首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study assessed the suitability and cost efficacy of an equal blend of canola oil (CO) and poultry fat (PF) as a supplemental dietary lipid source for juvenile Atlantic salmon. Quadruplicate groups of Atlantic salmon (~400 g) held in 4000 L outdoor fibreglass tanks supplied with running (35–40 L min?1), aerated (dissolved oxygen, 7.88–10.4 mg L?1), ambient temperature (8.6–10.9°C) sea water (salinity, 26–35 g L?1) were fed twice daily to satiation one of three extruded dry pelleted diets of equivalent protein (488–493 g kg?1 dry matter) and lipid (267–274 g kg?1 dry matter) content for 84 days. The diets were identical in composition except for the supplemental lipid (234.7 g kg?1) source viz., 100% anchovy oil (AO; diet COPF‐0), 70.2% AO and 29.8% CO and PF (diet COPF‐30), and 40.3% AO and 59.7% CO and PF (diet COPF‐60). Atlantic salmon growth rate, feed intake, feed efficiency, protein and gross energy utilization, percent survival and whole body and fillet proximate compositions were not affected by diet treatment. Cost per kilogram weight gain was about 10% less for fish fed diet COPF‐60 than for diet COPF‐0. Percentages of saturated fatty acids in dietary and fillet lipids varied narrowly. Moreover, percentages of 18:1n‐9, monounsaturated fatty acids, 18:2n‐6, n‐6 fatty acids, 18:3n‐3, and ratios of n‐6 to n‐3 fatty acids in the flesh lipids were directly related to the dietary level of CO and PF whereas 22:6n‐3, the total of 20:5n‐3 (eicosapentaenoic acid; EPA) and 22:6n‐3 (docosahexaenoic acid; DHA), and n‐3 fatty acids revealed the opposite trend. Percentages of 22:6n‐3, EPA and DHA, and n‐3 fatty acids were significantly depressed in fish fed diet COPF‐60 versus diet COPF‐0. We conclude that a 1:1 blend of CO and PF is an excellent cost‐effective dietary source of supplemental lipid for Atlantic salmon in sea water.  相似文献   

2.
The effects of various dietary blends of menhaden oil (MO) with canola oil (CO) on the growth performance, whole body proximate composition, flesh quality (muscle proximate and lipid composition) and thyroidal status of immature Atlantic salmon in sea water were studied.Atlantic salmon (initial weight, 145.2–181.3 g), held on a natural photoperiod and in 1100 L fibreglass tanks that were supplied with running, aerated (D.O., 9–10.5 p.p.m.), ambient temperature (8–10.5 °C) sea water (salinity, 28–30), were fed twice daily to satiation one of four isonitrogenous (36% digestible protein) and isoenergetic (18.8 MJ of digestible energy kg-1) extruded high-energy diets for 112 days. All diets contained omega –3 (n-3) fatty acids in excess of requirements and differed only with respect to the source of the supplemental lipid which was either, 25% MO; 20.75% MO and 4.25% CO; 16.5% MO and 8.5% CO; or 12.25% MO and 12.75% CO. Thus, CO comprised, respectively, 0, 15.5, 31.2, or 47.0% of the total dietary lipid content (28% on an air-dry basis).Dissimilar percentages of saturated fatty acids in the dietary lipids were not found to be consistently related to the apparent gross energy digestibility coefficients of the diets. Atlantic salmon growth, dry feed intake, feed and protein utilization, percent survival, thyroidal status, and whole body and muscle proximate compositions were generally not influenced by the different sources of supplemental lipid. Therefore, our results suggest that canola oil may comprise as much as 47% of the lipid in high-energy grower diets for Atlantic salmon without compromising performance.The muscle lipid compositions generally mirrored those of the dietary lipids which, in turn, were influenced strongly by the concentrations and compositions of the CO and MO in the diet. Hence, as the dietary CO level was increased there were attendant increases in percentages of oleic acid (18:1(n-9)), linoleic acid (18:2(n-6)), total omega-6 (n-6) fatty acid content, and ratios of (n-6) to (n-3) and decreases of eicosapentaenoic acid (EPA; 20:5(n-3)), docosahexaenoic acid (DHA; 22:6(n-3)) and n-3 HUFAs (EPA & DHA) in the flesh lipids. The ranges for percentages of saturated and unsaturated fatty acids in the flesh lipids were, however, much less than those noted respectively in the dietary lipids probably because of selective metabolism of many of the former acids and some of the 18 carbon unsaturates for energy purposes.  相似文献   

