首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
OBJECTIVE: To evaluate the effects of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) on the metabolic function and morphologic features of equine superficial digital flexor tendon (SDFT) in explant culture. Animals-6 euthanized horses (2 to 5 years old). METHODS: Forelimb SDFT explants were cultured for 6 days as untreated control specimens or treated with rhPDGF-BB (1, 10, 50, or 100 ng/mL of medium). Treatment effects on explant gene expression were evaluated via real-time PCR analysis of collagen type I, collagen type III, PDGF-A, and PDGF-B mRNA. Explants were assayed for total collagen, glycosaminoglycan, and DNA content; histologic changes were assessed via H and E staining and immunohistochemical localization of collagen types I and III. RESULTS: No morphologic or proliferative changes were detected in tendon explant sections. After high-dose rhPDGF-BB treatment, gene expression of collagen types I and III was increased and decreased, respectively. Expression of PDGF-A and PDGF-B mRNA was significantly increased at 24 hours, but later decreased to have few or negative autoinductive effects. Although PDGF gene expression waned after 48 hours of culture, collagen type I gene expression was significantly increased at 48 hours and reached peak value on day 6. Glycosaminoglycan and DNA content of explants were unchanged with rhPDGF-BB treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that rhPDGF-BB use may be of benefit in the repair of equine tendon, particularly through induction of collagen type I mRNA. Positive autoinductive effects of PDGF-BB in equine SDFT explants were detected early following culture medium supplementation, but these diminished with time.  相似文献   

2.
OBJECTIVE: To evaluate the effects of triamcinolone acetonide (TA), sodium hyaluronate (HA), amikacin sulfate (AS), and mepivacaine hydrochloride (MC) on articular cartilage morphology and matrix composition in lipopolysaccharide (LPS)-challenged and unchallenged equine articular cartilage explants. Sample POPULATION: 96 articular cartilage explants from 4 femoropatellar joints of 2 adult horses. PROCEDURES: Articular cartilage explants were challenged with LPS (100 ng/mL) or unchallenged for 48 hours, then treated with TA, HA, AS, and MC alone or in combination for 96 hours or left untreated. Cartilage extracts were analyzed for glycosaminoglycan (GAG) content by dimethyl-methylene blue assay (ng/mg of dry wt). Histomorphometric quantification of total lacunae, empty lacunae, and lacunae with pyknotic nuclei was recorded for superficial, middle, and deep cartilage zones. RESULTS: LPS induced a significant increase in pyknotic nuclei and empty lacunae. Treatment with TA or HA significantly decreased empty lacunae (TA and HA), compared with groups without TA or HA, and significantly decreased empty lacunae of LPS-challenged explants, compared with untreated explants. Treatment with AS or MC significantly increased empty lacunae in unchallenged explants, and these effects were attenuated by TA. Treatment with MC significantly increased empty lacunae and pyknotic nuclei and, in combination with LPS, could not be attenuated by TA. Content of GAG did not differ between unchallenged and LPS-challenged explants or among treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Treatment with TA or HA supported chondrocyte morphology in culture and protected chondrocytes from toxic effects exerted by LPS, AS, and MC.  相似文献   

3.
OBJECTIVE: To determine whether expansion of equine mesenchymal stem cells (MSCs) by use of fibroblast growth factor-2 (FGF-2) prior to supplementation with dexamethasone during the chondrogenic pellet culture phase would increase chondrocytic matrix markers without stimulating a hypertrophic chondrocytic phenotype. SAMPLE POPULATION: MSCs obtained from 5 young horses. PROCEDURES: First-passage equine monolayer MSCs were supplemented with medium containing FGF-2 (0 or 100 ng/mL). Confluent MSCs were transferred to pellet cultures and maintained in chondrogenic medium containing 0 or 10(7)M dexamethasone. Pellets were collected after 1, 7, and 14 days and analyzed for collagen type II protein content; total glycosaminoglycan content; total DNA content; alkaline phosphatase (ALP) activity; and mRNA of aggrecan, collagen type II, ALP, and elongation factor-1alpha. RESULTS: Treatment with FGF-2, dexamethasone, or both increased pellet collagen type II content, total glycosaminoglycan content, and mRNA expression of aggrecan. The DNA content of the MSC control pellets decreased over time. Treatment with FGF-2, dexamethasone, or both prevented the loss in pellet DNA content over time. Pellet ALP activity and mRNA were increased in MSCs treated with dexamethasone and FGF-2-dexamethasone. After pellet protein data were standardized on the basis of DNA content, only ALP activity of MSCs treated with FGF-2-dexamethasone remained significantly increased. CONCLUSIONS AND CLINICAL RELEVANCE: Dexamethasone and FGF-2 enhanced chondrogenic differentiation of MSCs, primarily through an increase in MSC numbers. Treatment with dexamethasone stimulated ALP activity and ALP mRNA, consistent with the progression of cartilage toward bone. This may be important for MSC-based repair of articular cartilage.  相似文献   

