首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.

Purpose

Shallow soils previously cultivated under terraced systems may change their properties after agricultural release and spontaneous plant colonization. Investigations were conducted in terraced fields (NE Spain) to prove that vegetation installed after the abandonment may generally improve soil properties by the formation of stable organic horizons. However, restriction in plant species along the natural vegetation succession and intensification of erosion processes may occur after abandonment depending on fire frequency and soil use history.

Materials and methods

Ten environments with different plant covers under a Lithic Xerorthent were selected and erosion plots (Gerlach type) installed providing their best adaptability at the terrace scale. Selected soil environments represented the sequence of abandonment: from current poorly cultivated soils, soils under pasture, soils under shrubs, and soils under stands of pine and cork trees. Relevant rainfall events producing runoff and erosion were recorded from November 2011 to May 2012. Erosion rates and erosion components were analysed in sediments and water in order to monitor carbon, nitrogen and other nutrient removal by overland flow. Similarly, the physical and chemical properties of the soil environments under study were determined at the same time interval of runoff erosion.

Results and discussion

Soils under pasture, vines and recently burnt pine forest produced the highest runoff followed by soils under shrubs and forest. However, eroded soil yields and nutrient removal were much higher in cultivated soils and soils in recently burnt sites, which had shown poorer soil properties with respect to soils abandoned for longer and preserved by fire. Fire-affected soil environments also showed a thinner organic horizon and reduced water retention. Although erosion rates and nutrient depletion were low in all environments with respect to other areas of Spain, higher splash than water erosion was an early warning indicator of the high susceptibility to degradation of these shallow soils.

Conclusions

Results outlined that the renaturalization dynamics after agricultural abandonment are complex biophysical processes involving the parent material, depth to bedrock and other soil properties as well as the succession of vegetative cover and plant associations responsible for building a new soil mantle contrasting with erosion processes. Planning for management of land abandonment is strongly recommended.
  相似文献   

2.
Low supply of nutrients is a major limitation of forage adaptation and production in acid soils of the tropics. A glasshouse study was conducted to find differences in plant growth, nutrient acquisition and use, among species of tropical forage grasses (with C4 pathway of photosynthesis) and legumes (with C3), when grown in two acid soils of contrasting texture and fertility. Twelve tropical forage legumes and seven tropical forage grasses were grown in sandy loam and clay loam Oxisols at low and high levels of soil fertility. After 83 days of growth, dry matter distribution among plant leaves, stems, and roots, leaf area production, shoot and root nutrient composition, shoot nutrient uptake, and nutrient use efficiency were measured. Soil type and fertility affected biomass production and dry matter partitioning between roots and shoots. The allocation of dry matter to root production was greater with low soil fertility, particularly in sandy loam. The grasses responded more than the legumes to increased soil fertility in both shoot and root biomass production. Leaf area production and the use of leaf biomass for leaf expansion (specific leaf area) were greater in legumes than in grasses, irrespective of soil type and fertility. But soil type affected shoot biomass production and nutrient uptake of the grasses more than those of the legumes. There were significant interspecific differences in terms of shoot nutrient uptake. The grasses were more efficient than legumes in nutrient use (grams of shoot biomass produced per gram of total nutrient uptake) particularly for nitrogen (N) and calcium (Ca).  相似文献   

3.
Soil erosion is the main process leading to soil degradation on the Loess Plateau of China. The effects of soil‐erosion intensity (sheet, rill, and gully erosion) and different land use (140 y–old secondary forest site, 16 y–old bare site, 6 y–old succession site, and 43 y–old arable site) on gross and net N mineralization, soil organic‐carbon (SOC) turnover, the size and structure of the soil microbial community (phospholipid fatty acid analysis) were assessed. Erosion intensity in the bare plot increased from top slope (sheet erosion) to down slope (gully erosion). The more severe the soil erosion the stronger was the decline of SOC, total N, and microbial biomass (MB). The MBC/SOC ratio decreased whereas the metabolic quotient (qCO2) increased. Differences in nutrient turnover in the different erosion zones of the bare plot were not significant. The microbial community changed towards less Gram negative bacteria and relative more fungi in the gully‐erosion zone. In forest soils, qCO2 and the MBC/SOC ratio demonstrate a higher substrate‐use efficiency of the microbial biomass than in bare soils. Gross N mineralization and gross NH consumption clearly indicated a higher microbial activity in forest than in bare soils. Arable land use shifted the soil microbial community towards a higher relative abundance of fungi and a lower one of actinomycetes. During 6 y of natural succession on former bare plots, soil nutrient content and turnover as well as microbial biomass and structure developed towards forest conditions.  相似文献   