3.
Atlantic salmon, Salmo salar L. were maintained on diets containing low (0.37 mg kg–1 diet), normal (1.95 mg kg–1 diet) and high (15 mg kg–1 diet) levels of vitamin A fed at 1.5% body weight per day. After 4 months, liver vitamin A levels reflected dietary intake and growth rates of all three groups were similar. Kidney leucocyte migration and serum bactericidal activity were found to be significantly reduced in fish fed low levels of vitamin A. On the other hand, high levels of vitamin A in the diet were found to augment serum antiprotease activity relative to the levels found in the other dietary groups. However, phagocyte respiratory burst activity, bactericidal activity and eicosanoid production were unaffected by the dietary vitamin A regime, as were lymphocyte functions (lymphokine and antibody production) and both serum lysozyme and classical complement activity. That the overall immunomodulatory effect of vitamin A was small was reflected in the resistance to Aeromonas salmonicida. No significant differences were found between the different vitamin A intake groups despite a trend to decreased resistance in the low vitamin A diet group.  相似文献   

4.
The present study investigated the short-term (5 months) effect of replacing dietary marine oils with vegetable oils on the development of arteriosclerotic changes in the heart of Atlantic salmon, Salmo salar. The experiment was performed as a randomized observer-blinded and controlled trial. Farmed Atlantic salmon were randomly sampled from a study population containing 900 individuals. The salmon were divided into three groups and given diets with either 100% fish oil (Diet 1), a 50/50% mixture of fish oil and rapeseed oil (Diet 2) or 100% rapeseed oil (Diet 3). Ten sexually immature salmon from each dietary group were sampled in March and August 2002. Additionally, 47 sexually mature wild salmon were randomly collected in mid-September 2001. Serial histological sections were taken from the bulbus arteriosus and ventricle wall for histopathological evaluation of the coronary arteries and myocardium. No significant differences in mean coronary changes recorded by the main variable 'mean range lesion' (MRL) were detected between the groups in March or August. MRL increased significantly between March and August with Diet 2 (P < 0.01), was nearly significant with Diet 3 (P = 0.06) and was unchanged with Diet 1. This pattern coincided with the Diet 2 group having the highest increase in heart weight. MHC class II immunoreactive cells in the coronary changes were detected in sections from one individual in each group. Heart weight was the most dominant variable in the data set and explained linearly 15.5% of the variation in MRL. Body weight, fish length and heart weight were all significantly, positively and linearly correlated to MRL. The Diet 2 group had the highest growth rate and also exhibited a significant increase in MRL. The possible influence of diet composition on weight gain and MRL needs to be further elucidated. Increase in heart weight seems to be the dominating predictor of the appearance of MRL in Atlantic salmon. However, the present results cannot exclude the possibility that differences in fatty acid composition of fish feed can influence the development of arteriosclerotic changes in Atlantic salmon.  相似文献   

5.
The present study was to understand how efficiently the astaxanthin in Calanus oil is utilized for flesh colouration in Atlantic salmon ( Salmo salar ). Postsmolts of the fish (309 g) were held at 7.9 °C and they were fed diets containing 20 or 60 mg astaxanthin per kilogram feed derived from a synthetic source or from Calanus oil for 181 days. Besides growth and feed intake assessments, at day 81 and 181, fish flesh were subjected to colour analysis and astaxanthin determination. Growth and feed performance did not vary between the groups. There were significant differences in the amount of astaxanthin in muscle between almost all groups both at day 81 ( P  < 0.05) and at day 181 ( P  < 0.001). However, a notable similarity between fish receiving 20 mg astaxanthin from the synthetic source and those receiving 60 mg astaxanthin from Calanus oil ( P  > 0.05) at day 181 indicated that comparable amounts were deposited only with the greater level of the natural source. Tristimuli colorimeter a* values support the analytical results at day 181. Although Calanus oil did serve as a natural dietary pigment source for farmed salmon, its inclusion level should provide more than 60 mg astaxanthin per kilogram feed to achieve colouration preferred by the market.  相似文献   