4.
Low molecular weight polysulfated glycosaminoglycan (PSGAG) stimulated net collagen and glycosaminoglycan synthesis by normal and arthritic equine fetlock cartilage tissues in organ culture. Arthritic tissues were more sensitive to PSGAG stimulation. The rates of cartilage-specific type-II collagen and chondroitin sulfate-rich glycosaminoglycan synthesis by confluent chondrocyte cell cultures obtained from normal and arthritic equine cartilage tissues were increased by 25 and 50 mg of PSGAG/ml. Cells from arthritic cartilage were also more sensitive to the presence of PSGAG. In addition, concentrations of PSGAG (25 and 50 mg/ml) approximate to those in synovial fluid after intra-articular injection of 250 mg of PSGAG inhibited the rate of collagen and glycosaminoglycan degradation in cell culture. These findings suggest that PSGAG may have a role in the healing of mild cartilage degeneration by encouraging the production of replacement hyaline matrix materials, while delaying their subsequent degradation. In contrast, growth of cell cultures was inhibited by PSGAG, suggesting that these compounds may fail to stimulate chondrocyte replication, a prerequisite for tissue regeneration. Nonetheless, these observations provide direct evidence of a truly chondroprotective role for low molecular weight PSGAG in the treatment of equine degenerative joint disease.  相似文献   

5.
OBJECTIVE: To determine effects of sodium hyaluronate (HA) on corticosteroid-induced cartilage matrix catabolism in equine articular cartilage explants. SAMPLE POPULATION: 30 articular cartilage explants from fetlock joints of 5 adult horses without joint disease. PROCEDURE: Articular cartilage explants were treated with control medium or medium containing methylprednisolone acetate (MPA; 0.05, 0.5, or 5.0 mg/mL), HA (0.1, 1.0, or 1.5 mg/mL), or both. Proteoglycan (PG) synthesis was measured by incorporation of sulfur 35-labeled sodium sulphate into PGs, and PG degradation was measured by release of radiolabeled PGs into the medium. Total glycosaminoglycan (GAG) content in media and explants and total explant DNA were determined. RESULTS: Methylprednisolone acetate caused a decrease in PG synthesis, whereas HA had no effect. Only the combination of MPA at a concentration of 0.05 mg/mL and HA at a concentration of 1.0 mg/mL increased PG synthesis, compared with control explants. Methylprednisolone acetate increased degradation of newly synthesized PGs into the medium, compared with control explants, and HA alone had no effect. Hyaluronate had no effect on MPA-induced PG degradation and release into media. Neither MPA alone nor HA alone had an effect on total cartilage GAG content. Methylprednisolone acetate caused an increase in release of GAG into the medium at 48 and 72 hours after treatment. In combination, HA had no protective effect on MPA-induced GAG release into the medium. Total cartilage DNA content was not affected by treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Our results indicate that HA addition has little effect on corticosteroid-induced cartilage matrix PG catabolism in articular cartilage explants.  相似文献   