4.
A soil organic matter turnover model has been developed to analyse soil carbon (soil organic-C) loss caused by organic matter decomposition and rainfall erosion in soils used for permanent cultivation. It has been used to build up model profiles of five soils, one occurring in temperate and four in tropical regions, on the basis of estimates for ‘natural’ organic matter input. Organic matter input data for different systems of cultivation were used to model the long-term decomposition of soil organic-C in these model profiles. The modelling results show that soil organic matter decomposition in the tropics is three to four times faster than in temperate regions, and that there is a marked influence of soil type and soil climate. Simulated losses of organic-C in the tropical soils, not accounting for erosion are 31 to 50 per cent after 50 years and 43 to 63 per cent after 100 years of continuous cultivation. The simulated loss of soil organic-C when rainfall erosion is also allowed for is 40 to 80 per cent. Erosion caused an extra loss of at least 7 per cent after 100 years. The initial input of charcoal from forest burning is lost through erosion at a rate of 50 to almost 100 per cent, depending on the severity of erosion. The sensitivity of modelling results to variations in input data was also analysed. The losses of soil carbon were also used to calculate the global flux of CO2 from soils. Soils are probably a small but not negligible source of CO2.  相似文献   

5.
Paper mill residuals may beneficially be used to improve the fertility of tropical acid soils. The effects of paper pulp on soil pH, exchangeable Al and soil solution composition of three acid tropical soils were compared with the effects of equivalent rates of lime in two batch experiments. Paper pulp was more effective than lime in increasing soil pH. However, both amendments were equally effective in decreasing exchangeable Al. Paper pulp and lime similarly influenced the composition of the soil solution by increasing soil solution pH, dissolved organic carbon, inorganic carbon, NO3, SO4, Ca and Mg. The supply of nitrate by the soil, however, was reduced in paper pulp treatments compared to lime treatments. Nitrate had a major role in controlling nutrient concentrations in the soil solution. Reduced NO3 concentrations in paper pulp treated soils compared to limed soils could therefore result in lower nutrient availability and limited losses by leaching.  相似文献   

6.
Abstract

A second order equation best described the relationship between exchangeable Mg and both total and acid‐soluble Mg in select temperate and tropical soils. The relationship between acid‐soluble and total Mg was linear. Soil types differ in their Mg contents. On a per unit weight of material bases the finer soil particles contained more than 95 percent of the total soil inorganic magnesium. In tropical soils, as in temperate soils, the total Mg content of surface horizons tends to decrease with severe weathering, soil erosion and movement of soil colloidal particles down the profile.  相似文献   

7.
Historical land use changes may have significant impact on erosion and agricultural soil properties, including soil degradation by acidification, nutrient leaching and organic matter depletion. The Kali Basin study area, a small catchment of high landscape value located in a national park at Lake Balaton, Hungary, with its historical agricultural records, together with the available unique historical land use data for the last 200 years, provides an opportunity to study and model impacts of historical land use changes on erosion and agricultural soil properties. Comparison of long-term land uses with present soil degradation indicator parameters showed that permanent arable land use has led to degradation of both the physical and chemical properties of soils in the Kali Basin. Application of the SEDEM/WATEM distributed erosion and sediment transport model showed that, despite the low overall sediment export from the catchment, land use changes introduced by property ownership and agricultural changes have decreased average soil erosion in the catchment but increased relative sediment export to Lake Balaton. This is due to changes in the land cover pattern that allow more sediment transported to the river system. The overall conclusion of this study is that besides the size and area proportion of land use types, land use pattern seems to be equally important in soil erosion and degradation processes, thus land use pattern is a key factor for landscape planning and development in the Kali Basin. A relationship between the sociological and agro-ecological reasons for the recorded land use changes is also shown in this study.  相似文献   

