首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma concentrations of neomycin were measured after intrauterine infusion of 3.3 mg/kg neomycin sulphate. Mares infected two hours previously with an intra-uterine infusion of beta-haemolytic streptococci absorbed approximately 12 per cent of the neomycin in both the oestrous and the luteal phases of the cycle. Normal mares in oestrus absorbed 6 per cent of the neomycin infused and luteal mares absorbed 56 per cent. In infected mares the peak plasma concentrations occurred two hours after neomycin infusion, earlier than in healthy mares. Cervical flushings after neomycin infusion in infected luteal mares revealed an increased reflux of neomycin when compared with healthy mares. Prior infusion of 30 ml of 10 per cent Lugol's iodine into the uterus resulted in 31 per cent of neomycin being absorbed by oestrous mares and 64 per cent by mares in the luteal phase. Peak plasma concentrations occurred 30 minutes after infusion in both phases. In the luteal phase the mares' absorption of neomycin may have been maximal.  相似文献   

2.
Studies were conducted to compare continuous vs pulsatile i.v. infusion of GnRH on serum gonadotropin concentrations and ovulation in seasonally anestrous mares and in cycling mares. Anestrous mares (Exp. 1) received no treatment (control; n = 3), 2, or 20 micrograms of GnRH/h continuous infusion (CI) (n = 4 and n = 6, respectively), or 20 micrograms of GnRH/h pulsatile infusion (PI) (n = 5). After initiation of GnRH infusion, serum LH levels increased earlier, and to a greater extent, in the PI group than in other groups (P less than .05). In contrast, serum FSH concentrations did not differ among groups. The number of days to development of the first 35-mm follicle was not different among GnRH treatment groups; however, mares receiving PI ovulated on d 9.4 of treatment, 2.8 d earlier than those receiving 20 micrograms of GnRH/h CI (P less than .05). Mares given 2 micrograms of GnRH/h CI failed to ovulate spontaneously after 16 d of treatment, but each one ovulated within 2 to 4 d after injection of 2,000 IU of hCG on d 16. Control mares did not ovulate or show any significant follicular development throughout the experiment. Cycling mares (Exp. 2) received no treatment (control; n = 6), 20 micrograms of GnRH/h CI, or 20 micrograms of GnRH/h PI (n = 4) beginning on d 16 of an estrous cycle (d 0 = day of ovulation). Serum LH concentrations in all groups increased after initiation of treatment; however, on the day of ovulation LH concentrations were lower in the CI group than in the PI or control groups (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Thirty mares with normal estrous cycles were allotted equally to 5 groups and infused with 250 ml of saline (NaCl) solution in utero on the seventh day after ovulation to test the effects of temperature, osmolarity, or pH of the saline solution on prostaglandin F2 alpha (PGF2 alpha) release and luteolysis. Intrauterine infusion of phosphate-buffered saline solution failed to alter the duration of the luteal phase, compared with the control group. Similarly, increasing the temperature of phosphate-buffered saline solution to 42 C or increasing (600 mosm) or decreasing osmolarity (less than 10 mosm) did not change the duration of the luteal phase. Decreasing the pH of saline solution to 3 caused significant (P less than 0.0001) releases of PGF2 alpha from the uterus within the first hour after infusion, and the luteal phase was shortened to 8.8 +/- 1.0 days (mean +/- SEM; control, 15 +/- 1.2 days). The results of this study showed that pH is the main factor in eliciting PGF2 alpha release by intrauterine infusion of a saline solution, whereas increased temperature and osmolarity have no effect on the release of PGF2 alpha. The intrauterine infusion of sterile water or physiologic saline (NaCl) solution has been used to induce estrus in mares for the past 50 years. Many investigators have reported that intrauterine infusion of physiologic saline solution or water at body temperature (37 C) or warmer up to 45 C) causes most "anestrous" mares to return to estrus in 1 to 8 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Uterine clearance mechanisms during the early postovulatory period in mares   总被引:1,自引:0,他引:1  
