gammadelta T-cells is not high in juveniles but similar to the frequency in adults. Also, sIg(+) B-cells are present in high concentration in juveniles (43%+/-11 S.D. ). Expression of major histocompatibility class II molecules on resting T-cells was low or absent. Comparative analysis of peripheral blood lymphocyte composition in normal juvenile llamas and llamas presenting with the signs of the juvenile llama immunodeficiency syndrome (JLIDS) revealed the concentration of B-cells is extremely low (1-5%) in affected animals. The findings suggest JLIDS is attributable to an autosomal recessive genetic defect in the development of B-cells.  相似文献   

10.
11.
gammadelta T cells recognise different types of antigen in alternative ways to alphabeta T cells, and thus appear to play a complementary role in the immune response. However, unlike alphabeta T cells, the role or function of gammadelta T cells is still unclear. As pigs possess a high proportion of circulating gammadelta T cells, they are suitable large animal model to study gammadelta T cell functions. This as yet has not been fully exploited, leaving porcine gammadelta T cell biology and its role in immunity in its infancy. Foot-and-mouth disease (FMD) high potency "emergency" vaccines are able to induce early protection from challenge and it has been suggested that, in part, there is some involvement of innate immune responses. The antigen component of the vaccine is able to stimulate purified naive pig gammadelta T cells and induce the mRNA of various cytokines and chemokines. This observation suggests that gammadelta T cells probably contribute to the early phase of the immune responses to FMD vaccination, and perhaps infection. A subset of these circulating gammadelta T cells display a phenotype similar to professional antigen presenting cells and are able to take up and present soluble antigen to CD4(+) T cells in a direct cell-cell interaction via MHC class II. This direct interaction between gammadelta T cells and CD4(+) T cells is likely to have a significant influence on the out come of the adaptive immune response.  相似文献   

12.
13.
Cellular changes in the abomasal tissue and draining abomasal lymph nodes were examined after primary infection of lambs with Haemonchus contortus for 3, 5 or 27-36 days.Infection with H. contortus larvae resulted in a rapid and selective increase in the percentage of CD4(+) T-cells in the abomasal lymph node at 3 days post-infection (PI). By 5 days PI, the lymph node weight had increased two-fold; however, the percentage of lymphocyte populations in the abomasal lymph node resembled that seen in uninfected sheep. Lymph node weights remained at increased levels in the adult nematode infected sheep and down-regulation of B-cell surface markers (sIg and MHC Class II) was apparent in this group. Significant increases in the percentage of CD4(+) T-cells co-expressing MHC Class II, but not CD25, were observed in the larval infected groups except in adult nematode infected sheep. Increased numbers of eosinophils, CD4(+), gamma delta(+) T-cells and B-cells were found in the abomasal tissue by 5 days PI, but no further increases in these cell populations were observed in the adult nematode infected group. In contrast, the level of both lamina propria and intraepithelial mast cells observed in the abomasal mucosa was highest in the sheep carrying an adult nematode burden. These findings indicate that sheep are able to generate an early immune response to infection with H. contortus larvae, characterised by the activation of CD4 T-cells and B-cells in the draining lymph nodes and recruitment of eosinophils, CD4(+) and gamma delta-TCR,WC1(+) T-cells and B-cells in larval infected tissues. However, these changes do not seem to be maintained during infection with the adult parasite where increases in mast cell numbers dominate the local response, indicating that different parasite stages may induce distinct and possibly counteractive immune responses.  相似文献   

