首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date, occurrence and stimulation of different nitrification pathways in acidic soils remains unclear. Laboratory incubation experiments, using the acetylene inhibition and 15N tracing methods, were conducted to study the relative importance of heterotrophic and autotrophic nitrification in two acid soils (arable (AR) and coniferous forest) in subtropical China, and to verify the reliability of the 15N tracing model. The gross rate of autotrophic nitrification was 2.28 mg?kg?1?day?1, while that of the heterotrophic nitrification (0.01 mg?kg?1?day?1) was negligible in the AR soil. On the contrary, the gross rate of autotrophic nitrification was very low (0.05 mg?kg?1?day?1) and the heterotrophic nitrification (0.98 mg?kg?1?day?1) was the predominant NO3 ? production pathway accounting for more than 95 % of the total nitrification in the coniferous forest soil. Our results showed that the 15N tracing model was reliable when used to study soil N transformation in acid subtropical soils.  相似文献   

2.
Soil organic carbon (SOC) dynamics and nutrient availability determine the soil quality and fertility in a Chinese fir plantation forest in subtropical China. Uniformly 13C-labeled Chinese fir (Cunninghamia lanceolata) and alder (Alnus cremastogyne) leaf litter with or without 100 mg NH4+ or NO3 were added to the soil. The purpose was to investigate the influence of N availability on the decomposition of the litter and native SOC. The production of CO2, the natural abundance of 13C–CO2, and the inorganic N dynamics were monitored. The results showed that Chinese fir (with a high C:N ratio) and alder (with a low C:N ratio) leaf litter caused significant positive priming effects (PEs) of 24% and 42%, respectively, at the end of the experiment (235 d). The PE dynamics showed that positive PE can last for at least 87 d. However, the possible occurrence of a significant negative PE with a sufficient incubation period is difficult to confirm. The application of both NH4+ and NO3 was found to have a stimulating effect on the decomposition of Chinese fir and alder leaf litter in the early stage (0–15 d) of incubation, but an adverse effect in the late stage. Compared with NO3, NH4+ caused a greater decrease in the PE induced by both Chinese fir and alder leaf litter. The effects of NH4+ and NO3 on the PE dynamics had different patterns for different incubation stages. This result may indicate that the stability or recalcitrance of SOC, especially in such plantation forest soils, strongly depends on available leaf litter and application of N to the soil.  相似文献   

3.
The present work aims at evaluating the effect of cycloheximide at concentrations of between 0.5 and 5mgg–1 on N2O and NO3 production in two slightly alkaline soils, sampled from deciduous woodland and arable cultivation. In the first experiment, peptone was used as the “inducing substrate” for heterotrophic activity, and soil was incubated with cycloheximide (at different concentrations) and/or acetylene (1mll–1) to block induced eukaryotic protein synthesis and ammonia monooxygenase activity, respectively. Peptone addition stimulated N2O and NO3 production significantly in woodland soil, whereas arable soil showed no significant N2O emissions and low NO3 production. Low cycloheximide concentrations drastically reduced N2O emissions in woodland soil, suggesting a potential role of fungi in N2O emissions. However, acetylene was equally effective in blocking N2O emissions and part of NO3 production, so that a possible role of ammonia monooxygenase in an organic-inorganic pathway of N nitrification in fungal metabolism can be hypothesized. A second experiment was carried out on the woodland soil to check if low cycloheximide concentrations had non-target biocidal effects on soil microorganisms. Attention was focused on the range of concentrations which had reduced N2O emission in the woodland soil. The results suggested that at concentrations of cycloheximide between 0.5 and 2mgg–1 any biocidal effect on microbial biomass was negligible in the first 48h; therefore only selective inhibition of protein synthesis could be expected. The whole nitrifier population seemed to be particularly sensitive to cycloheximide concentrations higher than 2.5mgg–1. Received: 4 July 1997  相似文献   