Uterine response to inoculation with Streptococcus zooepidemicus organisms, 51Cr-labeled 15-microns microspheres, and charcoal was evaluated in 9 mares (4 resistant and 5 susceptible to endometritis) to determine mechanical and cellular clearance rates during the early postovulatory period. Mares were inoculated at estrus prior to ovulation during estrous cycles 1, 3, and 5. Uterine swab specimens for aerobic and anaerobic bacteriologic culture and serum for progesterone determination were obtained on postovulation day 3 during estrous cycle 1, on the day of ovulation during estrous cycle 3, and on postovulation day 5 during estrous cycle 5. Immediately thereafter, the uterus was irrigated with 50 ml of sterile physiologic saline solution containing tracer amounts of 125I-labeled human serum albumin. Streptococcus zooepidemicus was isolated from 10 of 15 (67%) uterine specimens collected from susceptible mares and incubated aerobically. Escherichia coli also was isolated from 2 of the 10 specimens incubated aerobically. Anaerobic bacteriologic culture of specimens from all mares yielded no growth. Chromium-labeled microspheres were recovered twice from 2 susceptible mares, on day 0 and day 5. Charcoal was retained in 5 specimens collected from 3 susceptible mares. Bacteriologic culture of specimens from resistant mares did not yield growth. On day 0, chromium-labeled microspheres and charcoal were recovered once from 1 resistant mare. Mares susceptible to endometritis accumulated more fluid within the uterine lumen after ovulation than did resistant mares (mean +/- SEM, 52.73 +/- 15.22 ml and 7.41 +/- 1.96 ml, respectively; P less than 0.01). From this study, it appeared that uterine cellular and bactericidal mechanisms are dysfunctional during the early postovulatory period. However, there appeared to be no disruption of the mechanisms responsible for mechanical clearance of materials inoculated in the uterus.  相似文献   

5.
Three experiments were performed to test the following hypotheses: 1) stallions and/or progesterone-estradiol-treated geldings could serve as models for the effects of a single implant of the GnRH analog, deslorelin acetate, on LH and FSH secretion by mares; and 2) multiple implants of deslorelin acetate could be used as a means of inducing ovarian atrophy in mares for future study of the mechanisms involved in the atrophy observed in some mares after a single implant. In Exp. 1, nine light horse stallions received either a single deslorelin implant (n = 5) or a sham injection (n = 4) on d 0. In Exp. 2, 12 geldings received daily injections of progesterone on d -20 through -4, followed by twice-daily injections of estradiol on d -2 to 0. On the morning of d 0, geldings received either a single deslorelin implant (n = 6) or a sham injection (n = 6). Daily injections of progesterone were resumed on d 2 through 15. In Exp. 1, plasma LH and FSH were elevated (P < 0.05) in the treatment group relative to controls at 4, 8, and 12 h after implant insertion. In the treated stallions, FSH was decreased (P < 0.05) on d 3 to 13, and LH was decreased on d 6 to 13. In Exp. 2, plasma LH and FSH were elevated (P < 0.05) at 4,8, and 12 h after deslorelin implant insertion. Plasma LH was suppressed (P < 0.05) below controls on d 2 to 7, 9, and 11 to 15; plasma FSH was suppressed (P < 0.05) on d 4 to 15. In Exp. 3, 21 mares were used to determine whether multiple doses of deslorelin would cause ovarian atrophy. Mares received one of three treatments: 1) sham injections; 2) three implants on the first day; or 3) one implant per day for 3 d (n = 7 per group). Treatment with multiple implants increased (P < 0.05) the interovulatory interval by 14.8 d and suppressed (P < 0.01) LH and FSH concentrations for approximately 25 d; no mare exhibited ovarian atrophy. In conclusion, after an initial short-term increase in LH and FSH secretion, deslorelin implants caused long-term suppression of both gonadotropins in stallions as well as in geldings treated with progesterone and estradiol to mimic the estrous cycle. It is likely that either of these models may be useful for further study of this suppression in horses. Although multiple implants in mares suppressed gonadotropin secretion longer than a single implant, the lack of ovarian atrophy indicates that the atrophy observed after a single implant in previous experiments was likely due to the susceptibility of individual mares.  相似文献   

6.