14.
Babesia bovis causes an acute and often fatal infection in adult cattle, which if resolved, leads to a state of persistent infection in otherwise clinically healthy cattle. Persistently infected cattle are generally resistant to reinfection with related parasite strains, and this resistance in the face of infection is termed concomitant immunity. Young animals are generally more resistant than adults to B. bovis infection, which is dependent on the spleen. Despite the discovery of B. bovis over a century ago, there are still no safe and effective vaccines that protect cattle against this most virulent of babesial pathogens. Immunodominant antigens identified by serological reactivity and dominant T-cell antigens have failed to protect cattle against challenge. This review describes the innate and acquired immune mechanisms that define resistance in young calves and correlate with the development of concomitant immunity in older cattle following recovery from clinical disease. The first sections will discuss the innate immune responses by peripheral blood- and spleen-derived macrophages in cattle induced by B. bovis merozoites and their products that limit parasite replication, and comparison of natural killer cell responses in the spleens of young (resistant) and adult (susceptible) cattle. Later sections will describe a proteomic approach to discover novel antigens, especially those recognized by immune CD4+ T lymphocytes. Because immunodominant antigens have failed to stimulate protective immunity, identification of subdominant antigens may prove to be important for effective vaccines. Identification of CD4+ T-cell immunogenic proteins and their epitopes, together with the MHC class II restricting elements, now makes possible the development of MHC class II tetramers and application of this technology to both quantify antigen-specific lymphocytes during infection and discover novel antigenic epitopes. Finally, with the imminent completion of the B. bovis genome-sequencing project, strategies using combined genomic and proteomic approaches to identify novel vaccine candidates will be reviewed. The availability of an annotated B. bovis genome will, for the first time, enable identification of non-immunodominant proteins that may stimulate protective immunity.  相似文献   

15.
The γδ T-cell receptor (TCR)-positive lymphocytes are a major circulating lymphocyte population in cattle, especially in young calves. In contrast, human and mice have low levels of circulating γδ TCR(+) T cells (γδ T cells). The majority of the circulating γδ T cells in ruminants express the workshop cluster 1 (WC1) molecule and are of the phenotype WC1(+) CD2(-) CD4(-) CD8(-). WC1 is a 220000 molecular weight glycoprotein with homology to the scavenger receptor cysteine-rich (SRCR) family, closely related to CD163. The existence of 13 members in the bovine WC1 gene family has recently been demonstrated and although murine and human orthologues to WC1 genes exist, functional gene products have not been identified in species other than ruminants and pigs. Highly diverse TCRδ usage has been reported, with expanded variable genes in cattle compared to humans and mice. Differential γ chain usage is evident between populations of bovine γδ T cells, this may have implications for functionality. There is a growing body of evidence that WC1(+) γδ T cells are important in immune responses to mycobacteria and may have important roles in T cell regulation and antigen presentation. In this review, we will summarize recent observations in γδ T cell biology and the importance of γδ T cells in immune responses to mycobacterial infections in cattle.  相似文献   

16.
To better understand the interaction between Mycoplasma bovis and its bovine host, we have characterized the immune response generated during an experimental lung infection with M. bovis. Proliferation ([3H]-thymidine blastogenesis) and Th1/Th2 cytokine production were used to monitor peripheral cellular immune responses. Flow cytometry analysis was used to determine T-cell subset activity by CD25 expression. Humoral immune response was monitored by the identification of antigen-specific IgG1 and IgG2 isotypes over time. Herein, we show that M. bovis antigen stimulates activation of CD4+ and CD8+ cells in vitro in a manner consistent with memory, and that gammadelta-T cells are activated by antigen in a manner consistent with innate immunity. In addition, the percentage of cells producing IFN-gamma during recall response is equal to that of IL-4 producing cells. Serological analysis shows M. bovis stimulates increased production of antigen-specific IgG1 while very little IgG2 is produced. We therefore submit that experimental lung infection of cattle with M. bovis results in a Th2-skewed immune response.  相似文献   

