首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accumulation of phenolic acids in soil is one of the main problems associated with continuous cropping of peanut. Although laccases secreted by fungi can efficiently transform phenolic acids, there are few reports on the use of these enzymes to bioremediate continuous cropping soil. Food waste and wheat straw are waste products; however, they could be used productively as resources for laccase production by the endophytic fungus Phomopsis liquidambari B3. We cultured Phomopsis liquidambari B3 in medium containing food waste as the main nitrogen source and wheat straw as the main carbon source. In order to study the effects of fermentation liquid on phenolic acid degradation, rhizosphere soil microbial communities and peanut seedling growth, the fermentation product, which had high laccase activity, was added to continuously cropped soil of peanut. The concentration of 4-hydroxybenzoic acid, vanillic acid, and coumaric acid in soil had decreased by 57.4, 52.5, and 49.4%, respectively, compared with no-treatment control during 28 days. Analysis of denaturing gradient gel electrophoresis profiles showed that the bacterial and fungal community structures in rhizosphere soil were affected by changes in the phenolic acids concentration. The biomass of peanut plants and the number of root nodules were increased 68.3% and 5.9-fold, respectively. These results showed that the laccase product reduced the accumulation of phenolic acids in soil, the decrease in phenolic acids concentration and the increase in certain dominant microorganisms promoted peanut seedling growth and nodulation. This technology provides a new strategy for bioremediation of continuous cropping soil, while simultaneously reducing waste and protecting the environment.  相似文献   

2.
We studied the microbial communities in maize (Zea mays) rhizosphere to determine the extent to which their structure, biomass, activity and growth were influenced by plant genotype (su1 and sh2 genes) and the addition of standard and high doses of different types of fertilizer (inorganic, raw manure and vermicompost). For this purpose, we sampled the rhizosphere of maize plants at harvest, and analyzed the microbial community structure (PLFA analysis) and activity (basal respiration and bacterial and fungal growth rates). Discriminant analysis clearly differentiated rhizosphere microbial communities in relation to plant genotype. Although microorganisms clearly responded to dose of fertilization, the three fertilizers also contributed to differentiate rhizosphere microbial communities. Moreover, larger plants did not promoted higher biomass or microbial growth rates suggesting complex interactions between plants and fertilizers, probably as a result of the different performance of plant genotypes within fertilizer treatments, i.e. differences in the quality and/or composition of root exudates.  相似文献   

3.
《Applied soil ecology》2007,37(2-3):147-155
A number of studies have reported species specific selection of microbial communities in the rhizosphere by plants. It is hypothesised that plants influence microbial community structure in the rhizosphere through rhizodeposition. We examined to what extent the structure of bacterial and fungal communities in the rhizosphere of grasses is determined by the plant species and different soil types. Three grass species were planted in soil from one site, to identify plant-specific influences on rhizosphere microbial communities. To quantify the soil-specific effects on rhizosphere microbial community structure, we planted one grass species (Lolium perenne L.) into soils from three contrasting sites. Rhizosphere, non-rhizosphere (bulk) and control (non-planted) soil samples were collected at regular intervals, to examine the temporal changes in soil microbial communities. Rhizosphere soil samples were collected from both root bases and root tips, to investigate root associated spatial influences. Both fungal and bacterial communities were analysed by terminal restriction fragment length polymorphism (TRFLP). Both bacterial and fungal communities were influenced by the plant growth but there was no evidence for plant species selection of the soil microbial communities in the rhizosphere of the different grass species. For both fungal and bacterial communities, the major determinant of community structure in rhizospheres was soil type. This observation was confirmed by cloning and sequencing analysis of bacterial communities. In control soils, bacterial composition was dominated by Firmicutes and Actinobacteria but in the rhizosphere samples, the majority of bacteria belonged to Proteobacteria and Acidobacteria. Bacterial community compositions of rhizosphere soils from different plants were similar, indicating only a weak influence of plant species on rhizosphere microbial community structure.  相似文献   