6.
In the present study, the effects of intralesional injections of beta-aminopropionitrile fumarate (BAPN-F) was assessed in equine experimental tendinitis. BAPN-F is a lathyrogen which inhibits, crosslinking of collagen, permitting more time for parallel reorientation of the repair tissue. Sixteen two-year-old Arabian horses without health problems were used in this experiment. The animals were divided into two groups: group one was left in box rest, and group two was submitted to controlled exercise during the experiment. Tendinitis was induced with collagenase in the superficial flexor tendon of both forelimbs. Twenty days after the induction of tendinitis, intralesional treatment with BAPN-F was performed and the contralateral limbs received saline. A biopsy was obtained and gross and histopathological analysis was performed on the 150th day of the experiment. The collagen fibrillar alignment pattern in the healing area was better in the BAPN-F group submitted to controlled exercise than in the other group, as observed by sonographic and histopathologic examination. The present results indicate that BAPN-F in combination with controlled loading improved scar remodeling and tendon wound collagen maturation.  相似文献   

7.
OBJECTIVE: To determine response of interleukin-1alpha (IL-1alpha)-conditioned equine articular cartilage explants to insulin-like growth factor-1 (IGF-1). Sample Population-Cartilage from the trochlea and condyles of the femur of a clinically normal 4-year-old horse. PROCEDURE: Effects of IGF-1 (0 to 500 ng/ml) after addition of IL-1alpha were evaluated by assessing matrix responses, using a sulfated glycosaminoglycan (GAG) assay, matrix 35SO4 GAG incorporation, and release of GAG. Mitogenic response was assessed by 3H-thymidine incorporation into DNA and fluorometric assay of total DNA concentration. RESULTS: Human recombinant IL-1alpha (40 ng/ml) increased the amount of labeled GAG released and decreased labeled and total GAG remaining in explants, and IL-1alpha decreased mitogenic response. Addition of IGF-1 counteracted effects seen with IL-1alpha alone. In general, IGF-1 decreased total and labeled GAG released into the medium, compared with IL-1alpha-treated explants (positive-control sample). Values for these variables did not differ significantly from those for negative-control explants. A significant increase in total and newly synthesized GAG in the explants at termination of the experiment was observed with 500 ng of IGF-1/ml. Labeled GAG remaining in explants was greater with treatment at 50 ng of IGF-1/ml, compared with treatment with IL-1alpha alone. Concentrations of 200 ng of IGF-1/ml abolished actions of IL-1alpha and restored DNA synthesis to values similar to those of negative-control explants. CONCLUSIONS AND CLINICAL RELEVANCE: IGF-1 at 500 ng/ml was best at overcoming detrimental effects associated with IL-1alpha in in vitro explants. These beneficial effects may be useful in horses with osteoarthritis.  相似文献   

8.
REASONS FOR PERFORMING STUDY: Extracorporeal shockwave therapy (ESWT) has recently been introduced as a new therapy for tendon injuries in horses, but little is known about the basic mechanism of action of this therapy. OBJECTIVES: To study the effect of ESWT on biochemical parameters and tenocyte metabolism of normal tendinous structures in ponies. METHODS: Six Shetland ponies, free of lameness and with ultrasonographically normal flexor and extensor tendons and suspensory ligaments (SL), were used. ESWT was applied at the origin of the suspensory ligament and the mid-metacarpal region of the superficial digital flexor tendon (SDFT) 6 weeks prior to sample taking, and at the mid-metacarpal region (ET) and the insertion on the extensor process of the distal phalanx (EP) of the common digital extensor tendon 3 h prior to tendon sampling. In all animals one front leg was treated and the other front leg was used as control. After euthanasia, tendon explants were harvested aseptically for in vitro cell culture experiments and additional samples were taken for biochemical analyses. RESULTS: In the explants harvested 3 h after treatment, glycosaminoglycan (GAG) and protein syntheses were increased (P<0.05). The synthesis of all measured parameters was decreased 6 weeks after ESWT treatment. Biochemically, the level of degraded collagen was increased 3 h after treatment (P<0.05). Six weeks after treatment, there was a decrease of degraded collagen and GAG contents. DNA content had not changed in either tendon samples or explants after culturing. CONCLUSIONS: ESWT causes a transient stimulation of metabolism in tendinous structures of ponies shortly after treatment. After 6 weeks metabolism has decreased significantly and GAG levels are lower than in untreated control limbs. POTENTIAL RELEVANCE: The stimulating short-term effect of ESWT might accelerate the initiation of the healing process in injured tendons. The long-term effect seems less beneficial. Further research should aim at determining the duration of this effect and at assessing its relevance for end-stage tendon quality.  相似文献   