8.
《CATENA》2007,69(2-3):96-108
Historical land use changes may have significant impact on erosion and agricultural soil properties, including soil degradation by acidification, nutrient leaching and organic matter depletion. The Kali Basin study area, a small catchment of high landscape value located in a national park at Lake Balaton, Hungary, with its historical agricultural records, together with the available unique historical land use data for the last 200 years, provides an opportunity to study and model impacts of historical land use changes on erosion and agricultural soil properties. Comparison of long-term land uses with present soil degradation indicator parameters showed that permanent arable land use has led to degradation of both the physical and chemical properties of soils in the Kali Basin. Application of the SEDEM/WATEM distributed erosion and sediment transport model showed that, despite the low overall sediment export from the catchment, land use changes introduced by property ownership and agricultural changes have decreased average soil erosion in the catchment but increased relative sediment export to Lake Balaton. This is due to changes in the land cover pattern that allow more sediment transported to the river system. The overall conclusion of this study is that besides the size and area proportion of land use types, land use pattern seems to be equally important in soil erosion and degradation processes, thus land use pattern is a key factor for landscape planning and development in the Kali Basin. A relationship between the sociological and agro-ecological reasons for the recorded land use changes is also shown in this study.  相似文献   

9.
Intensive cropping with limited nutrient management options in low fertile semi-arid tropical soils will have agricultural sustainability problems in future. A better understanding of soil variables as influenced by long-term nutrient amendments could lead to the identification of more precise indicators to monitor soil fertility that would promote sustainability. Long-term nutrient experiment in semi-arid Alfisol at Coimbatore, India was investigated in two successive years, 2009 and 2010 to assess the enduring effects of organic (OM) and inorganic (IC) nutrient managements on soil variables. The organic amendments induced higher microbial population and enzyme activity compared to IC and control soils. The principal component analysis of observed variables revealed that soil organic carbon, microbial biomass carbon (MBC), dehydrogenase and alkaline phosphatase activity and diazotrophs population could be the possible indicators for predicting soil fertility resulting from long-term nutrient managements. The eubacterial community profile assessed by 16S rRNA gene sequence polymorphism revealed that the abundance and relative ratio of phyla belonging to Proteobacteria, Actinobacteria, Acidobacteria and Firmicutes were considerably affected due to either organic manures or inorganic fertilizers, and organic nutrient management favours bacterial community diversity. These results emphasize the importance of organic nutrient management to maintain soil biological properties in semi-arid Alfisol.  相似文献   

10.
Phosphorus (P) sorption processes in soils contribute to important problems in agriculture: a deficiency of this plant nutrient and eutrophication in aquatic systems. Soil organic matter (SOM) plays a major role in sorption processes, but its influence on P sorption remains unclear and needs to be elucidated to improve the ability to effectively manage soil P. The aim of this research was to investigate the influence of SOM on P sorption. The study was conducted in sandy soil profiles and in topsoils before and after removal of SOM with H2O2. The results were interpreted with the Langmuir and Freundlich isotherms. Our results indicated that SOM affected P sorption in sandy soils, but that P sorption also depended on specific soil properties (e.g. values of the degree of P saturation (DPS), P sorption capacity (PSC) and pH) often related to land use. Removal of SOM decreased PSC in most of the topsoils tested; other soil properties became important in controlling P sorption. An increase in P desorption observed after SOM removal indicated that SOM was potentially that soil constituent which increased P binding and limited P leaching from these sandy soils.  相似文献   

11.
The microstructural stability of soils of different geneses (steppe soils, tropical soils, and subtropical soils) developed from marine clay, loess, and weathering crusts was studied by the method of successive treatments with chemical reagents destroying the particular clay-aggregating components. The following dispersing agents were used: (1) H2O (pH 5.5), (2) 0.1 N NaCl (pH 6), (3) 0.002% Na2CO3 (pH 8.7), (4) 0.1 N NaOH (pH 11.5), (5) the Tamm reagent (pH 3.2), and (6) 0.1 N NaOH (pH 11.5). The properties of the clay subfractions obtained in the course of these treatments were studied by a set of analytical methods, including X-ray diffractometry, Mössbauer spectroscopy, and magnetic measurements. It was shown that soil microaggregates are formed under the impact of a number of physicochemical processes; the content and properties of inorganic components (clay minerals in soils with a high CEC and iron oxides in soils with a low CEC) are the controlling factors. The structure of the parent materials is transformed to different degrees to form the soil structure. For example, autonomous nondifferentiated soils inherit, to some extent, the specific microorganization of the parent material. At the same time, the redistribution of substances in the soil profile and in the landscape may exert a substantial influence on the soil structure and microstructure. This is particularly true for autonomous differentiated soils, turbated soils, accumulative soils, polylithogenic soils, and polygenetic soils. The properties of the obtained subfractions of the clay (the mineralogical composition, the Fe2+/(Fe2+ + Fe3+) ratio, the magnetic susceptibility, and the Cha/Cfa ratio) attest to the spatial heterogeneity of the composition and properties of the mineral and organic aggregated compounds in soils.  相似文献   