4.
木质素与蚯蚓对黑麦草生物量及土壤微生物群落的影响   总被引:1,自引:1,他引:0  
孙月  潘彦硕  曾军  吴宇澄  林先贵 《土壤》2021,53(2):313-320
采集农田土壤,设置添加木质素和蚯蚓不同组合处理的黑麦草盆栽试验,在测定植物生物量的基础上,结合定量PCR、高通量测序等方法,研究木质素和蚯蚓及其联合作用对土壤细菌、真菌群落的影响.结果显示:木质素显著降低了黑麦草的生物量,而蚯蚓能够缓解木质素的抑制作用,促进黑麦草生长.木质素明显抑制了土壤细菌、真菌数量,并改变群落结构...  相似文献   

5.
连作对花生根系分泌物化感作用的影响   总被引:11,自引:2,他引:11  
采用连续收集法提取连作5 年、3 年和轮作处理的花生结荚期根系分泌物, 研究其对土壤微生物及花生种子发芽、幼苗生长发育和细胞膜过氧化的化感作用及连作对花生根系分泌物化感作用的影响。结果表明,花生结荚期根系分泌物对花生根腐镰刀菌36194 菌丝的生长、叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及丙二醛(MDA)含量存在促进作用, 对固氮菌14046 的生长, 花生种子胚根的伸长、幼苗的苗高、茎叶鲜重、根系鲜重、叶片叶绿素含量等有抑制作用, 促进和抑制作用均随根系分泌物添加浓度和连作年限的增加呈增强趋势。连作花生结荚期根系分泌物化感物质在土壤中的累积, 很可能是导致花生连作障碍的原因之一。  相似文献   

6.
药用植物连作障碍研究评述和发展透视   总被引:2,自引:0,他引:2  
连作障碍作为现代农业生产中较普遍的问题,在药用植物栽培生产中表现尤为严重,据统计约70%以块根类入药的药用植物在种植过程中都存在严重的连作障碍问题。连作障碍已经成为制约药用植物品质和发展的关键性因素。本研究从药用植物连作障碍问题研究现状出发,分析了当前药用植物连作障碍形成的三大共性问题,即根系分泌物诱导根际土壤酸化、根际微生物群落结构失衡和植株病毒病严重,具体体现在:根系分泌物诱导根际土壤微生物差异性演化、土传病原菌的化感互作、根际微生物区系的失衡加大土壤酸化、根际病原菌增多和有益菌减少导致的土存真菌病害加重、病毒病伴生和发展。并分析了土壤灭菌法、功能微生物调控、作物多样性栽培和生物质炭改良的根际调控策略在减缓药用植物连作障碍中的潜在作用。作者呼吁从事连作障碍研究的工作者应重视从根际生态学角度出发,以土壤食物网为切入点,应用现代系统生物学和化学生态学技术与方法,全面系统探究根系分泌物介导下植物-土壤-微生物的相互作用过程与机制,并着重关注土壤线虫和土壤病毒在连作障碍发生发展中的生态位关系,以深入阐明连作介导土壤酸化的生态学机制和病原菌响应根系分泌物的协同进化机理,在此基础上,采用多种根际调控相结合的策略减缓连作障碍问题,全面考虑经济、社会和生态效益,做到"生态预防为主、综合治理为要"。  相似文献   