The objective of this study was to determine if intramuscular administration of 60 units of oxytocin once daily for 29 days, regardless of when treatment was initiated during the estrous cycle (i.e., without monitoring estrous behavior and/or detecting ovulation), would induce prolonged corpus luteum (CL) function in cycling mares. Mares were randomly assigned to two groups: (1) saline-treated control (n = 7) and (2) oxytocin-treated (n = 9) subjects. Control mares received 3 cc of saline, and oxytocin-treated mares received 60 units (3 cc) of oxytocin intramuscularly for 29 consecutive days. Treatment was initiated in all mares on the same day (day 1), independent of the day of the cycle. Jugular blood samples for determination of progesterone concentration were collected three times weekly (M, W, and F) for 21 days before treatment was initiated to confirm that all mares had a luteal phase of normal duration immediately before treatment. Beginning on the first day of treatment, blood samples were collected daily for eight days and then three times weekly through day 80. Mares were considered to have prolonged CL function if serum progesterone remained >1.0 ng/mL continuously for at least 25 days after the end of the treatment period. The proportion of mares with prolonged CL function was higher in the oxytocin-treated group than in the saline-treated group (7/9 vs. 1/7, respectively; P < .05). Three of the seven oxytocin-treated mares that developed prolonged CL function initially underwent luteolysis within 4–7 days of the start of oxytocin treatment and then developed prolonged CL function after the subsequent ovulation during the treatment period. In the other four oxytocin-treated mares that developed prolonged CL function, progesterone remained >1.0 ng/mL throughout the treatment period and into the post-treatment period. All mares with prolonged CL function maintained elevated progesterone concentrations through at least day 55 of the study. In conclusion, intramuscular administration of 60 units of oxytocin for 29 consecutive days effectively prolonged CL function in mares, regardless of when treatment was initiated during the estrous cycle. Importantly, this represents a protocol for using oxytocin treatment to prolong CL function that does not require detection of estrous behavior or day of ovulation.  相似文献   

7.
Plasma concentrations of neomycin were measured following intrauterine infusion of 3.3 mg/kg bodyweight neomycin sulphate. Mares in oestrus absorbed approximately 6 per cent of neomycin infused whereas mares in a luteal phase absorbed 56 per cent. The volume of infusate also affected absorption as increased volume resulted in decreased absorption. The decreased absorption both during oestrus and when large volumes were used was probably due to reflux of antibiotic through the cervix.  相似文献   

8.
Seasonal serum concentrations of melatonin in cycling and noncycling mares   总被引:1,自引:0,他引:1  
To determine whether secretory patterns of melatonin change throughout the seasons in mares, blood samples were drawn byvenipuncture from nine mares at noon and midnight for five successive days at monthly intervals from August through July at the University of Missouri in Columbia, MO. In addition, during September, December, March, and June, blood samples were drawn from indwelling catheters at 2-h intervals for 48 or 72 h. Mares were predominantly Quarter Horses weighing approximately 450 kg and ranged from 3 to 12 yr of age. Mares were housed in outdoor paddocks with three-sided run-in sheds for shelter. During the noon and midnight bleeding period, mares were placed in a larger open-sided barn with outside runs. Mares remained outdoors with the barn being used as a shelter in the event of inclement weather. All lights in the shed were converted to red light. Often, moonlight provided enough illumination to collect blood samples. Mares were returned to their normal paddock after each sampling period. For analysis of data, a mare was considered to be cycling if serum concentrations of progesterone were greater than 1 ng/ mL. For a mare to be classified as exhibiting a nocturnal rise of melatonin, serum concentrations of melatonin had to be at least two times greater at midnight than at noon. By month, a relationship did not exist (chi2; P > 0.05) among mares that were exhibiting estrous cycles and exhibiting nocturnal rises of melatonin. Likewise, examination of serum profiles of melatonin taken at 2-h intervals for 48 h revealed considerable variation among mares throughout the seasons. A nocturnal rise in serum melatonin was observed only in June (P < 0.02). In March and December, serum melatonin was greater in cycling mares than noncycling mares, but the elevation was not associated with light-dark periods (P < 0.01). Two of the mares exhibited estrous cycles throughout the seasons but melatonin secretion in these two mares were similar to that observed in the seven mares that demonstrated seasonal anestrous. From these results, it does not appear that changes in serum concentrations of melatonin are used as a cue to regulate cyclic activity in the mare throughout the seasons.  相似文献   

9.
10.