12.
Large tracts of land in South American native forests have been converted to monoculture for livestock production which could negatively affect soils and environmental quality. A proposed management alternative is to use agroforestry systems, but little information is available on how they affect the soils. The objective was to assess the effect of a silvopastoral chronosequence in a tropical region of Colombia on soil microbiological and physico/chemical properties. The systems (three replications) were: monoculture grass conventional pasture (CP), native forest (F), and a silvopastoral system (SS) chronosequence with ages of 3 to 6 (SS3), 8 to 10 (SS8), or 12 to 15 (SS12) years. Soil responses to these land management were determined by measuring soil chemical (total C and pH), physical (penetrometer resistance and bulk density), and microbiological properties (activities of ß-glucosidase, urease, and alkaline and acid phosphatase and microbial biomass). Because of differences in soil texture across management treatments, microbiological properties were normalized on organic C content basis. SS12 showed the highest microbial biomass and enzyme activities on a per unit C basis and was consistently and significantly different from CP. Additionally, microbiological to C ratios were significantly affected by SS establishment age (P?相似文献   

13.
Water erosion is one of the major concerns with regard to sustainability of agricultural systems in Mediterranean countries (e.g. olive farming areas in Southern Spain). The limitations of the technologies traditionally used in erosion measurement has created increased interest in the use of innovative erosion tracers useful for monitoring erosion and determining deposition rates in the field. In this work, we evaluated the potential of magnetic iron oxide (Fe3O4) as a soil tracer. Particle size distribution of the magnetic iron oxide, mobility under drainage conditions and the effect of the aggregate size distribution in blank and tagged soils were studied. The use of magnetic iron oxide to estimate soil losses at small-scale was also examined using a portable rainfall simulator and measuring magnetic susceptibility before and after each simulated rainfall. The properties of the magnetic iron oxide, including a particle size distribution similar to that of soil aggregates, strong binding to soil particles, little mobility in soil, very high magnetic susceptibility relative to the typically low background values of the studied soils, innocuous to environment and low cost, make it an effective soil tracer for estimating soil losses at a small-scale.  相似文献   

14.
采用径流场结合人工模拟降雨方式,研究了海南岛万泉河、南渡江和昌化江三大流域土壤中氮、磷、有机质等营养物质的流失特征。结果表明,三大流域土壤径流系数和泥沙流失速率的大小顺序为:暴雨〉大雨〉中雨;相同雨强条件下,万泉河的径流系数与南渡江相近,昌化江最小;泥沙流失速率大小顺序为:万泉河〉南渡江〉昌化江;雨强对总磷(TP)流失速率的影响达到极显著水平,磷随径流流失以颗粒磷(PP)为主;氮在雨强较小时以可溶氮(DN)流失为主,当达到暴雨时则以颗粒氮(PN)流失为主;雨强越大,地表径流中COD、TN、DN和PN流失速率越高。三大流域区土壤养分随泥沙流失特征相似,不同雨强条件下,三大流域的总氮、总磷和有机质流失速率的规律一致,雨强越大,流失速率越高;在同一雨强条件下,三流域区总氮、总磷和有机质随泥沙流失速率为:昌化江〉万泉河〉南渡江。影响面源流失的主要因素为坡度、雨强、土质等。  相似文献   