4.
Biochar application to soil has significant potential as a climate change mitigation strategy, due to its recalcitrant C content and observed effect to suppress soil greenhouse gas emissions such as nitrous oxide (N2O). Increased soil aeration following biochar amendment may contribute to this suppression.Soil cores from a Miscanthus X. giganteus plantation were amended with hardwood biochar at a rate of 2% dry soil weight (22 t ha−1). The cores were incubated at three different temperatures (4, 10 and 16 °C) for 126 days, maintained field moist and half subjected to periodic wetting events. Cumulative N2O production was consistently suppressed by at least 49% with biochar amendment within 48 h of wetting at 10 and 16 °C. We concluded that hardwood biochar suppressed soil N2O emissions following wetting at a range of field-relevant temperatures over four months. We hypothesised that this was due to biochar increasing soil aeration at relatively high moisture contents by increasing the water holding capacity (WHC) of the soil; however, this hypothesis was rejected.We found that 5% and 10% biochar amendment increased soil WHC. Also, 10% biochar amendment decreased bulk density of the soil. Sealed incubations were performed with biochar added at 0–10 % of dry soil weight and wetted to a uniform 87% WHC (78% WFPS). Cumulative N2O production within 60 h of wetting was 19, 19, 73 and 98% lower than the biochar-free control in the 1, 2, 5 and 10% biochar treatments respectively. We conclude that high levels of biochar amendment may change soil physical properties, but that the enhancement of soil aeration by biochar incorporation makes only a minimal contribution to the suppression of N2O emissions from a sandy loam soil. We suggest that microbial or physical immobilisation of NO3 in soil following biochar addition may significantly contribute to the suppression of soil N2O emissions.  相似文献   

5.
 The spatial in situ variability of soil N2O emissions (measured by micro-chambers, radius 0.033 m), N2O content, water content, NO3 , NH4 +, inorganic carbon and organic carbon concentrations was investigated on a silt loam by means of geostatistical methods and nonparametric statistics. The sampling grid consisted of different spacings between sampling points which ranged from 0.1 m to 50 m. There were no significant correlations between N2O emissions and soil parameters (P>0.1) when all the sampling points were considered. In the centre of the grid a "hot area" was localized with significantly higher N2O emissions, and NO3 and NH4 + concentrations (P≤0.05). Within this hot area the N2O soil content significantly correlated with N2O emissions (P≤0.05). When semiovariograms were computed without data of the hot area samples, N2O emissions showed a weak spatial correlation (range: 4.3 m). The calculations including all data led to pure nugget effects for all parameters except for soil water content (range >40 m) and N2O soil content (range 16.4 m). Received: 19 December 1997  相似文献   

6.
Abstract

We previously analyzed the effect of nitrate dispersion on the apparent nitrogen isotope fractionation factor associated with denitrification in soil (Kawanishi et al. 1993), and found that the dispersion effect was significant when the water flow was slow. In the previous report, we assumed that the dispersion coefficients of 14NO3 ? and 15NO3 ? were similar. However, when the water flow is slow, molecular diffusion will dominate mechanical dispersion and the above assumption may not be valid.  相似文献   

7.
An incubation experiment was conducted to examine the effects of phosphorus (P) addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil taken under Acacia mangium plantation and incubated at 100 % water-filled pore space (WFPS). Additions of NO 3 ? stimulated the N2O and NO emissions while NH 4 + did not, showing that denitrification was the main process of N2O and NO production in the study condition. When NO 3 ? was added with P significantly (P?<?0.05) increased N2O emissions regardless of the ratio of the added nitrogen and carbon, suggesting that P addition stimulated denitrification activity. The activation of denitrification by P addition is possibly attributed to two mechanisms: (1) the added-P stimulated denitrification by relieving P shortage for denitrifying bacteria and (2) the added-P stimulated activity of heterotrophic soil microflora with increased O2 consumption promoting the development of anaerobic conditions with stimulation of denitrification.  相似文献   

8.
9.
K.MINAMI 《土壤圈》2005,15(2):164-172
To feed an increasing population, large amounts of chemical nitrogen fertilizer have been used to produce much of our food, feed and fiber thereby increasing nitrogen levels in soils, natural waters, crop residues, livestock wastes,and municipal and agricultural wastes, with national and international concern about its potential adverse effects on environmental quality and public health. To understand these phenomena and problems, first the nitrogen cycle and the environment are described. Then recent trends for nitrogen cycling through the food and feed system, N2O emissions from fertilized upland and paddy soils, and NO3^- pollution in ground water in Japan are reported. Finally, mitigation strategies in Japan for reducing N2O emission and NO3^- pollution are proposed, including nitrification inhibitors, controlled release fertilizers, utilization of plant species that could suppress nitrification, utilizing the toposequence, government policy, and appropriate agricultural practices. Of all the technologies presented, use of nitrification inhibitors and controlled release fertilizers are deemed the most important with further development of these aspects of technologies being expected. These practices, if employed worldwide, could help reduce the load, or environmental deterioration, on the Earth‘s biosphere.  相似文献   