OBJECTIVE: To investigate the relationship between stage of estrous cycle and bone cell activity in Thoroughbreds. SAMPLE POPULATION: Blood samples collected from forty-seven 2-year-old Thoroughbred mares in training for racing. PROCEDURES: Blood samples were collected monthly (in April through September) from the mares. Stage of estrus was determined by assessing serum progesterone concentration. Bone cell activity was determined by measuring concentrations of 2 markers of bone formation (osteocalcin and the carboxy-terminal propeptide of type I collagen [PICP]) and a marker of bone resorption (the cross-linked carboxy-terminal telopeptide of type I collagen [ICTP]) in sera. RESULTS: When the relationship between stage of the estrous cycle and markers of bone cell activity was examined, serum concentrations of both osteocalcin and ICTP were significantly higher in mares that were in the luteal phase, compared with mares that were at other stages of the estrous cycle. Stage of estrus did not affect serum PICP concentration. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that bone cell activity in Thoroughbred mares fluctuates during the estrous cycle; serum concentrations of markers of bone formation and bone resorption are increased during the luteal phase. Further studies are required to determine whether these changes are of clinical importance and increase the risk of injury for mares in training during the breeding season. As in humans, stage of estrus must be considered as a source of uncontrollable variability in serum bone marker concentrations in horses.  相似文献   

11.
Effect of transportation on estrous behavior, duration of the estrous cycle, ovulation, pregnancy rates and concentrations of serum cortisol, plasma ascorbic acid (AA), LH, estradiol and progesterone in mares was investigated. Fifteen mares were transported for 792 km (12 h) during the preovulatory stage of estrus. Transported mares were bled immediately before transport (baseline), at midtrip and 0, 12, 24, 48 and 72 h post-transport and twice daily from d 1 before transport to d 1 (estrogen) or 3 (LH) post-ovulation. Blood samples also were taken for progesterone on d 0, 2, 6, 10, 15, 16, 17, 18, 19 and 20 post-ovulation. Nontransported control mares (n = 15) were bled on the same schedule as transported mares. There was no difference (P greater than .05) in number of mares ovulating, estrous behavior, duration of the estrous cycle or pregnancy rate between groups. Cortisol in transported mares increased to concentrations greater (P less than .05) than those in control mares at midtrip and 0 h post-transport. Concentrations of AA in transported mares also increased (P less than .05) at midtrip, then decreased (P less than .05) below baseline at 24 h post-transport. Concentrations of LH and estradiol increased (P less than .05) above baseline throughout the blood-sampling period. Increases apparently were due to preovulatory surges of these hormones. Increase in LH concentrations in transported mares, however, was greater (P less than .05) than that in control mares at 0 h post-transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Experiments were performed to determine whether serum concentrations of total cholesterol (TC) undergo cyclic changes during the estrous cycle of dairy heifers and to assess the relationship between serum concentrations of TC and ovarian steroid hormones. The effects of a hypercholesterolemic diet upon luteal progesterone secretion also were determined. Experiment 1 involved five dairy heifers exhibiting normal estrous cycles. Serum concentrations of TC, progesterone, testosterone and estradiol-17 beta were determined in blood samples collected throughout a complete estrous cycle. A transient decline in TC was observed during the luteal phase of all heifers beginning on d 2 and reached a nadir 6 d after estrus. Highest mean concentrations of TC occurred between d -2 and +2 (96.3 +/- 8.2 mg/dl), which were markedly higher (P less than .05) than the lowest mean concentrations (76.3 +/- 10.3 mg/dl) observed on d 6. Concentrations of serum TC were negatively correlated (r = -.40; P less than .01) with progesterone between d 2 and 9. Serum TC was not correlated with testosterone or estradiol-17 beta. In Exp. 2, seven cycling Holstein heifers were fed a control diet for 70 d (Stage I), a diet containing 15% whole sunflower seed as a source of supplemental dietary lipid for 70 d (Stage II) and then the control diet for 70 d (Stage III). Diets were isocaloric and isonitrogenous. All heifers were synchronized with prostaglandin F2 alpha after wk 5 in each of the three feeding stages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Effects of degree of obesity on basal concentrations of insulin, glucose, thyroxine (T4), triiodothyronine (T3), estradiol-17 beta (E) and progesterone (P) were measured in serum from 50 estrous and 73 diestrous Holstein heifers and the insulin response to glucose infusion was assessed in diestrous obese (n = 7) and lean (n = 7) heifers. Basal concentrations of glucose, T4, T3, E and P were not correlated with degree of obesity, although concentrations of glucose, T4 and T3 were higher (P less than .05) at estrus than diestrus. Basal