7.
Continuous cropping with banana results in an enrichment of Fusarium oxysporum f. sp. cubense race 4 (FOC) in soil, causing the soil-borne disease Fusarium wilt. Crop rotation has been an effective method of controlling various soil-borne diseases. However, no information is currently available concerning variations in soil microbial community structure in banana crop rotations. Thus, the influence of two-year crop rotation systems of pineapple–banana and maize–banana on the population density of FOC and soil microbial community structure was investigated to identify which rotation system is more effective in FOC suppression and differences in microbial community composition among different rotations. Bacterial and fungal communities were interrogated by pyrosequencing of the 16 S RNA gene and the internal transcribed spacer (ITS) region. The pineapple–banana rotation was more effective than maize–banana in reducing FOC abundances and suppressing Fusarium wilt disease incidence. Allelopathic effects of pineapple root exudates on FOC were not observed. Greater fungal community variations than bacterial were identified between the two rotation systems, suggesting that fungal communities may play a more important role in regulating FOC abundances. Furthermore, in the pineapple–banana rotation, Acidobacteria, Planctomycetes, Chloroflexi phyla, Gp1, Gp2 and Burkholderia bacterial genera increased while the fungal phyla Basidiomycota, (esp. Gymnopilus) increased and Sordariomycetes decreased. Such changes may be important microbial factors in the decrease in FOC.  相似文献   

8.
Phenolics from root exudates or decaying residues are usually referred as autotoxins of several plant species. However, how phenolics affect soil microbial communities and their functional significances are poorly understood. Rhizosphere bacterial and fungal communities from cucumber (Cucumis sativus L.) seedlings treated with p-coumaric acid, an autotoxin of cucumber, were analyzed by high-throughput sequencing of 16S rRNA gene and internal transcribed spacer amplicons. Then, feedback effects of the rhizosphere biota on cucumber seedlings were evaluated by inoculating non-sterilized and sterilized rhizosphere soils to sterilized background soils. p-Coumaric acid decreased the bacterial diversity of rhizosphere but increased fungal diversity and altered the compositions of both the bacterial and fungal communities. p-Coumaric acid increased the relative abundances of microbial taxa with phenol-degrading capability (such as Chaetomium, Humicola, and Mortierella spp.) and microbial taxa which contained plant pathogens (such as Fusarium spp.). However, p-coumaric acid inhibited the relative abundances of Lysobacter, Haliangium, and Gymnoascus spp., whose species can have pathogen-antagonistic and/or plant-growth-promoting effects. The positive effect of cucumber rhizosphere microbiota on cucumber seedling growth was reduced by p-coumaric acid. Overall, our results showed that, besides its direct phytotoxicity, p-coumaric acid can inhibit cucumber seedling growth through generating negative plant-soil microbial interactions.  相似文献   

9.
The effects of coloniser plant species on microbial community growth and composition were investigated on recently deglaciated terrain at Glacier Bay, south-east Alaska. Analysis of microbial communities using phospholipids fatty acid analysis (PLFA) revealed that Alnus and Rhacomitrium had the greatest impact on microbial growth, increasing total PLFA by some 6-7 fold relative to bare soil, whereas Equisetum led to a 5.5 fold increase in total PLFA relative to bare soil. These coloniser species also had significant effects on the composition of their associated microbial communities. Rhacomitrium, Alnus, and Equisetum increased bacterial PLFA, a measure of bacterial biomass, relative to bare soil. Rhacomitrium and Alnus also dramatically increased the concentration of the fungal fatty 18:2ω6 in soil relative to bare soil, by 12-fold and 8-fold, respectively. The net effect of the above changes was a significant increase in the ratio of fungal: bacterial fatty acids in soil associated with Alnus and Rhacomitrium, but not Equisetum. Possible reasons for these effects of particular plants on microbial communities are discussed, as is their significance in relation to the development of microbial communities in relatively sterile, recently deglaciated ground.  相似文献   