10.
As part of a long-term sloped land use experiment established in 1995 at Taoyuan Agro-ecosystem Research Station (111°26′ E, 28°55′ N) in China, soil samples were collected from three land use types, including cropland (CL), natural forest, and tea plantation. Quantitative polymerase chain reaction and terminal restriction fragment length polymorphism were used to determine the abundance and community composition of amoA-containing bacteria (AOB) and archaea (AOA). The results indicate that land use type induced significant changes in soil potential nitrification rate and community composition, diversity, and abundance of AOB and AOA. Both AOB and AOA community compositions were generally similar between upper and lower slope positions (UP and LP), except within CL. The LP soils had significantly (p?<?0.05) higher diversity and abundance of both AOB and AOA than in the UP. Potential nitrification rate was significantly correlated (p?<?0.05) with diversity and abundance of AOA, but not with AOB. Among land use types, the NO3 ? and amoA-containing AOA runoff loss was greatest in CL. Nitrate-N runoff loss was significantly correlated (p?<?0.05) with the loss of AOA amoA copies in the runoff water. Furthermore, relationships between NO3 ?-N runoff loss and abundance of AOA but not of AOB at both slope positions were significantly correlated (p?<?0.05). These findings suggest that AOA are more important than AOB in nitrification and NO3 ?-N runoff loss in acidic soils across sloped land use types.  相似文献   

11.
Spatial patterns of soil δ13C were quantified in a subtropical C3 woodland in the Rio Grande Plains of southern Texas, USA that developed during the past 100 yrs on a lowland site that was once C4 grassland. A 50 × 30 m plot and two transects were established, and soil cores (0–15 cm, n = 207) were collected, spatially referenced, and analyzed for δ13C, soil organic carbon (SOC), and soil particle size distribution. Cross-variogram analysis indicated that SOC remaining from the past C4 grassland community co-varied with soil texture over a distance of 23.7 m. In contrast, newer SOC derived from C3 woody plants was spatially correlated with root biomass within a range of 7.1 m. Although mesquite trees initiate grassland-to-woodland succession and create well-defined islands of soil modification in adjoining upland areas at this site, direct gradient and proximity analyses accounting for the number, size, and distance of mesquite plants in the vicinity of soil sample points failed to reveal any relationship between mesquite tree abundance and soil properties. Variogram analysis further indicated soil δ13C, texture and organic carbon content were spatially autocorrelated over distances (ranges = 15.6, 16.2 and 18.7 m, respectively) far greater than that of individual tree canopy diameters in these lowland communities. Cross-variogram analysis also revealed that δ13C – SOC and δ13C-texture relationships were spatially structured at distances much greater than that of mesquite canopies (range = 17.6 and 16.5 m, respectively). These results suggest fundamental differences in the functional nature and consequences of shrub encroachment between upland and lowland landscapes and challenge us to identify the earth system processes and ecosystem structures that are driving carbon cycling at these contrasting scales. Improvements in our understanding how controls over soil carbon cycling change with spatial scale will enhance our ability to design vegetation and soil sampling schemes; and to more effectively use soil δ13C as a tool to infer vegetation and soil organic carbon dynamics in ecosystems where C3–C4 transitions and changes in structure and function are occurring.  相似文献   

12.
Abstract

Understanding the factors that influence soil and plant nitrogen (N) spatial variability may improve our ability to develop management systems that maximize productivity and minimize environmental hazards. The objective of this study was to determine the field (65 ha) scale spatial variability of N and δ15N in soil and corn (Zea mays). Soil, grain, and stover samples were collected from grids that ranged in size from 30 by 30 m to 60 by 60 m. Plant samples, collected following physiological maturity in 1995, were analyzed for total N and δ15N. Soil samples, collected prior to planting in the spring of 1995 and 1996, were analyzed for inorganic‐N, total N, and δ15N. All parameters showed strong spatial relationships. In an undrained portion of the field containing somewhat poorly and poorly drained soils there was a net loss of 95 kg N ha‐1, while in an adjacent area that was tile drained there was a net gain of 98 kg N ha‐1. Denitrification and N mineralization most likely were responsible for losses and gains, respectively. Differences between the N balances of these areas (193 kg N ha‐1) provide a relative measure of the impact of tile drainage on plant N availability and greenhouse gas production in a wet year.  相似文献   

13.
Abstract

The phenol‐hypochlorite‐ammonium reaction of Berthelot can be utilized in manual procedures for the analysis of NH4‐N in a variety of soils applications, including total N measurement in soils, particle size separates and soluble organic matter fractions, and in measuring NH4‐N in soil extracts. A simple, convenient, and versatile procedure is described.  相似文献   