concentrations of insulin at estrus and diestrus were positively correlated (r = .6; P less than .001) with degree of obesity but this relationship was different (P less than .001) between estrus and diestrus. Furthermore, there was interaction (P less than .001) between body condition and stage of the estrous cycle only for basal concentrations (mean +/- SE) of insulin, with the difference in insulin levels (microU/ml) between 12 obese and 12 lean heifers at diestrus (11.7 +/- 1.3 vs 6.7 +/- .6; P less than .05) increasing during estrus (21.9 +/- 2.4 vs 10.8 +/- 1.3; P less than .001). Insulin response to glucose infusion was greater in obese than in lean heifers, whether determined as actual concentration (P less than .01) or as insulin response areas (P less than .05) above base-line concentrations. Obese heifers were less responsive to insulin since hyperinsulinemia and euglycemia coexisted, and because glucose fractional removal rates were similar in both groups after glucose infusion in spite of greater concentrations of insulin in obese heifers. Thus, obesity in heifers was associated with insulin resistance, basal hyperinsulinemia and greater glucose-induced secretion of insulin.  相似文献   

14.
We evaluated the efficacy of intrauterine plasma infusion in mares as a treatment for infertility caused by endometritis and distinguished the effects of intrauterine infusion of plasma vs saline solution. Forty-three subfertile mares were randomly assigned to 1 of 3 treatment groups: untreated controls (n = 14), those treated by saline infusion (n = 14), and those treated by plasma infusion (n = 15). Reproductive status was assessed daily by transrectal ultrasonography. Uterine aspirates and biopsy specimens were obtained 8 days after ovulation for cytologic and histologic evaluation, and mares were treated on days 12 to 16. Uterine aspirates and biopsy specimens were obtained again on day 8 of the next estrous cycle, and the mares were bred at the subsequent estrus. A postovulation intrauterine infusion of either plasma or saline solution was administered to mares in their respective treatment groups. Biopsy specimens were scored from 1 (no indications of inflammation) to 6 (severe inflammation). The pregnancy rate was lower (P less than 0.005) for mares with scores 5 and 6 (0/5) than for those with scores 1 to 4 (17/35). There was no significant effect of treatment nor a treatment by biopsy score interaction on pregnancy rate; however, the pregnancy rate for mares treated with plasma or saline solution (9/27) tended to be lower than for the control (untreated) mares (8/13). There was no change in mean biopsy score between specimens obtained before treatment and those obtained after treatment for the control group and the group treated with saline solution; however, there was a significant increase (P less than 0.05) in scores in the group treated with plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Mares that had previously been fed to attain body condition scores (BCS) of 7.5 to 8.5 (high) or 3.0 to 3.5 (low) were used to determine the interaction of BCS with the responses to 1) administration of equine somatotropin (eST) daily for 14 d beginning January 20 followed by administration of GnRH analog (GnRHa) daily for 21 d and 2) 4-d treatment with dexamethasone later in the spring when mares in low BCS had begun to ovulate. The majority of mares with high BCS continued to cycle throughout the winter, as evidenced by larger ovaries (P < 0.002), more corpora lutea (P < 0.05), greater progesterone concentrations during eST treatment (P < 0.04), and more (P < 0.05) large- and medium-sized follicles. Treatment with eST alone or in combination with GnRHa had no effect (P > 0.05) on ovarian activity or ovulation. Plasma leptin concentrations were greater (P < 0.002) in mares with high BCS; however, there was no effect (P > 0.10) of eST treatment. Plasma IGF-I concentrations were greater (P < 0.0001) in mares treated with eST compared with mares given vehicle, and mares with high BCS had greater IGF-I (P < 0.02) and LH concentrations (P < 0.02) than mares with low BCS. Plasma leptin concentrations in mares with high BCS were increased (P < 0.001) within 12 h of dexamethasone treatment; the leptin response (P < 0.001) in mares with low BCS was greatly reduced (P < 0.001) and transient. Glucose and insulin concentrations also increased (P < 0.0001) after dexamethasone treatment in both groups, and the magnitude of the response was greater (P < 0.0001) in mares with high BCS than in mares with low BCS. In summary,low BCS in mares was associated with a consistent seasonal anovulatory state that was affected little by eST and GnRHa administration. In contrast, all but one mare with high BCS continued to experience estrous cycles and(or) have abundant follicular activity on their ovaries. The IGF-I response to eST treatment was also reduced in mares with low BCS, as was the basal leptin concentration and leptin response to dexamethasone. Although low BCS and leptin concentrations were associated with inactive ovaries during winter and early spring, mares with low BCS eventually ovulated in April and May while leptin concentrations remained low.  相似文献   

16.