15.
Termite(Macrotermes spp.) mounds are complex biological habitats originated by the termite activity and possessing peculiar physical, chemical and biochemical properties. In this study we examined the concentration of nutrients and the biochemical activity of abandoned soil and mounds colonized by termites of the genera Macrotermes located in the Borana District, Ethiopia. To elucidate the magnitude and persistence of the termite-induced effects, we also studied an abandoned mound, previously colonized by termites of the same genera formed on the same soil. Results confirmed that termite-colonized mounds are ‘hot spots' of nutrient concentration and microbial activity in tropical soils. This is due to the termite driven litter input and decomposition. The abandoned mounds showed higher microbial biomass and activity and displayed a nutrient redistribution and a greater microbial activity than the adjacent soils. These findings allowed us to hypothesize a model of nutrient cycling in colonized soils and a partition of the relative roles of termites and soil microorganisms in nutrient location and turnover in tropical soils. These results may be also useful for the optimal management of termite-colonized soils.  相似文献   

16.
《CATENA》2005,62(1):14-44
Both mature and underdeveloped soils are present in tropical mountainous landscapes. The spatial arrangement of mountainous soils is ascribed mainly to geomorphologic processes. We studied two soil toposequences (one on a convex, and the other on a concave slope with a gradient 40–60%) at the coffee-growing farm La Cabaña, situated in the mountains of the Sierra Madre del Sur, southern Mexico. Mature (Alisols) as well as moderately developed (Luvic Phaeozems) and underdeveloped soils (Fluvic and Skeletic Phaeozems) were detected in the study area. The sequence of sediments and soils is unusual for a classical soil catena. Buried clayey reddish soils are present on the shoulder of a slope; colluvial sediments with weakly developed soils form convex and concave footslopes. The peculiarity of the slopes and spatial distribution of soils in the studied toposequences were ascribed to intensive linear erosion (due to tectonic uplift), seismically induced landslides, and K-cycles of laminar erosion. The diversity of sediments leads to considerable variation in soil texture and mineralogical composition, and, thus, to the diversity of soil properties, which is considered to be a positive feature of a landscape.  相似文献   

17.
Phosphorus (P) cycles rapidly in lowland tropical forest soils, but the process have been proven difficult to quantify. Recently it was demonstrated that valuable data on soil P transformations can be derived from the natural abundance of stable oxygen isotopes in phosphate (δ18OP). Here, we measured the δ18OP of soils that had received long-term nutrient additions (P, nitrogen, and potassium) or litter manipulations in lowland tropical forest in Panama and performed controlled incubations of fresh soils amended with a single pulse of P. To detect whether δ18OP values measured in the incubations apply also for soils in the field, we examined the δ18OP values after rewetting dry soils. In the incubations, resin-P δ18OP values converged to ∼3.5‰ above the expected isotopic equilibrium with soil water. This contrasts with extra-tropical soils in which the δ18OP of resin-P matches the expected equilibrium with soil water. Identical above-equilibrium resin-P δ18OP values were also found in field soils that did not receive P additions or extra litter. We suggest that the 3.5‰ above-equilibrium δ18OP values reflect a steady state between microbial uptake of phosphate (which enriches the remaining phosphate with the heavier isotopologues) and the release of isotopically equilibrated cell internal phosphate back to the soil. We also found that soil nutrient status affected the microbial turnover rate because in soils that had received chronic P addition, the original δ18OP signature of the fertilizer was preserved for at least eight weeks, indicating that the off-equilibrium δ18OP values produced during microbial phosphate turnover was not imprinted in these soils. Overall, our results demonstrate that ongoing microbial turnover of phosphate mediates its biological availability in lowland tropical soils.  相似文献   