9.
AIM: To investigate, in vitro, the effects of radial shock waves on the release of nitric oxide (NO) and synthesis of prostaglandin E2 (PGE2) and glycosaminoglycan (GAG), and liberation of GAG, from equine articular cartilage explants. METHODS: Equine cartilage from normal metacarpophalangeal and metatarsophalangeal joints was exposed to radial shock waves at various impulse doses and then maintained as explants in culture for 48 h. Shock waves were delivered at 1,876 Torr pressure and a frequency of 10 Hz. Treatment groups consisted of a negative control group, or application of 500, 2,000, or 4,000 impulses by use of either a convex handpiece (Group A) or concave handpiece (Group B). Synthesis of GAG was measured using incorporation of 35S-labelled sodium sulphate. Additionally, the synthesis of NO and PGE2, and content of GAG of the explants and media were determined. RESULTS: No significant effects (p>0.05) of radial shock-wave treatment were evident on the synthesis of NO or PGE2, or release of GAG by cartilage explants. However, radial shock waves decreased synthesis of GAG measured 48 h after exposure for all treatment groups other than the 500-impulse Group-A explants (p<0.05). CONCLUSIONS: Radial shock waves impact the metabolism of GAG in chondrocytes in equine articular cartilage. Further studies will be required to fully investigate the impact of this effect on the health of joints, and to elucidate the clinical impact.  相似文献   

10.
OBJECTIVE: To investigate the effects of insulin-like growth factor-II (IGF-II) on DNA and glycosaminoglycan (GAG) synthesis and the expression of matrix-related genes in equine articular cartilage explants and chondrocytes, respectively, with and without interleukin 1-beta (IL1-beta). SAMPLE POPULATION: Articular cartilage from 12 adult horses. PROCEDURE: Articular cartilage was incubated in standard media with and without equine IL1-beta (10 ng/mL) containing various concentrations of IGF-II for 72 hours. Synthesis of DNA and GAG was determined by incorporation of thymidine labeled with radioactive hydrogen (3H) and sulfate labeled with radioactive sulfur (35S), respectively. Total GAG content of the explants and spent media was determined by use of the 1,9-dimethylmethylene blue assay. Northern blots of RNA from cultured equine articular cartilage chondrocytes were hybridized with cDNA of major matrix molecules. RESULTS: Insulin-like growth factor-II stimulated DNA and GAG synthesis at concentrations of 25 and 50 ng/mL, respectively. In cartilage explants conditioned with IL1-beta, IGF-II stimulated DNA and GAG synthesis at concentrations of 500 and 50 ng/mL, respectively. Insulin-like growth factor-II had no effect on total GAG content as determined by the 1,9-dimethylmethylene blue assay. No specific effects on steady-state levels of messenger RNAs were observed. CONCLUSIONS AND CLINICAL RELEVANCE: Insulin-like growth factor-II stimulated DNA and GAG synthesis in equine adult cartilage and may have potential application in vivo.  相似文献   