Plasma lipid concentrations, lipoprotein composition, and glucose dynamics were measured and compared between mares fed diets containing added water, corn oil (CO), refined rice bran oil (RR), or crude rice bran oil (CR) to test the hypothesis that rice bran oil lowers plasma lipid concentrations, alters lipoprotein composition, and improves insulin sensitivity in mares. Eight healthy adult mares received a basal diet fed at 1.5 times the DE requirement for maintenance and each of the four treatments according to a repeated 4 x 4 Latin square design consisting of four 5-wk feeding periods. Blood samples were collected for lipid analysis after mares were deprived of feed overnight at 0 and 5 wk. Glucose dynamics were assessed at 0 and 4 wk in fed mares by combined intravenous glucose-insulin tolerance tests. Plasma glucose and insulin concentrations were measured, and estimated values of insulin sensitivity (SI), glucose effectiveness, and net insulin response were obtained using the minimal model. Mean BW increased (P = 0.014) by 29 kg (range = 10 to 50 kg) over 5 wk. Mean plasma concentrations of NEFA, triglyceride (TG), and very low-density lipoprotein (VLDL) decreased (P < 0.001) by 55, 30, and 39%, respectively, and plasma high-density lipoprotein and total cholesterol (TC) concentrations increased (P < 0.001) by 15 and 12%, respectively, over 5 wk. Changes in plasma NEFA (r = 0.58; P < 0.001) and TC (r = 0.44; P = 0.013) concentrations were positively correlated with weight gain over 5 wk. Lipid components of VLDL decreased (P < 0.001) in abundance over 5 wk, whereas the relative protein content of VLDL increased by 39% (P < 0.001). Addition of oil to the basal diet instead of water lowered plasma NEFA and TG concentrations further (P = 0.002 and 0.020, respectively) and increased plasma TC concentrations by a greater magnitude (P = 0.072). However, only plasma TG concentrations and VLDL free cholesterol content were affected (P = 0.024 and 0.009, respectively) by the type of oil added to the diet. Mean plasma TG concentration decreased by 14.2 mg/dL over 5 wk in the CR group, which was a larger (P < 0.05) decrease than the one (-5.3 mg/dL) detected in mares that received water. Consumption of experimental diets lowered S(I), but glucose dynamics were not affected by oil supplementation. Addition of oil to the diet altered blood lipid concentrations, and supplementation with CR instead of water specifically affected plasma TG concentrations and VLDL free cholesterol content.  相似文献   

17.
The aim of the present study was to evaluate the effects of continuous administration of linoleic acid or linolenic acid into the intra-uterine horn, ipsilateral to the corpus luteum, on the duration of the estrous cycle and plasma progesterone (P4) concentration. The effects of linoleic and linolenic acids on bovine uterine and luteal functions were also studied using a tissue culture system. Intra-uterine administration of linoleic or linolenic acid (5 mg/10 ml of each per day) in cows, between days 12 and 21, resulted in a prolonged estrous cycle compared to the average duration of the last one to three estrous cycles before administration in each group (P < 0.05). Moreover, plasma P4 concentration in cows treated with linoleic or linolenic acid was high between days 19 and 21 (linoleic acid), or on day 20 (linolenic acid), compared to that of the control cows (saline administration; P < 0.05 or lower). Both linoleic (500 µg/ml) and linolenic (5 and 500 µg/ml) acids stimulated prostaglandin (PG) E2 but inhibited PGF2α production by cultured endometrial tissue (P < 0.01), while P4 production by cultured luteal tissue was not affected. These findings suggest that both linoleic and linolenic acids support luteal P4 production by regulating endometrial PG production and, subsequently, prolonging the duration of the estrous cycle in cows.  相似文献   

18.