10.
Soil samples were collected in June and October from areas with three land-use types, i.e., Robinia pseudoacacia L. (RP), Caragana korshinskii Kom. (CK), and abandoned land (AL), of which the former two were afforested areas, whereas the latter was not. These areas were converted from similar farmlands 40 years prior. Illumina sequencing of 16S rRNA gene and fungal ITS gene was used to analyze soil bacterial and fungal diversity. Additionally, plant communities, soil properties, fine root biomass, and C, N, and P levels in fine root and microbial biomass were estimated. Compared to AL, the C:N:P stoichiometry in fine root and microbial biomass in the afforested lands was synchronously changed, especially the N:P ratio. Soil microbial diversities were affected by afforestation and were more related to N:P ratio than C:P and C:N ratios. Moreover, Alpha-proteobacteria, Gamma-proteobacteria, and Bacteroidetes were significantly more abundant in afforested soils than in the AL soil, and the abundances of Actinobacteria, Chloroflexi, Cyanobacteria, and Nitrospirae ranked as AL > RP or CK. For fungal taxa, Ascomycota abundance responded positively to afforestation, whereas Basidiomycota abundance responded negatively. Changes of soil microbial taxa were significantly correlated with the N:P ratio in fine root and microbial biomass, which explained 54.1 and 55% of the total variation in bacterial and fungal taxa, respectively. Thus, our results provide evidence that compositions of soil microbial communities are linked to the N:P ratio in the plant-soil system.  相似文献   

11.
基于植物-土壤反馈理论,连作体系中的根系分泌物必然在加剧土传病害发生中起重要作用,但相关研究证据尚缺少系统总结。本文梳理了连作导致土传病害加剧的现象以及连作对典型根系分泌物组分的累积。从有利于土传病原菌由土体向根际迁移、增殖和致病(“利病”)、破坏根际有益微生物群落防线(“压益”)和毒害根系免疫系统(“自毒”)等三个方面,揭示连作根系分泌物中某些物质促进土传病原菌入侵的机制。从根系分泌物角度阐述轮作、间作、套作、伴生和嫁接等多样性种植方式缓解连作土传病害的机制。提出鉴定“利病”、“压益”和“自毒”物质以及构建对应的消减技术途径,可为土传病害绿色高效综合防控提供理论和技术支撑。  相似文献   

12.
Gibberellin A3 or 2,4-dichlorophenoxyacetic acid were applied to the foliage of peanut plants under axenic culture and in the greenhouse. Leaves, roots and exudates from axenically grown plants were analyzed for total lipids, free sterols, free fatty acids and paraffinic hydrocarbons. The total lipid concentrations of leaves, roots and root exudates were not altered. The free sterol of roots, and the paraffinie hydrocarbon concentrations of both leaves and roots increased, but the free fatty acid of root exudates decreased. Plants treated in the greenhouse were rated for disease severity after soil infestation with Pythium myriotylum. Roots of treated plants exhibited less rot than roots of non-treated plants. We believe there are possibilites of altering disease susceptibility using foliar applications of growth regulators through their effects on root lipids and root-lipid exudation patterns.  相似文献   

13.
【目的】烟草连作导致化感物质累积,探索化感物质中主要的酚酸类物质对根际土壤微生物的影响,可为克服烟草连作障碍提供理论依据。【方法】采用盆栽试验方法,将前期分离、鉴定出的烟草根系分泌物中主要酚酸类物质苯甲酸和3-苯丙酸接种到土壤中,模拟烟草多年连作土壤。试验设4个处理:对照(T0),向土壤中加入等量灭菌去离子水;添加苯甲酸3μg/kg土(T1);3-苯丙酸8μg/kg土(T2);同时添加苯甲酸3μg/kg土和3-苯丙酸8μg/kg土(T3),每处理5次重复。以MiSeq测序平台对根际土壤微生物进行高通量测序,探索其对根际土壤微生物的影响,同时采用荧光定量PCR法检测土壤中的茄科劳尔氏菌、短短芽孢杆菌、固氮菌、无机磷细菌、硅酸盐细菌等功能微生物及细菌和真菌的数量变化。【结果】T 1、 T 2处理土壤细菌OTUs(Operational Taxonomic Units)数目分别比对照T0降低了21.5%和17.0%,T3处理OTU数量低于T1和T2处理;T2处理土壤中优势微生物种群增多,结构平衡性降低,门上分类构成和微生物群落构成显著不同于对照。主成分分析与聚类分析显示,T2或T3处理土壤微生物聚类关系较近,都与T0处理较远;T3处理土壤中病原菌数量显著提高,拮抗菌、固氮菌、无机磷细菌、硅酸盐细菌、细菌和真菌数量显著减少,且减少幅度大于T1、T2处理。【结论】根系分泌物中主要酚酸类物质苯甲酸和3-苯丙酸均能明显改变根际土壤微生物区系,降低土壤微生群落多样性,显著增加有害微生物数量的同时大大降低有益微生物数量。两种酚类同时存在的危害效果远大于单一酚类。  相似文献   