11.
The concentration-effect relationships of phenylbutazone, indomethacin, betamethasone, pentosan polysulphate (PPS) and polysulphated glycosaminoglycan (PSGAG), on proteoglycan synthesis by equine cultured chondrocytes grown in monolayers, and articular cartilage explants were measured. The effect of PSGAG on interleukin-1beta induced suppression of proteogycan synthesis was also investigated. Proteoglycan synthesis was measured by scintillation assay of radiolabelled sulphate (35SO4) incorporation. Polysulphated glycosaminoglycan and PPS stimulated proteoglycan synthesis in chondrocyte monolayers in a concentration-related manner with maximal effects being achieved at a concentration of 10 microg/mL. Polysulphated glycosaminoglycan reversed the concentration-related suppression of proteoglycan synthesis induced by interleukin-1beta. Neither PSGAG nor PPS exerted significant effects on radiolabel incorporation in cartilage explants. Betamethasone suppressed proteoglycan synthesis by both chondrocytes and explants at high concentrations (0.1-100 microg/mL), but the effect was not concentration-related. At low concentrations (0.001-0.05 microg/mL) betamethasone neither increased nor decreased proteoglycan synthesis. Phenylbutazone and indomethacin increased radiolabel incorporation in chondrocyte cultures but not in cartilage explants at low (0.1, 1 and 10 microg/mL), but not at high (20 and 100 microg/mL) concentrations. These findings may be relevant to the clinical use of these drugs in the treatment of equine disease.  相似文献   

12.
OBJECTIVE: To determine the effects of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) on expression and regulation of several matrix-related genes by equine articular chondrocytes. SAMPLE POPULATION: Articular cartilage harvested from grossly normal joints of 8 foals, 6 yearling horses, and 8 adult horses. PROCEDURE: Chondrocytes maintained in suspension cultures were treated with various doses of human recombinant IL-1beta or TNF-alpha. Northern blots of total RNA from untreated and treated chondrocytes were probed with equine complementary DNA (cDNA) probes for cartilage matrix-related genes. Incorporation of 35S-sulfate, fluorography of 14C-proline labeled medium, zymography, and western blotting were used to confirm effects on protein synthesis. RESULTS: IL-1beta and TNF-alpha increased steady-state amounts of mRNA of matrix metalloproteinases 1, 3, and 13 by up to 100-fold. Amount of mRNA of tissue inhibitor of metalloproteinase-1 also increased but to a lesser extent (1.5- to 2-fold). Amounts of mRNA of type-II collagen and link protein were consistently decreased in a dose-dependent manner. Amount of aggrecan mRNA was decreased slightly; amounts of biglycan and decorin mRNA were minimally affected. CONCLUSIONS AND CLINICAL RELEVANCE: Treatment of cultured equine chondrocytes with IL-1beta or TNF-alpha resulted in marked alterations in expression of various matrix and matrix-related genes consistent with the implicated involvement of these genes in arthritis. Expression of matrix metalloproteinases was increased far more than expression of their putative endogenous inhibitor. Results support the suggestion that IL-1beta and TNF-alpha play a role in the degradation of articular cartilage in arthritis.  相似文献   

13.
REASONS FOR PERFORMING STUDY: Previous in vitro pilot studies have defined a potentially beneficial effect of insulin-like growth factor-1 (IGF-1) and triamcinolone acetonide (TA) on interleukin-1 (IL-1)-conditioned equine cartilage. Furthermore, an optimal dose for IGF-1 treatment alone has been documented previously using the same test system as in the current project. OBJECTIVES: To perform a dose titration of TA on IL-1-conditioned equine articular cartilage explants in the presence of an optimised IGF-1 dose, in order to optimise a triamcinolone concentration for use in combination with IGF-1 for future investigations. METHODS: Cartilage explants were harvested from the distal femur of a normal horse. The effect of a clinically relevant TA dose range was evaluated in the presence of IL-1 and IGF-1 through measurement of proteoglycan (PG) matrix metabolism (synthesis and degradation). RESULTS: TA and IGF-1 in combination inhibited the IL-1-induced release of PG matrix components (glycosaminoglycan or GAG) from the articular cartilage, as well as producing a significant increase in GAG synthesis. CONCLUSIONS: This experiment provided proof of principle that a combination treatment appears to be able to combat the IL-1-induced matrix depletion, while enhancing anabolic metabolism within the articular cartilage. POTENTIAL RELEVANCE: The use of IGF-1 in conjunction with TA in vivo has the potential to provide beneficial anabolic effects not seen with TA alone.  相似文献   