6.
In the present study, the possible effect of dietary treatment on early sexual maturation in post-smolt Atlantic salmon, without any negative effect regarding growth, was investigated. The experiment was performed using 4400 individually marked (Pit tag) 1+ salmon, fed either a control diet or a diet supplemented with 0.5% tetradecylthioacetic acid (TTA) in duplicates for 3, 6 or 12 weeks after sea transfer. Compared with the control, dietary supplementation of TTA resulted in a threefold reduction in incidence of sexual mature males (0.6% vs. 1.8%). A curve-linear relationship between relative reduction in maturation and weeks of feeding TTA was found, indicating that the effect is most marked as a result of the first weeks of feeding and then levelling off. No negative dietary impact on growth was observed. As the level of fat in the muscle was reduced by dietary TTA, it seems that post-smolt supplemented dietary TTA do not accumulate high enough energy stores to start the maturation process, whereas the energy-enhancing effect of TTA due to increased fatty acid oxidation capacity may maintain the growth potential. Compared with immature salmon, sexually maturing fish revealed increased spring growth before the onset of maturation.  相似文献   

7.
A 12‐week feeding trial was conducted to elucidate the interactive effects of dietary fat, protein contents and oil source on growth, whole body proximate composition, protein productive value (PPV) and fatty acid (FA) composition of muscle and liver in Atlantic salmon (Salmo salar L.)` at low water temperatures (4.2 °C). Triplicate groups of Atlantic salmon (initial weight 1168 g) were fed six isoenergetic diets, formulated to provide either 390 g kg−1 protein and 320 g kg−1 fat (high‐protein diets) or 340 g kg−1 protein and 360 g kg−1 fat (low‐protein diets). Within each dietary protein/fat level, crude rapeseed oil (RO) comprised 0, 30 or 60% (R0, R30, R60, respectively) of the added oil. After 12 weeks, the overall growth and feed conversion ratio (FCR) were very good for all treatments [thermal growth coefficient (TGC): 4.76 (±0.23); FCR: 0.85 (±0.02)]. Significant effects were shown owing to the oil source on specific growth rate and TGC only. The liver and muscle FA compositions were highly affected by the graded inclusion of RO. The PPV was significantly affected by the dietary protein level. The results of this study suggest that more sustainable, lower protein diets with moderate RO inclusion can be used in Atlantic salmon culture at low water temperatures with no negative effects on growth and feed conversion, no major detrimental effects on lipid and FA metabolism and a positive effect on protein sparing.  相似文献   

8.
To study how hepatic lipid turnover and lipid transport may be affected by complete replacement of dietary fish oil (FO) with a vegetable oil blend (VO) from start feeding until the adult stages, Atlantic salmon (Salmo salar L.) were fed either 100% FO‐ or 100% VO‐based diets (55% rapeseed oil, 30% palm oil and 15% linseed oil) from start feeding until 22 months. Liver and plasma lipoprotein lipid class levels and lipoprotein fatty acid composition were analysed through the seawater phase, whereas liver fatty acid composition, plasma cholesterol, triacylglycerol (TAG) and protein levels were analysed through both freshwater and seawater stages. Further, enzyme activity of liver fatty acid synthetase (FAS), NADH‐isocitrate dehydrogenase, malic enzyme, glucose‐6‐phosphate dehydrogenase and 6‐phosphogluconate dehydrogenase and expression of the gene Peroxisome proliferator‐activated receptor γ (PPARγ) was analysed during both fresh water and seawater stages through the experiment. Dietary VO significantly increased salmon liver TAG and hence total liver lipid stores after 14 and 22 months of feeding. Further, after 22 months of feeding, plasma lipid levels and plasma low‐density lipoprotein (LDL) levels were significantly decreased in VO‐fed salmon compared with FO‐fed fish. The same trend, although not statistically significant, was seen for plasma very low‐density lipoprotein (VLDL). The activity of FAS was generally low throughout the experiment with the VO group having significantly lower activity after 16 months of feeding. The expression of PPARγ in livers increased prior to seawater transfer followed by a decrease, and then another increase towards the final sampling (22 months). Dietary vegetable oil replacement had no impact on PPARγ expression in salmon liver. In summary, liver TAG stores, plasma lipid and LDL levels were affected by dietary vegetable oil replacement in Atlantic salmon during a long–term feeding experiment. Current results indicate that high dietary vegetable oil inclusion increase hepatic TAG stores and decrease plasma lipid levels possible through decreased VLDL synthesis.  相似文献   