14.
The progenitor of maize is Balsas teosinte (Zea mays subsp. parviglumis) which grows as a wild plant in the valley of the Balsas river in Mexico. Domestication, primarily targeting above-ground traits, has led to substantial changes in the plant's morphology and modern maize cultivars poorly resemble their wild ancestor. We examined the hypotheses that Balsas teosinte (accession PI 384071) has a) a different root system architecture and b) a structurally and functionally different rhizosphere microbial community than domesticated cultivars sweet corn (Zea mays subsp. mays accession PI 494083) and popping corn (Zea mays subsp. mays accession PI 542713). In a greenhouse experiment, five plants from each corn variety were grown in individual pots containing a Maury silt loam – perlite (2:1) mixture and grown to the V8 growth stage at which rhizosphere bacterial and fungal community structure was assessed using terminal restriction fragment length polymorphism and fatty acid methyl ester analysis. Functional characteristics of the rhizosphere were assayed by examining the potential activity of seven extracellular enzymes involved in carbon, nitrogen and phosphorus cycling. Root system architecture was characterized by root scans of sand grown plants at the V5 growth stage. Compared to the control the sweet corn rhizosphere had different bacterial and fungal community structure, decreased fungal diversity and increased bacterial abundance. Teosinte caused a significant change in the rhizosphere bacterial and fungal community structure and increased bacterial abundance, but no significant decrease in bacterial or fungal diversity where the former was found to be significantly greater than in the sweet corn rhizosphere. Popping corn did not trigger significant changes in the bacterial or fungal diversity and bacterial abundance in the soil. The individual popping corn plants changed the bacterial and fungal communities in different directions and the overall effect on community structure was significant, but small. Of the enzymes analyzed, potential N-acetylglucosaminidase (NAG) activity was found to contributed most to the differentiation of teosinte rhizosphere samples from the other corn varieties. The teosinte root system had proportionally more very fine (diameter < 0.03 mm) roots than popping corn and sweet corn and it developed the highest root to shoot dry weight ratio, followed by popping corn. Sweet corn had significantly lower average root diameter than popping corn and teosinte and grew proportionally the least below-ground dry mass. The results allude to functional and structural differences in the rhizosphere microbial communities of the corn varieties that, with additional research, could lead to useful discoveries on how corn domestication has altered rhizosphere processes and how plant genotype influences nutrient cycling.  相似文献   

15.
The presence of plants induces strong accelerations in soil organic matter (SOM) mineralization by stimulating soil microbial activity – a phenomenon known as the rhizosphere priming effect (RPE). The RPE could be induced by several mechanisms including root exudates, arbuscular mycorrhizal fungi (AMF) and root litter. However the contribution of each of these to rhizosphere priming is unknown due to the complexity involved in studying rhizospheric processes. In order to determine the role of each of these mechanisms, we incubated soils enclosed in nylon meshes that were permeable to exudates, or exudates & AMF or exudates, AMF and roots under three grassland plant species grown on sand. Plants were continuously labeled with 13C depleted CO2 that allowed distinguishing plant-derived CO2 from soil-derived CO2. We show that root exudation was the main way by which plants induced RPE (58–96% of total RPE) followed by root litter. AMF did not contribute to rhizosphere priming under the two species that were significantly colonized by them i.e. Poa trivialis and Trifolium repens. Root exudates and root litter differed with respect to their mechanism of inducing RPE. Exudates induced RPE without increasing microbial biomass whereas root litter increased microbial biomass and raised the RPE mediating saprophytic fungi. The RPE efficiency (RPE/unit plant-C assimilated into microbes) was 3–7 times higher for exudates than for root litter. This efficiency of exudates is explained by a microbial allocation of fresh carbon to mineralization activity rather than to growth. These results suggest that root exudation is the main way by which plants stimulated mineralization of soil organic matter. Moreover, the plants through their exudates not only provide energy to soil microorganisms but also seem to control the way the energy is used in order to maximize soil organic matter mineralization and drive their own nutrient supply.  相似文献   