14.
AIM: To determine the effect of polyester (terylene) fibre implants on normal equine superficial digital flexor (SDF) tendon structure. METHODS: Normal forelimb SDF tendons (n=24) of 12 horses were divided into unoperated, sham-operated, and implanted (terylene fibre implant) groups. Horses were assessed for lameness and ultrasonographic changes to SDF tendons at intervals up to 48 weeks post-operatively. After euthanasia, SDF tendons were collected for histological and ultrastructural examination. Histological sections were examined for alcian blue staining intensity, cellularity, fibril bundle alignment, fascicle separation and crimp morphology. Mass-average diameters (MADs) of collagen fibrils were calculated from electron micrographs and compared between treatment groups. RESULTS: Insertion of terylene fibre implants resulted in short-term (8 weeks) lameness in implanted limbs. Ultrasonographically, the implants could be detected in 50% of implanted tendons, but were associated with tendon swelling and the presence of hypoechoic core lesions in 7/8 implanted limbs. There were significant alterations in alcian blue staining, cellularity and crimp morphology in the central fascicles of sham-operated and implanted tendons, and alteration in fibril alignment in the central fascicles of implanted tendons. Unoperated tendons remained histologically normal. MADs of collagen fibrils did not differ between sham-operated, implanted and unoperated limbs. CONCLUSIONS: Both the sham procedure and the insertion of terylene fibre implants led to alterations in tendon structure that persisted for up to 48 weeks. Persistence of disorganised connective tissue at the proximal and distal ends of the terylene fibre implants may predispose implanted tendons to continued risk of injury. CLINICAL RELEVANCE: It is unlikely that terylene fibre implants offer any advantage over standard non-surgical treatments for mild to moderate cases of SDF tendonitis in the horse.  相似文献   

15.
Specific tendons show a high incidence of partial central core rupture which is preceded by degeneration. In the performance horse, the superficial digital flexor tendon (SDFT) is most often affected. We have described previously the molecular changes that are associated with degeneration in the central core region of the equine SDFT. The pathophysiological mechanism leading to change in synthetic activity of central zone cells in degenerated tendons is not known. In this study, we test the hypothesis that ageing results in matrix composition changes within the central zone of the SDFT. Extracellular matrix composition and cellularity were analysed in equine SDFTs collected from Thoroughbred horses and compared with a flexor tendon which rarely shows degenerative change and subsequent injury (deep digital flexor tendon, DDFT). Data were examined for age-related changes to central and peripheral zone tissue of the SDFT and DDFT. Ageing in both tendons (SDFT and DDFT) resulted in a significant increase in collagen-linked fluorescence and a decrease in cellularity in the DDFT but not the SDFT. The central zone tissue from the SDFT had a significantly higher proportion of type III collagen than the peripheral zone of the tendon. The highest level of type III collagen was found in the central zone tissue of the SDFT from the older group of horses and this may represent the early stages of a degenerative change. Collagen content did not differ between the 2 flexor tendons; however, there were differences in collagen type and organisation. The SDFT had a higher type III collagen content, higher levels of the mature trifunctional collagen crosslink hydroxylysylpyridinoline, lower total chondroitin sulphate equivalent glycosaminoglycan content, smaller diameter collagen fibrils and a higher cellularity than the DDFT. In conclusion, differences in macromolecular composition exist between the flexor tendons and ageing contributes to a tendon specific change in composition.  相似文献   

16.
Reasons for performing study: Collagen fibril size is decreased in repair tissue following tendon injury compared to normal tendon matrix in horses. Mesenchymal stem cells have been suggested to promote regeneration of tendon matrix rather than fibrotic repair following injury, although this concept remains unproven. Objectives: To explore the hypothesis that implantation of autologous mesenchymal stem cells derived from bone marrow into a surgically created central core defect in the superficial digital flexor tendon (SDFT) of horses would induce the formation of a matrix with greater ultrastructural similarities to tendon matrix than the fibrotic scar tissue formed in control defects. Methods: Tissue was collected 16 weeks after induction of injury and 12 weeks after treatment from normal and injured regions of control and treated limbs of 6 horses and examined using transmission electron microscopy. Collagen fibril diameters were measured manually with image analysis software and surface areas calculated. Three parameters assessed for normal and injured tissue were mass average diameter (MAD), collagen fibril index (CFI) and the area dependent diameter (ADD). Results: Normal regions from both treated and control limbs displayed higher MAD and CFI values, as well as a characteristic bimodal distribution in fibril size. Injured regions from both treated and control limbs displayed significantly lower MAD and CFI values, as well as a unimodal distribution in fibril size. There were no significant differences between treated and control limbs for any of the parameters assessed. Conclusions: Intralesional injection of autologous bone marrow derived mesenchymal stem cells had no measurable effect on the fibril diameter of collagen in healing tissue in the SDFT of this experimental model 16 weeks after injury. Potential relevance: Favouring matrix regeneration over fibrotic repair may not be the mechanism by which autologous mesenchymal stem cells assist healing of tendon injury.  相似文献   

