共查询到19条相似文献,搜索用时 109 毫秒
1.
采用数字图像处理技术对叶片图像进行边缘检测,主要研究了基于Sobel算子的叶片边缘的检测方法。在对图像进行灰度化和滤波去噪等预处理的基础上,增加了6个方向模板对Sobel算子进行改进。试验证明,该方法有效解决了Sobel算子边缘检测时边缘过粗的问题,得到的边缘较细,精确度提高了13.6%。 相似文献
2.
本文主要介绍了基于边缘检测的图像分割的相关技术,首先分析了研究目的和研究意义,然后综合国内外的研究近况,分析了当前对于图像分割技术的前景和不足。 相似文献
3.
对图像中的鱼类目标进行分割是提取鱼类生物学信息的关键步骤。针对现有方法对养殖条件下的鱼类图像分割精度较低的问题,提出了基于目标检测及边缘支持的鱼类图像分割方法。首先,设计了基于目标检测的完整轮廓提取方法,将具有完整轮廓的鱼类目标从图像中提取出来作为分割阶段的输入,使得整幅图像的分割问题转化为局部区域内的分割问题;然后,搭建Canny边缘支持的深度学习分割网络,对区域内的鱼类实现较高精度图像分割。实验结果表明,本文方法在以VGG-16、ResNet-50和ResNet-101作为主干网络的模型上的分割精度为81.75%、83.73%和85.66%。其中,以ResNet-101作为主干网络的模型与Mask R-CNN、U-Net、DeepLabv3相比,分割精度分别高14.24、11.36、9.45个百分点。本文方法可以为鱼类生物学信息的自动提取提供技术参考。 相似文献
4.
5.
基于分块阈值和边缘检测的叶片分割算法 总被引:2,自引:0,他引:2
针对复杂的植物叶片图像,提出了一种分块阈值、边缘检测相结合的图像分割算法。首先,根据预先确定的子块的大小,把整幅图像划分成若干数目的子块,对每个子块用大津法进行分割,把分割好后得到的子图像拼接起来形成目标图像;然后,用改进的Sobel边缘算子对原图像进行边缘提取分割;最后,把分块阈值得到的结果与边缘检测得到的结果结合起来得到较优的结果;在此基础上再进行腐蚀、填洞等形态学操作,得到最终的分割结果。实验表明:与传统的分块阈值、边缘检测相比较,此算法的抗噪性较好,细节上分割得也较为清楚,具有较好的分割效果。 相似文献
6.
图像拼接在天文图像处理、日常照片扩展、大型图像的获得等方面应用极其广泛,是地理、人文、科技发展的重要标志.本文采用基于特征的图像拼接算法,利用Canny算子进行边缘检测提取数字图像特征,通过图像预处理(去噪,边缘提取,直方图处理等)、图像配准、图像重构融合等操作,在Matlab平台下实现两幅大小一样、光照条件一致的灰度... 相似文献
7.
【目的】解决麦穗检测中麦穗之间相互遮挡、麦穗在图像中难以检测和不同环境造成目标模糊等情况导致麦穗检测精度低的问题。【方法】笔者提出一种基于改进YOLOv5s的算法,通过将数据集同时进行离线增强和在线增强,再将YOLOv5s的骨干网络进行改进,增添具有注意力机制的transformer模块,强化主干网络的全局特征信息提取能力,neck结构由原来的PAFPN改为具有双向加强融合的BiFPN特征融合网络,进行多尺度的特征融合。最后,在head部分使用EIoU-NMS来替代NMS,提高对遮挡麦穗的识别度。【结果】相比于其他改进单一结构的YOLOv5s模型,此综合性改进模型具有更好的检测效果,使mAP@0.5:0.95提高了1.4%,改进的算法比原始YOLOv5s算法的mAP@0.5提高了1.8%。【结论】使用离线增强和在线增强的方式可以使模型的精度有所提升;该模型的改进有效增强了麦穗识别过程中特征融合的效率,提高了麦穗检测的效果,能够为后续相关模型的改进升级提供参考。 相似文献
8.
9.