9.
The objective of the present study was to investigate the development of intimal changes of coronary arteries over the lifetime of farmed Atlantic salmon, Salmo salar L., fed either a 100% fish oil or a 100% vegetable oil blend. The study was performed as a randomized observer blinded controlled trial with parallel group design. At the start of the project, the fish were divided in two groups and sampled at five different time points throughout their life span. The total study sample consisted of 259 healthy fish. Serial sections were taken from the coronary artery lying on the bulbus arteriosus for histopathological evaluation and for area measurements using semi-quantitative and quantitative methods. The earliest onset of vascular changes was detected in fish from both groups in the freshwater stage prior to smoltification. The mean range lesion (MRL), used to describe the severity of the lesions observed, increased significantly for both groups from sea transfer throughout the study period. Comparison of the two groups based on the overall material corrected for time of sampling did not show any difference (P = 0.20) between the two groups with regard to MRL. The percentage lumen loss (PLL) measured by a quantitative method and used as a measure to indicate lesion severity showed an incremental, non-significant increase from week 72 to week 92 and further to week 115 in both diet groups during the seawater phase. Comparison of the groups corrected for time of sampling indicated a difference of PLL in favour of VO (P = 0.02). Heart weight, body weight and body length were all positively and significantly correlated to Log MRL. The partial correlation analysis indicated that heart weight was the most dominant variable in the set. Early vascular changes were found in the major bifurcation of the coronary artery at the apex and beyond the flow divider into the daughter branches. The latter represented the dominant changes and were found throughout the entire lifecycle of the fish. Increasing in size over time they formed pads or cushions that were regularly located close to the outer walls of the bifurcation. The origin of the cells forming the intimal thickening has not been conclusively determined, but immunohistochemical findings indicate a smooth muscle cell origin, possibly of a myointimal type. Our findings suggest there is no correlation between diet and intimal changes. The severity of the changes, MRL and PLL, of the coronary vessels correlate with heart weight and fish weight growth and growth rate and mechanical factors are implicated in intimal development, but rather than being induced by external injury due to the location of the coronaries, haemodynamic factors and low shear stress are proposed as the main mechanism behind these changes.  相似文献   

10.
Triplicate groups of triploid and diploid Atlantic salmon were fed diets with a low (LP, total P: 7.1 g kg?1), medium (MP, total P: 9.4 g kg?1) or high (HP, total P: 16.3 g kg?1) phosphorous (P) level from first feeding (0.18 g) to transfer to sea water (~50 g, duration: 203 days) and subsequently fed a commercial diet in sea water for 426 days (~3 kg). This study examined the short‐ and long‐term effects of dietary P on freshwater performance (mortality, growth), vertebral deformities (radiology), bone cell activity (ALP and TRACP enzyme activity in vertebrae and scales, and fgf23, bgp and igf‐I relative gene expression in vertebrae), bone mineralization (ash content) and some parameters related to fish condition (heart and liver size). Irrespective of ploidy, at seawater transfer, fish fed the MP diet had significantly highest length and weight and those fed the LP diet significantly lowest length and weight, while those fed the HP diet had intermediate lengths and weights. Increased dietary phosphorus reduced deformities in both ploidies at seawater transfer; however, triploids fed the LP and MP diets had more deformities than diploids fed the respective diets, while there was no ploidy effect observed for fish fed the HP diet. The vertebral bone ash content at seawater transfer was significantly higher in diploids than in triploids when fed the MP diet only. Alkaline phosphatase (ALP) and tartrate‐resistant acid phosphatase (TRACP) enzyme activities and relative gene expression of bone hormones involved in metabolism of plasma phosphate (fgf23) and bone growth (bgp) were not affected by ploidy at seawater transfer, but by dietary P level; LP increased ALP activity and reduced TRACP activity and fgf23 and bgp expression levels in vertebral bone. In scales, LP increased both ALP and TRACP activity. At the termination of the seawater period, the group‐wise pattern in occurrence of vertebral deformities was the same as at seawater transfer. The present results on mortality, growth, bone mineralization and development of skeletal deformities all demonstrate that triploids have a higher P requirement than diploids in fresh water. This study shows that an optimalization of P nutrition for triploid Atlantic salmon can improve health and welfare and reduce down‐grading of triploid salmon.  相似文献   