17.
OBJECTIVE: To assess the effects of supraphysiologic concentrations of insulin-like growth factor-1 (IGF-1) on morphologic and phenotypic responses of chondrocytes. SAMPLE POPULATION: Articular cartilage obtained from 2 young horses. PROCEDURE: Chondrocytes were suspended in fibrin cultures and supplemented with 25, 12.5, or 0 mg of IGF-1/ml of fibrin. Chondrocyte morphology and phenotypic expression were assessed histologically, using H&E and Alcian blue stains, immunoreaction to collagen type I and II, and in situ hybridization. Proteoglycan content, synthesis, and monomer size were analyzed. The DNA content was determined by bisbenzimide-fluorometric assay, and elution of IGF-1 into medium was determined by IGF-1 radioimmunoassay. RESULTS: Both 12.5 and 25 kg of IGF-1/ml enhanced phenotypic expression of chondrocytes without inducing detrimental cellular or metabolic effects. Highest concentration of IGF-1 (25 microg/ml) significantly increased total DNA content, glycosaminoglycan (GAG) content, GAG synthesis, and size of proteoglycan monomers produced, compared with cultures supplemented with 12.5 microg of IGF-1/ml or untreated cultures. Histologic examination confirmed these biochemical effects. Matrix metachromasia, type-II collagen in situ hybridization and immunoreaction were increased in cultures treated with 25 microg of IGF-1/ml, compared with cultures supplemented with 12.5 microg of IGF-1/ml or untreated cultures. CONCLUSIONS AND CLINICAL RELEVANCE: Chondrocytes exposed to high concentrations of IGF-1 maintained differentiated chondrocyte morphology and had enhanced synthesis of matrix molecules without inducing apparent detrimental effects on chondrocyte metabolism. These results suggest that application of such composites for in vivo use during cartilage grafting procedures should provide an anabolic effect on the grafted cells.  相似文献   

18.
OBJECTIVE: To determine effects of microcurrent electrical tissue stimulation (METS) on equine tenocytes cultured from the superficial digital flexor tendon (SDFT). SAMPLE POPULATION: SDFTs were collected from 20 horses at slaughter. PROCEDURE: Tenocytes were isolated following outgrowth from explants and grown in 48-well plates. Four methods of delivering current to the tenocytes with a METS device were tested. Once the optimal method was selected, current consisting of 0 (negative control), 0.05, 0.1, 0.5, 1.0, or 1.5 mA was applied to cells (8 wells/current intensity) once daily for 8 minutes. Cells were treated for 1, 2, or 3 days. Cell proliferation, DNA content, protein content, and apoptosis rate were determined. RESULTS: Application of microcurrent of moderate intensity increased cell proliferation and DNA content, with greater increases with multiple versus single application. Application of microcurrent of moderate intensity once or twice increased protein content, but application 3 times decreased protein content. Application of current a single time did not significantly alter apoptosis rate; however, application twice or 3 times resulted in significant increases in apoptosis rate, and there were significant linear (second order) correlations between current intensity and apoptosis rate when current was applied twice or 3 times. CONCLUSIONS AND CLINICAL RELEVANCE: Results of the present study indicate that microcurrent affects the behavior of equine tenocytes in culture, but that effects may be negative or positive depending on current intensity and number of applications. Therefore, results are far from conclusive with respect to the suitability of using METS to promote tendon healing in horses.  相似文献   