16.
Glasshouse bioassays were conducted to assess the impact of different inputs of oilseed rape plant material on soil and rhizosphere microbial diversity associated with subsequently grown oilseed rape (Brassica napus) plants. The first bioassay focussed on the effect of oilseed rape rhizodeposits and fresh detached root material on microbial communities, in a rapid-cycling experiment in which oilseed rape plants were grown successively in pots of field soil for 4 weeks at a time, with six cycles of repeated vegetative planting in the same pot. Molecular analyses of the microbial communities after each cycle showed that the obligate parasite Olpidium brassicae infected the roots of oilseed rape within 4 weeks after the first planting (irrespective of the influence of rhizodeposits alone or in the presence of fresh detached root material), and consistently dominated the rhizosphere fungal community, ranging in relative abundance from 43 to 88 % when oilseed rape was grown more than once in the same soil. Fresh detached root material also led to a reduction in diversity within the soil fungal community, due to the increased relative abundance of O. brassicae. In addition, rhizosphere bacterial communities were found to have a reduced diversity over time when fresh root material was retained in the soil. In the second glasshouse experiment, the effect of incorporating mature, field-derived oilseed rape crop residues (shoots and root material) on microbial communities associated with subsequently grown oilseed rape was investigated. As before, molecular analyses revealed that O. brassicae dominated the rhizosphere fungal community, despite not being prevalent in either the residue material or soil fungal communities.  相似文献   

17.
花生连作障碍发生机理研究进展   总被引:13,自引:2,他引:13  
连作导致花生产量和品质下降,严重影响了花生持续生产。本文结合20年花生长期定位试验研究,从土壤理化性质恶化、化感自毒作用和微生物区系失衡3个方面系统地综述了花生连作障碍的发生机理,认为花生根际微生态系统综合功能失调是造成花生连作障碍的主要原因,并分别就化感作用、根际分泌物与根际微生物的关系、根际微生物与连作障碍的关系和多因子综合考虑等角度对该领域未来的研究方向进行了展望。  相似文献   

18.
Allelopathic rice releases allelochemicals from its roots to paddy soils at early growth stages to inhibit neighboring weeds. However, little is currently known about the effects of allelochemicals on soil microbes. In this study, we show that allelopathic rice can have great impact on the population and community structure of soil microbes. Allelopathic rice PI312777 seedlings reduced the culturable microbial population and total PLFA when compared to non-allelopathic rice Liaojing-9. Similar results were observed when, instead of growing seedlings, soils were incubated with plant root exudates. This result demonstrates that the composition of root exudates from the rice varieties tested contributes to the soil microbial community. Further experiments showed that the microbial community was affected by the allelochemical 5,4′-dihydroxy-3′,5′-dimethoxy-7-O-β-glucopyranosylflavone exuded from allelopathic rice roots, through immediately hydrolyzing glucose with stimulation on soil bacteria and aglycone (5,7,4′-trihydroxy-3′,5′-dimethoxyflavone) with inhibition on soil fungi. This result indicates that the flavone O-glycoside can provide carbon and interact with soil microbes. PC analysis of the fatty acid data clearly separated the allelopathic PI312777 and the non-allelopathic Liaojing-9 variety (PC1 = 46.4%, PC2 = 20.3%). Similarly, the first principal component (PC1 = 37.4%) together with the second principal component (PC2 = 17.3%) explained 54.7% of the variation between the allelopathic and non-allelopathic root exudates. Furthermore, the canonical correlation between allelopathic root exudates and the flavone O-glycoside was statistically significant (Canonical R = 0.889, χ2 (25) = 69.72, p = 0.0041). Although the data generated in this study were not completely consistent between culturable microbes and PLFA profile, it is a fact that variation in soil microbial populations and community structures could be distinguished by the allelopathic and non-allelopathic rice varieties tested. Our results suggest that individual components of rice root exudates, such as allelochemicals from allelopathic rice, can modify the soil microbial community.  相似文献   