18.
In Vietnam as much as half of the total land area is already degraded by soil erosion and nutrient depletion. In particular, degradation due to deforestation is increasingly affecting mountainous areas in north-western Vietnam. The necessity to safeguard the farmers' livelihoods requires sustainable resource management, which firstly requires a qualitative and quantitative evaluation of resources. The objectives of the present study were to (1) identify the dominant soil types and their vulnerability using elicitation of local soil knowledge, (2) characterise the physical and chemical properties of the soils and (3) link them to the relief position and land use in order to (4) initiate sustainable soil use based on recommendations deduced from objectives (1) to (3). These objectives were achieved also by the elicitation of local knowledge. The final aim of the study was to initiate sustainable soil use based on recommendations for sustainable land use scenarios. The Chieng Khoi commune in Son La province of northern Vietnam was chosen as representative for other erosion-prone Southeast Asian sloping areas. In a participatory approach, combining local and scientific knowledge, sixteen sites were selected, representative for distinct relief positions, parent material (sand stone and silt stone), land use history, and erosion hazard. Chemical (e.g. content of organic matter, nitrogen, cation exchange capacity, base saturation, and plant available phosphorous) and physical properties (e.g. air capacity, plant available water) were used to estimate soil fertility. The predominant reference soil groups in the study area are Alisols and Luvisols, with a high diversity in respect to soil fertility. These soils are locally named ‘red soil’ and ‘black soil’, respectively. Although the main physical processes are erosion and selective sedimentation, farmers tend to underestimate their impact and causes, whereas soil quality was well-evaluated. Soils with high fertility were found on less eroded upper parts of hills and at sites, where agricultural use started only recently. Once degraded by cultivation practices, soils derived from sandstone did not recover even after more than 50 years of fallow. As a result of unsustainable land use, soils on middle and lower slopes are often affected by severe soil erosion, whereas foot slope soils suffer from accumulation of eroded infertile subsoil material as well as stagnic conditions. This study showed that unsustainable land use at upslope landscape positions has a severe impact on downslope areas. The elicitation of local knowledge facilitated the identification of such hot spots, allowing the implementation of spatially targeted conservation measures.  相似文献   

19.
Oxisols comprise large soil group in tropical America. These soils are acidic and have low fertility. Use of tropical legume cover crops in cropping systems is an important strategy to improve fertility of these soils for sustainable crop production. Data are limited on nutrient uptake and use efficiency of tropical cover crops under different acidity levels. The objective of our study was to evaluate growth and nutrient uptake parameters of sixteen tropical legume cover crops under three soil pH (5.1, 6.5, and 7.0) of an Oxisol. Shoot dry weight was influenced significantly by pH and cover crop treatments and their interactions, indicating that cover crops used had differential responses to changing soil pH levels. Overall, shoot dry weight decreased when soil pH was raised from 5.1 to 7.0, indicating acidity tolerance of cover crops. Nutrient concentration (content per unit of dry weight), uptake (concentration X dry weight), and nutrient use efficiency (dry weight of shoot per unit of nutrient uptake) varied significantly among cover crops. The variation in nutrient uptake and use efficiency among cover crop species was associated with variation in shoot dry matter production. Significant variation among crop species in dry matter production and low C/N ratios (average value of 14.25) suggest that cover crops which produced higher dry matter yield like white jack bean, gray mucuna bean, black mucuna bean, mucuna bean ana, and lablab are important choices for planting in tropical soils to recover large amount of macro and micronutrients, and to prevent such nutrient leaching in soil plant systems.  相似文献   

20.
南方红壤丘陵区土壤侵蚀-沉积作用对土壤酶活性的影响   总被引:6,自引:0,他引:6  
土壤酶与土壤矿质营养元素循环、能量转移等密切相关。明确土壤酶对土壤侵蚀—沉积作用的响应机制,有助于进一步把握土壤侵蚀在全球碳循环中的作用。通过分析湘中红壤丘陵区松林坡面侵蚀区及沉积区土壤酶活性的变化特征,揭示了酶活性与土壤主要养分因子之间的关系,并在此基础上深入探讨了土壤侵蚀—沉积作用对土壤酶活性的影响。结果表明:沉积区绝大多数土层土壤有机碳(soil organic carbon,SOC)、全氮(total nitrogen,TN)、可溶性有机碳(dissolved organic carbon,DOC)、脲酶、酸性磷酸酶及过氧化氢酶活性均要显著高于侵蚀区。土壤沉积作用明显提高了土壤养分含量及酶活性。其次,侵蚀区与沉积区土壤养分含量及酶活性差异在侵蚀干扰较为严重的表层(0~30 cm)土壤表现较为明显,随着土壤深度的增加差异逐渐减小。侵蚀区与沉积区SOC、TN、DOC及酶活性均随土壤深度的增加呈现总体下降的趋势。相关性分析表明,土壤脲酶、酸性磷酸酶、过氧化氢酶之间及其与SOC、TN、DOC之间均存在极显著正相关关系(p0.01)。此外,偏冗余分析结果进一步表明SOC是解释土壤酶活性动态变化的主要因子,其解释量达7.5%,侵蚀诱导SOC在坡面的再分布是影响土壤酶活性的重要途径之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号