17.
In vivo lymphocyte subset depletion offers a unique opportunity to study the roles of different cellular components of the immune system of sheep during infection with orf virus. Lambs were depleted of specific lymphocyte subsets by the intravenous administration of monoclonal antibodies against ovine lymphocyte surface markers and then challenged with orf virus. The skin lesions that developed were scored visually as to their severity. Blood samples were collected to monitor the lymphocyte depletions and to measure orf-virus-specific antibody levels. Skin biopsies were collected from the lesion site and studied to determine the course of the infection and the presence of various cell types and orf virus.All the sheep developed orf virus lesions after infection. All three of the CD4-depleted lambs were unable to clear virus from their skin and did not have an antibody response to the virus. Virus was also detected in the skin of one each of the three CD8-depleted, WC1-depleted and control sheep on the final day of the trial. CD8(+) lymphocytes did not appear to be essential for viral clearance later in the infection. Depletion of the majority of gammadelta(+) T-cells did not affect the outcome of orf virus infection. In sheep with high orf-virus-specific antibody titres at the time of infection, orf lesions healed faster than lesions in sheep with low antibody levels, and this occurred regardless of the lymphocyte depletion status of the animals.This study suggests that the presence of CD4(+) T-cells and orf-virus-specific antibodies are important for the control of viral replication in the skin of infected sheep.  相似文献   

18.
To investigate the contribution of different bovine cell subpopulations in the development of in vitro induced responses by Ostertagia ostertagi third larval antigen extract (L3), bovine abomasal lymph node cell suspensions were depleted of specific cell populations. The depleted cell suspensions were subsequently assayed for their proliferative responses to O. ostertagi L3 antigen extract. Proliferative responses to O. ostertagi L3 antigen extract were restricted to a CD2+ CD4- CD8- cell population and MHC II+ cells different from B-cells were of major importance. Depletion of CD4, CD8, CD4CD8, IgM or CD21 positive cells did not decrease proliferation to L3 antigen extract. Depletion of gammadelta T-cells, which also comprise a subpopulation of CD2+ CD4- CD8- cells, reduced proliferation to L3 antigen extract only in one animal. The results suggest that either gammadelta T-cells could be involved in the proliferation or that another as yet unidentified population is important for proliferation. The precise role of these populations during infection with O. ostertagi and the mechanism by which these cells may influence the host immune response are important issues that remain to be elucidated.  相似文献   

19.

Background

Mycoplasma bovis is associated with pneumonia in calves characterized by the development of chronic caseonecrotic lesions with the agent persisting within the lesion. The purposes of this study were to characterize the morphology of lung lesions, examine the presence of M. bovis variable surface protein (Vsp) antigens and study the local immune responses in calves after infection with M. bovis strain 1067.

Methods

Lung tissue samples from eight calves euthanased three weeks after experimental infection with M. bovis were examined by bacteriology and pathology. Lung lesions were evaluated by immunohistochemical (IHC) staining for wide spectrum cytokeratin and for M. bovis Vsp antigens and pMB67 antigen. IHC identification and quantitative evaluation of CD4+ and CD8+ T lymphocytes and immunoglobulin (IgG1, IgG2, IgM, IgA)-containing plasma cells was performed. Additionally, expression of major histocompatibility complex class II (MHC class II) was studied by IHC.

Results

Suppurative pneumonic lesions were found in all calves. In two calves with caseonecrotic pneumonia, necrotic foci were surrounded by epithelial cells resembling bronchial or bronchiolar epithelium. In all calves, M. bovis Vsp antigens were constantly present in the cytoplasm of macrophages and were also present extracellularly at the periphery of necrotic foci. There was a considerable increase in numbers of IgG1- and IgG2-positive plasma cells among which IgG1-containing plasma cells clearly predominated. Statistical evaluation of the numbers of CD4+ and CD8+ T cells, however, did not reveal statistically significant differences between inoculated and control calves. In M. bovis infected calves, hyperplasia of bronchus-associated lymphoid tissue (BALT) was characterized by strong MHC class II expression of lymphoid cells, but only few of the macrophages demarcating the caseonecrotic foci were positive for MHC class II.

Conclusions

The results from this study show that infection of calves with M. bovis results in various lung lesions including caseonecrotic pneumonia originating from bronchioli and bronchi. There is long-term persistence of M. bovis as demonstrated by bacteriology and immunohistochemistry for M. bovis antigens, i.e. Vsp antigens and pMB67. The persistence of the pathogen and its ability to evade the specific immune response may in part result from local downregulation of antigen presenting mechanisms and an ineffective humoral immune response with prevalence of IgG1 antibodies that, compared to IgG2 antibodies, are poor opsonins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号