11.
Wild and farmed Atlantic salmon ( Salmo salar L.) and Atlantic cod ( Gadus morhua L.) were collected to assess changes in mercury with size in wild vs. farmed fish. Mercury concentrations were compared with Health Canada and United States Environmental Protection Agency consumption guidelines. Lipid dilution of mercury was examined by comparing lipid-extracted (LE) and non-lipid-extracted (NLE) flesh samples in both farmed and wild fish. Mercury concentrations in the flesh and liver of farmed salmon were significantly lower than concentrations in wild salmon of similar fork length ( P <0.001), possibly due to growth dilution in rapidly growing farmed fish. Mercury concentrations were higher in LE tissue compared with NLE ( P <0.05), suggesting lipid dilution of mercury in farmed fish with a high lipid content. Farmed cod, which do not grow more rapidly than wild cod, did not have significantly different flesh and liver concentrations compared with wild cod of similar fork length ( P >0.05). Between species of farmed fish, cod had significantly higher mercury concentrations than salmon ( P <0.05), but neither farmed nor wild salmon mercury concentrations exceeded federal consumption guidelines. These results suggest that rapid growth rates and a high lipid content may play important roles in regulating concentrations of contaminants such as mercury.  相似文献   

12.
The dietary influence on the fatty acid composition of neutral lipids and phosphatidylcholine of very low density lipoprotein (VLDL), low density lipoprotein (LDL) and high density lipoprotein (HDL) of Atlantic salmon (Salmo salar) was studied, using soybean oil, capelin oil and sardine oil as lipid sources in the diets. The fish had a mean weight of 3 Kg and had been fed the experimental diets for 24 months. The results show that the fatty acid composition in the feed are important for the composition of the core lipids as well as the surface components of the lipoproteins.  相似文献   

13.
The effects on Atlantic salmon (Salmo salar L.) metabolic health of including modern processed land animal by‐products (LAP) to a plant‐ and marine‐based diet (50% marine and 50% plant ingredients) were investigated. Three experimental diets were made with systematic replacements of both marine and plant ingredients with LAP as a source of protein (poultry meal and porcine blood meal) and fat (poultry oil) to fit a two‐way factorial design. A 16‐week feeding trial was performed with postsmolts in seawater (initial weight 372 g). The diet with both protein and lipids from LAP reduced liver triacylglycerols more than fourfold compared to the diet without LAP. This was confirmed by histological examinations showing reduced fatty degeneration in the liver of fish fed the high LAP diet. No severe negative effects on gut or tissue health were seen by histological examinations or by measuring genetic markers with qPCR, although a trend in the histological results indicated an improved gut health by including LAP in the diets. Clinical analyses of plasma and lipoprotein fractions showed no differences between dietary groups.  相似文献   