Fertility of young mares after long-term anabolic steroid treatment   总被引:1,自引:0,他引:1  
The effect of prior treatment with anabolic steroids was studied in 46 three-year-old mares. In the preceding year, these mares had been assigned to 1 of 4 treatment groups and had received the manufacturer's recommended dosage of 1.1 mg of boldenone undecylenate (BU)/kg of body weight, 4.4 mg of boldenone undecylenate (4 BU)/kg, 1.1 mg of nandrolone decanoate (ND)/kg, or 0.04 ml of sesame oil/kg (control, C). Mares had received an injection every 3 weeks for 54 weeks for a total of 19 injections, with the final injection in December. In the following breeding season, fewer (P less than 0.05) mares in all groups previously administered anabolic steroids displayed estrous behavior than did mares in the control group. Duration of estrus was shortened (P less than 0.05) in mares that had received steroids. Abnormal sexual behavior that was observed during steroid treatment continued (P less than 0.05) for up to 6 months after treatment ceased. However, observations of abnormal behavior declined with time (P less than 0.05). All mares in each treatment group ovulated by the end of the trial, and the interval to first ovulation was similar (P greater than 0.05). Ovarian size, follicular development, and conditions of the tubular genitalia was adversely (P less than 0.05) affected in mares in all steroid-treatment groups until approximately the middle of March. After that time, no difference was noted among groups. First-cycle pregnancy rates were 83%, 67%, 50%, and 42% for mares in the untreated, BU, 4 BU, and ND groups, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
OBJECTIVE: To document uterine growth and microvascular development in the endometrium of uteri with differing degrees of fibrosis as well as uterine growth throughout the estrous cycle of mares. ANIMALS: 30 mares. PROCEDURE: Uterine tissue was obtained during the breeding season from a slaughter facility. Stage of estrous cycle of the mares was assessed on the basis of ovarian structures and plasma progesterone concentrations. Endometrium was characterized by use of light microscopy, and blood vessel walls were marked by histochemical techniques. Microvascular development was evaluated by a computerized image analysis system. Growth of uterine tissue was based on cellular content of DNA and RNA, RNA:DNA, and protein:DNA. RESULTS: Significant differences in vascular density were not observed in the endometrium of uteri obtained from mares euthanatized during the follicular or luteal phase of the estrous cycle, regardless of whether endometrial classification of degree of fibrosis was considered. There was a 3-fold increase in amount of DNA and RNA of endometrial cells in the follicular phase when compared to myometrium. Hypertrophy of endometrial tissue during the luteal phase was reflected by a significant increase in cell protein content and protein:DNA. CONCLUSIONS AND CLINICAL RELEVANCE: Endometrial growth of vascular tissues during the estrous cycle may be coordinated with development of nonvascular tissue. Estrogen and progesterone may play a role in regulation of uterine growth and angiogenesis.  相似文献   

20.
To study the possible role of ovarian androgens in regulation of follicle stimulating hormone (FSH) secretion in the cycling mare, five mature, intact mares were treated with testosterone (20 micrograms/kg of body weight) daily during estrus; five control mares received safflower oil on the same schedule. Mares were teased for estrus and samples of jugular blood were drawn daily through one full estrous cycle. Concentrations of FSH in plasma were measured by a newly developed radioimmunoassay based on anti-ovine FSH serum and radioiodinated equine FSH. Testosterone treatment during estrus had no effect on duration of estrus, diestrus or the total cycle. Concentrations of FSH in plasma during estrus were unaffected by testosterone treatment. However, FSH concentrations in testosterone-treated mares were elevated (P less than .05) compared with controls during mid-diestrus (d 6 through 11). The magnitude and timing of the LH peaks were unaffected by treatment, as was the day on which the first elevated progesterone concentration occurred. These data are consistent with a model of FSH secretion in which ovarian androgens cause an accumulation of FSH in the pituitary during estrus in preparation for the surges that occur in FSH secretion during diestrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号