基于改进边缘分割算法的幼苗信息提取 总被引:1,自引:0,他引:1
优化特征空间和改进分割算法是利用面向对象技术准确获取幼苗信息的关键,也是高空间分辨率数据提取目标地物信息迫切需要解决的问题。研究了在多光谱影像进行去噪声处理基础上,采用改进的基于边缘的算法进行影像分割,同时选取纹理、形状、光谱特征构建特征空间,实现幼苗信息提取的方法。结果表明,该方法对幼苗信息提取的总精度达86%,比传统技术提高了12%,KAPPA系数达0.814 5,比传统技术提高了0.115 9。该方法可以对幼苗信息进行准确快速提取,能够为生产或管理部门进行准确监测和决策提供依据,对未来造林情况进行预测和评价有重要意义。 相似文献
10.
基于机器视觉的大田环境小麦麦穗计数方法 总被引:6,自引:0,他引:6
基于机器视觉技术研究了一种低成本、针对局部小范围的小麦麦穗计数方法。通过部署的田间摄像头采集大田环境下小麦麦穗低分辨率群体图像,实现了复杂大田环境下小麦麦穗图像的降噪增强处理;提取麦穗的颜色、纹理特征,采用SVM学习的方法,精确提取小麦麦穗轮廓,同时构建麦穗特征数据库,对麦穗的二值图像细化得到麦穗骨架;最后通过计算麦穗骨架的数量以及麦穗骨架有效交点的数量,即可得到图像中麦穗的数量。经过2014年5月和2015年5月在方城县赵河镇示范区的试验测试,以小麦麦穗图像640像素×480像素(约250穗)为例,小麦麦穗计数平均耗时1.7 s,准确率达到93.1%,满足大田环境下小麦麦穗计数要求,可以为小麦估产提供可靠的参考数据。 相似文献
11.
为探索有效的稻穗识别特征选取方法,解决基于无人机数码影像水稻产量估测中图像颜色空间各个通道或指数对水稻穗识别能力不清的问题,利用2017年和2018年沈阳农业大学超级稻成果转化基地水稻试验田无人机高清数码影像、地面小区样方内水稻穗数量等实测数据,构建了水稻穗、叶、背景的3分类图像样本库,应用最优子集选择(Best subset selection)算法分析了RGB和HSV颜色空间各个通道或指数对水稻穗的识别能力,提取适合东北粳稻稻穗图像分割的7种特征参数,以此特征为输入构建了基于BP神经网络的稻穗分割模型,进一步对稻穗图像进行连通域分析,获取稻穗数量,并与地面实测数据进行比较。结果表明:最优子集选择算法获取的稻穗像素分割特征参数为R、B、H、S、V、GLI、ExG等7种,飞行高度为3 m时,稻穗分割效果最好,对应的交叉验证均方误差MSE为0.036 3;构建的稻穗分割模型可有效实现东北粳稻稻穗的提取,3、6、9 m飞行高度下,拍摄图像稻穗数量提取的均方根误差分别为9.03、11.21、13.10,平均绝对百分误差分别为10.60%、14.88%和17.16%。 相似文献
12.
13.
基于CNN的小麦籽粒完整性图像检测系统 总被引:3,自引:0,他引:3
为了快速、准确识别小麦籽粒的完整粒和破损粒,设计了基于卷积神经网络(CNN)的小麦籽粒完整性图像检测系统,并成功应用于实际检测中。采集完整粒和破损粒两类小麦籽粒图像,对图像进行分割、滤波等处理后,建立单粒小麦的图像数据库和形态特征数据库。采用LeNet-5、AlexNet、VGG-16和ResNet-34等4种典型卷积神经网络建立小麦籽粒完整性识别模型,并与SVM和BP神经网络所建模型进行对比。结果表明,SVM和BP神经网络所建模型的验证集识别准确率最高为92. 25%; 4种卷积神经网络模型明显优于两种传统模型,其中,识别性能最佳的AlexNet的测试集识别准确率为98. 02%,识别速率为0. 827 ms/粒。基于AlexNet模型设计了小麦籽粒完整性图像检测系统,检测结果显示,100粒小麦的检测时间为26. 3 s,其中,图像采集过程平均用时21. 2 s,图像处理与识别过程平均用时为5. 1 s,平均识别准确率为96. 67%。 相似文献
14.