14.
Atlantic salmon (Salmo salar) were fed five graded levels of eicosapentaenoic acid (EPA, 20:5n‐3) and docosahexaenoic acid (DHA, 22:6n‐3), from 1.4 to 5.2% of total fatty acids (FA, 5–17 mg kg?1 feed), and grew from ~160 g to ~3000 g, with the period from 1450 g onwards conducted both at 6 °C and at 12 °C. All fish appeared healthy, and there were no diet‐related differences in haematological or plasma parameters, as well as intestinal histological or gut microbiota analysis. Fish reared at 6 °C had higher accumulation of storage lipids in the liver compared to fish reared at 12 °C. Liver lipids also increased with decreasing dietary EPA + DHA at 6 °C, while there was no such relationship at 12 °C. Gene expression of SREBP1 and 2, LXR, FAS and CPT1 could not explain the differences in liver lipid accumulation. In liver polar lipids, DHA was found to be reduced when dietary EPA + DHA was <2.7% of FAs, while the level of EPA in the membranes was not affected. In conclusion, reducing dietary EPA + DHA from 5.2 to 1.4% of total FAs had a minor impact on fish health. Temperature was the factor that most affected the liver lipid accumulation, but there was also an interaction with dietary components.  相似文献   

15.
Tissue (fillet, viscera and carcass) distributions of fat were examined in Atlantic salmon, Salmo salar L. (740→1400→2000 g) to test the hypothesis that the fillet becomes increasingly important as a fat depot when fish increase in size. The salmon were fed for 11 weeks on either a high‐fat feed (H: 39% fat) or a low‐fat feed (L: 28% fat), and half of the fish were then subjected to a dietary switch to create four feed treatments (HH, HL, LL and LH). Fillet fat concentration increased with the passage of time, and the fillet also represented an increasing percentage of the body mass (48.5→55→58.5%) as the fish increased in size. As a consequence, the fillet became increasingly important as a fat depot, containing ≈30% of the body fat in the small fish at the start of the experiment, and 50% in the fish sampled at the end of the trial. The proportion of fat localised in the viscera was little influenced by either fish size or feeding treatment, and was within the range of 19–25%, whereas the carcass held a decreasing percentage of the body fat stores as fish size increased. There was a highly significant negative correlation between the percentages of body fat found within the carcass (C) and fillet (F): F = 73.589–0.9285C (R2 = 0.973; n = 13). Although the fillet became more important as a fat depot as fish increased in size, the percentage of the body fat reserves found within this tissue appeared to plateau at 50–55%.  相似文献   

16.
The cell membrane phospholipid composition is of major importance for normal cell functions. However, it is not known how complete depletion of both shorter and longer chain omega‐3 fatty acids in salmon diets influences fatty acid composition of phospholipid subclasses in different organs of Atlantic salmon. We describe here the fatty acid composition in phospholipid subclasses of liver, muscle, heart and intestine in Atlantic salmon after 18 months of dietary n‐3 essential fatty acids deprivation. The percentage of 22:6n‐3 was markedly reduced in almost all phospholipid subclasses, and except for muscle phosphatidylcholine, phosphatidylethanolamine (PE) and phosphatidylinositol (PI), phospholipids in deficient fish were totally devoid of 20:5n‐3. As compensation, we observed significant increases in 20:4n‐6, and especially in 20:3n‐9 (Mead acid) and 22:5n‐6, varying among phospholipids and organs. High amounts of 20:3n‐9 were found in liver and intestinal PE, little in PE from heart and muscle. For 22:5n‐6, we saw a small incorporation in PI in liver and intestine compared to heart and muscle. Generally in PI, the preference for 20:4n‐6 to 20:5n‐3 differed significantly between organs. Overall, changes upon n‐3 deprivation seemed to be strongest in liver and intestine, the lipid‐secreting organs, and less in muscle and heart.  相似文献   

17.
By using a rapid and simple chemometric method it was shown that Atlantic salmon Salmo salar absorbed the polyunsaturated fatty acids from highly unsaturated diets more efficiently than the monounsaturated and saturated fatty acids. For the monounsaturated and the saturated fatty acids, the degree of absorption decreased with increasing chain length. The diets, based on oils from five different commercial fish species, had different fatty acid profiles. The differences between the several diet groups were maintained between the corresponding faeces groups, even though the fatty acid composition of the faeces was very different from that of the diet. This was because the proportion which was absorbed of each fatty acid was almost equal for all diets.  相似文献   