19.
OBJECTIVE: To determine the effects of matrix metalloproteinase (MMP)-13, compared with interleukin (IL)-1alpha, on cartilage matrix molecule gene expression in a coculture system of equine cartilage explants and synoviocytes. SAMPLE POPULATION: Articular cartilage and synovium specimens harvested from femoropatellar joints of 4 horses, aged 3 to 5 years. PROCEDURES: Synoviocytes were isolated and cocultured with cartilage explants. Cultures were treated with human recombinant MMP-13 (1, 25, or 100 ng/mL) or IL-1alpha (0.01, 0.1, 1.0, or 10 ng/mL) for 96 hours, with medium exchange at 48 hours. Cartilage extracts and media were analyzed for glycosaminoglycan (GAG) content, and results were adjusted to cartilage DNA content. Quantitative PCR was performed on mRNA from cartilage (MMP-3, MMP-13, aggrecan, and collagen type IIB [COL2A1]) and synoviocytes (MMP-3 and MMP-13), and results were adjusted to 18S ribosomal subunit mRNA expression. Treatments were performed in triplicate, and the experiment was repeated 4 times. RESULTS: Cultures treated with MMP-13 or IL-1alpha had increased media GAG concentration at 48 and 96 hours. Aggrecan and COL2A1 mRNA expression were increased by application of MMP-13 or IL-1alpha. Gene expression of the catabolic mediator, MMP-3, in cartilage and synoviocytes was increased in cultures treated with MMP-13 or IL-1alpha. Expression of MMP-13 mRNA in cartilage was increased by IL-1alpha, but decreased in synoviocytes by MMP-13 treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Results support the use of recombinant MMP-13 in a coculture system of synoviocytes and cartilage explants for the study of osteoarthritis.  相似文献   

20.
REASONS FOR PERFORMING STUDY: Osteoarthritis is a frequent sequela of joint disease, especially with severe injuries or if attempts at therapy are unsuccessful. Negative and positive effects of corticosteroid treatment of articular cartilage have been demonstrated by in vitro and in vivo studies. OBJECTIVES: To assess the metabolic effects of varying dosages of methylprednisolone acetate (MPA) and triamcinolone acetonide (TA) on interleukin-1alpha (IL-1) conditioned equine cartilage explants. Our hypothesis was that lower dosages of corticosteroids would be less detrimental to cartilage metabolism than higher dosages. TA would be less detrimental to cartilage metabolism than MPA. METHODS: Treatment groups included articular cartilage explants with no IL-1 (control), IL-1 alone, and IL-1 plus 10, 5, 1 and 0.5 mg/ml MPA or 1.2, 0.6, 0.12 and 0.06 mg/ml TA. Explants were labelled with 35SO4 prior to the beginning and end of the experiment to assess glycosaminoglycan (GAG) degradation and synthesis, respectively. Total GAG content in media and explants and total cartilage DNA were also analysed. RESULTS: MPA and TA reduced GAG synthesis compared to control and IL-1 alone. The highest dosage of MPA (10 mg/ml) reduced GAG synthesis less than lower dosages of MPA and all dosages of TA. Compared to IL-1 alone, all dosages of TA and lower dosages of MPA increased GAG degradation. MPA at 10 mg/ml reduced GAG degradation. Both MPA and TA increased media GAG content compared to control and IL-1 explants. Total cartilage GAGs were unchanged with MPA, but reduced with TA, compared with IL-1 alone. Total cartilage DNA was decreased with MPA and increased with TA compared to IL-1 and control explants. CONCLUSIONS: MPA and TA did not counteract the negative effects of IL-1 and did not maintain cartilage metabolism at control levels. Lower dosages of MPA and TA were not less detrimental to cartilage metabolism than higher dosages. TA did not appear to be less harmful than MPA on cartilage metabolism. The results of this study differ from the findings of comparable in vivo studies. POTENTIAL RELEVANCE: The low numbers of horses used in this study limits extrapolation of these findings to the equine population; however, this study also questions the clinical relevance of this in vitro model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号