基于多阈值图像分割算法的秸秆覆盖率检测 总被引:4,自引:0,他引:4
针对目前秸秆覆盖率人工检测费时费力、准确率低、信息难以存储的问题,提出了一种基于图像分割的秸秆覆盖率检测方法。考虑到传统图像分割方法精度不高,且多阈值分割时计算量过大,将灰狼算法中的搜索机制与差分进化算法相融合,提出一种基于图像多阈值的自动分割方法(DE-GWO),用于田间秸秆覆盖率检测。首先,对现场采集的秸秆覆盖图像进行预处理,采用自适应Tsallis熵作为目标函数,评估图像分割效率;其次,根据图像的复杂程度选取分割阈值的数量,利用DE-GWO算法对其进行多阈值图像分割;然后,分别按照灰度级别计算分割后图像比例;最后,根据拍摄高度、fov视角等参数,将图像中秸秆覆盖率与实际地理面积进行转换。实验结果表明,本文算法田间秸秆覆盖率与实际测量误差在8%以内,且相比于改进粒子群算法(PSO)和灰狼算法(GWO),DE-GWO算法精确度更高,平均耗时为人工测量的1/1500。开发了一套依据DE-GWO算法的秸秆覆盖率检测软件系统,为后续监控系统的实时检测提供了算法基础和软件支持。 相似文献
15.
基于显著性检测的黄瓜叶部病害图像分割算法 总被引:1,自引:0,他引:1
针对复杂背景下黄瓜叶部病害分割精度不高的问题,提出了一种基于显著性检测的黄瓜叶部病害图像分割算法。首先利用超像素将黄瓜图像分块,获取黄瓜叶片的边缘,并提出了一种超像素间权重计算方法和显著种子选取方法;然后通过流形排序计算显著图,对得到的显著图进行阈值分割,得到二值图像;再将二值图像与原图像进行掩码运算,得到黄瓜病害叶片;最后利用超绿特征和数学形态学对病害叶片进行分割得到病斑。对常见的黄瓜病害(白粉病、褐斑病、霜霉病、炭疽病)图像进行测试,结果表明该算法与Otsu算法和k-means算法相比,有效解决了冗余分割问题,错分率均在5%以内,算法平均执行时间均小于4 000 ms,分割效果更加精确,为后续构建黄瓜病害自动识别系统奠定了基础。 相似文献
16.
针对播种性能参数人工计算效率低及在线检测软件缺乏等问题,提出了一种基于图像处理的小麦播种时籽粒落种分布在线检测方法,建立了基于连通区域面积和轮廓周长的粘连种子判据,创建了改进凹点分割粘连种子方法,对分割后的种子进行计数与坐标定位,实现落种均匀度、准确度和离散度的计算检测。搭建了落种分布检测装置并开发了检测软件,试验结果表明:在不同播量、播种行进速度条件下,改进凹点分割算法平均准确率均在95%以上,相比凹点分割算法平均准确率有明显提高,说明该方法对种子颗粒总数识别准确率较高;随着播量增加,种子粘连概率提高,出现假凹点几率增大,算法准确率降低;随着播种行进速度增加,图像中种子变形和失真几率增加,导致部分粘连种子难以分割或错误分割,算法准确率亦降低;播量及播种行进速度对落种均匀度、准确度、离散度的影响不显著,与人工计算测量结果吻合,表明了该落种分布检测方法的可行性。 相似文献
17.
18.
19.
针对小麦秸秆截面显微图像中组织成分的结构和灰度特征,研究了一种扇环型分区域图像分割方法,用于精确分割厚壁、维管束等关键组织结构。小麦秸秆截面的内外侧轮廓构成了一个近似的环形区域。先粗略定位厚壁和维管束所属的圆环区域。依据定位信息,以截面中心为起点向圆环外轮廓画射线,将圆环划分为大量的扇环形小区域。用Otsu算法对各个小区域进行独立的阈值分割,再对分割结果进行拼接等后续处理,得到完整的厚壁或维管束,最后以此为基础精确测量秸秆截面的各种参数。实验结果表明,与传统的Otsu算法相比,该方法对显微图像采集过程中切片、染色、拍照等环节导致的低质量图像具有较高的分割准确性和鲁棒性,在提高了切片样本利用率的同时降低了人工劳动强度。该测量系统对各类参数的测量精度均大于94.6%。 相似文献