19.
Afforestation and deforestation are key land-use changes across the world, and are considered to be dominant factors controlling ecosystem functioning and biodiversity. However, the responses of soil microbial communities to these land-use changes are not well understood. Because changes in soil microbial abundance and community structure have consequences for nutrient cycling, C-sequestration and long-term sustainability, we investigated impacts of land-use change, age of stand and soil physico-chemical properties on fungal and bacterial communities and their metabolic activities. This study was carried out at four sites in two geographical locations that were afforested on long-established pastures with Pinus radiata D. Don (pine). Two of the sites were on volcanic soils and two on non-volcanic soils and stand age ranged from 5 to 20 y. Microbial communities were analysed by biochemical (phospho-lipid fatty acids; PLFA) and molecular (multiplex-terminal restriction fragment length polymorphism; M-TRFLP) approaches. Both site and stand age influenced microbial properties, with changes being least detectable in the 5-y-old stand. Land use was a key factor influencing soil metabolic activities as measured by physiological profiling using MicroResp. Pasture soils had higher microbial biomass (P < 0.001), and metabolic activities (P < 0.001), and basal respiration rates were up to 2.8-times higher than in the pine soils. Microbial abundance analysis by PLFA showed that the fungal to bacterial ratio was higher in the pine soils (P < 0.01). Community analysis suggested that soil bacterial communities were more responsive to site (principal component 1; P < 0.001) than to land use (principal component 5; P < 0.001). In contrast, the fungal community was more affected by land-use change (principal component 1; P < 0.001) than by site, although site still had some influence on fungal community structure (principal component 2; P < 0.001). Redundancy analysis also suggested that bacterial and fungal communities responded differently to various soil abiotic properties, land-use change and location of sites. Overall, our results indicate that the change in land use from pasture to P. radiata stands had a direct impact on soil fungal communities but an indirect effect, through its effects on soil abiotic properties, on bacterial communities. Most of the changes in bacterial communities could be explained by altered soil physico-chemical properties associated with afforestation of pastures.  相似文献   

20.
《Soil biology & biochemistry》2001,33(12-13):1769-1776
Corn (Zea mays L.) root exudates were flushed from a hydrophobic system that allowed the aseptic separation of soluble exudates from the intact plant root. Plants were grown for 90 d, during which time root exudates flowed from the hydroponic setup directly onto columns containing soil previously contaminated with polycyclic aromatic hydrocarbons (PAHs). Mineralization of the PAH, pyrene, was then determined in soil removed from columns. In addition, exudated samples were directly taken from the hydroponic system for estimation of total organic carbon release and for use in microbial studies. In soil from columns that received root exudates from a planted (versus an unplanted) apparatus, there was a significant increase in 14C-pyrene mineralization. The extent of stimulation was comparable to that measured in rhizosphere soil isolated from plants growing in the same soil. Soil from columns that received solution from apparatuses that were not planted showed no stimulation of 14C-pyrene mineralization. Separate studies confirmed that some members of the soil microbial community were able to utilize these soluble plant compounds. This indicates that root exudates have the potential to increase the degradation of xenobiotics by the growth of soil microorganisms. Separating the chemical impact of the root exudates from any root surface phenomena is an important step in isolating a potential mechanism of phytoremediation. Many studies have speculated on the involvement of root exudates in rhizosphere degradation of organic contaminants, but very few studies go beyond adding simple carbon substrates in short pulses. This study employed a system that exposed the microbial community to real root exudates in the concentrations and over a time period that mimicked actual conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号