18.
A 12‐week feeding trial was conducted to investigate the interactive effects between water temperature and diets supplemented with different blends of fish oil, rapeseed oil and crude palm oil (CPO) on the apparent nutrient and fatty acid digestibility in Atlantic salmon. Two isolipidic extruded diets with added fish oil fixed at 50% and CPO supplemented at 10% or 25% of total added oil, at the expense of rapeseed oil, were formulated and fed to groups of Atlantic salmon (about 3.4 kg) maintained in floating cages. There were no significant effects (P>0.05) of diet on growth, feed utilization efficiency, muscle total lipid or pigment concentrations. Fatty acid compositions of muscle and liver lipids were mostly not significantly different in salmon fed the two experimental diets but showed elevated concentrations of 18:1n‐9 and 18:2n‐6 compared with initial values. Decreasing water temperatures (11–6°C) did not significantly affect protein, lipid or energy apparent digestibilities of the diets with different oil blends. However, dry matter digestibility decreased significantly in fish fed the diet with CPO at 25% of added oil. Increasing dietary CPO levels and decreasing water temperature significantly reduced the apparent digestibility (AD) of saturated fatty acids. The AD of the saturates decreased with increasing chain length within each temperature regimen irrespective of CPO level fed to the fish. The AD of monoenes and polyunsaturated fatty acids was not affected by dietary CPO levels or water temperature. No significant interaction between diet and water temperature effects was detected on the AD of all nutrients and fatty acids. The results of this study showed that the inclusion of CPO up to about 10% (wt/wt) in Atlantic salmon feeds resulted in negligible differences in nutrient and fatty acid digestibility that did not affect growth performance of fish at the range of water temperatures generally encountered in the grow‐out phase.  相似文献   

19.
Effects of dietary carbohydrates on hepatic antioxidant enzymeactivities were studied in Atlantic salmon (Salmo salarL.), fed diets containing no additional carbohydrate, or a low (15% addition)orhigh (30% addition) concentration of D-glucose or gelatinised potato starch.Addition of free glucose to the feeds resulted in glucose availability being 7and 18% when added at 15 and 30%, while the addition of gelatinised starch didnotseem to reduce starch availability. The dietary treatment groups (nocarbohydrate, 7 and 18% glucose or 15 and 30% gelatinised starch) were providedwith quantities of feed that supplied the same amounts of protein and lipid.There was a positive correlation between tiobarbituric acid-reactive substances(TBARS) in feeds and salmon liver. Liver glycogen concentrations increased withincreasing dietary glucose and starch, and the two higher levels of liverglycogen, found in groups G18 and S30, resulted in decreased activities ofcatalase, superoxide dismutase (t-SOD), and concentrations of glutathione. Thisindicates that there are links between carbohydrate metabolism and antioxidantsystems in salmon liver. There was no correlation between selenium dependentglutathione peroxidase (Se-GPX) activity and dietary carbohydrateconcentrations, but Se-GPX activity increased in response to increased TBARS.Catalase and t-SOD activities did not correlate with either TBARS values orSe-GPX activity.  相似文献   

20.
The development of cataracts in Atlantic salmon, Salmo salar L., was studied in 16 groups of smolts fed diets differing in prooxidant (iron, copper, manganese) and antioxidant (vitamin E, vitamin C, astaxanthin) composition and lipid level for 23 weeks in sea water, using a 2(7-3) reduced factorial design. The seven dietary variables were systematically varied at low (requirement level and 150 g lipid kg(-1)) and high levels (below known toxic levels and 320 g lipid kg(-1)). A mean endpoint cataract incidence of approximately 36% was observed. High dietary levels of vitamin C and astaxanthin reduced cataract frequency, whereas high dietary lipid level, iron and manganese were associated with increased cataract frequencies. Considering the nutritional status of selected organs of the fish, only the status of ascorbic acid correlated negatively to cataract development (P < 0.05). The lens glutathione (GSH) status was not correlated to cataract frequency, nor statistically explained by the dietary variables. However, the study shows that balancing the diet with respect to pro- and antioxidant nutrients may significantly protect Atlantic salmon against development of cataracts. An incidence of reversible osmotic cataract observed at week 14 was positively correlated to plasma glucose concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号