14.
Assessing effects of organic fertilizer applications on N2O emissions is of great interest because they can cause higher N2O emissions compared to inorganic fertilizers for a given amount of added nitrogen (N). But there are also reports about enhanced N2O reduction to climate-neutral elemental N2 after application of organic manures to soils. Factors controlling the N2O/(N2O + N2) product ratio of denitrification are interrelated, and also the ratio is difficult to study because of limitations in N2 flux measurements. In this study, we investigated N2O and N2 emissions from soil treated with organic fertilizers with different C/N ratios. An N2O isotopomer approach combined with conventional N2O and N2 flux measurements was employed to study underlying microbial pathways.A grassland soil was amended with anaerobic digestate (AD) from food waste digestion (low C/N ratio) or cattle slurry (CS; high C/N ratio), respectively, adjusted to 90% WFPS, and incubated for 52 days under helium–oxygen atmosphere (10% O2) using a soil incubation system capable of automated N2O, N2, and CO2 measurements. N2O isotopomer signatures, i.e. the δ18O and SP values (site preference between 15N at the central and the peripheral position in the N2O molecule), were determined by Isotope Ratio Mass Spectrometry and used to model and subsequently estimate the contribution of bacterial denitrification and autotrophic nitrification to N2O production. For this approach the direct determination of emitted N2 is essential to take isotope effects during N2O reduction to N2 into account by correcting the measured isotope signatures for isotope effects during N2O reduction using previously determined fractionation factor ranges.The addition of both organic fertilizers to soil drastically increased the rate of gaseous N emissions (N2O + N2), probably due to the effects of concurrent presence of nitrate and labile C on the denitrification rate. In the initial phase of the experiment (day 1 to ∼15), gaseous N emissions were dominated by N2 fluxes in soils amended with organic manures; meanwhile, N2O emissions were lower compared to untreated Control soils, but increased after 15–20 days relative to the initial fluxes, especially with CS. Extremely low N2O, but high N2 emissions in the initial phase suggest that reduction of N2O to N2 via denitrification was triggered when the soil was amended with organic fertilizers. In contrast in the untreated Control, N2O release was highest during the initial phase. Total N2O release from AD treated soil was similar to Control, while N2O from CS treated soil was considerably higher, indicating that denitrification was triggered more by the high labile carbon content in CS, while the cumulative N2O/(N2O + N2) product ratio and thus N2O reduction were similar with both organic fertilizers.The results of the N2O source partitioning based on the isotopomer data suggest that about 8–25% (AD) and 33–43% (CS) of the cumulated N2O emission was due to nitrification in organically amended soil, while in the untreated Control nitrification accounted for about 5–16%. The remaining N2O production was attributed mainly to denitrification, while the poor model fit for other source pathways like fungal denitrification suggested their contribution to be of minor importance. The observed rather distinct phases with predominance first of denitrification and later of nitrification may help developing mitigation measures by addressing N2O source processes individually with appropriate management options. The observation of relatively large shares of nitrification-derived N2O is surprising, but may possibly be related to the low soil pH and will require further investigation.The determination of N2 production is essential for this isotopomer-based source partitioning approach, but so far only applicable under laboratory conditions. The results of this study indicate that the combination of N2O δ18O and SP values is very useful in obtaining more robust source estimates as compared to using SP values alone.  相似文献   

15.
A 3-month field experiment comparing nitrogen (N) losses from and the agronomic efficiency of various N fertilizers was conducted on a sandy loam (Typic Hapludand) soil at Ruakura AgResearch farm, Hamilton, New Zealand during October to December 2003. Three replicates of seven treatments: urea, urea + the urease inhibitor N-(n-butyl) thiophosphoric triamide (trade name Agrotain), urea + Agrotain + elemental sulphur (S), urea + double inhibitor [DI; i.e., Agrotain + dicyandiamide (DCD)], diammonium phosphate (DAP), DAP + S, each applied at 150 kg N ha−1, and control (no N). After fertilizer application, soil ammonium () and nitrate () concentrations (7.5-cm soil depth), ammonia (NH3) volatilization, nitrate () leaching, nitrous oxide (N2O) emission, pasture dry matter, and N uptake were monitored at different timings. Urea applied with Agrotain or Agrotain + S delayed urea hydrolysis and released soil at a slower rate than urea alone or urea + DI. Urea applied with DI increased NH3 volatilization by 29% over urea alone, while urea + Agrotain and urea + Agrotain + S reduced NH3 volatilization by 45 and 48%, respectively. Ammonia volatilization losses from DAP were lower than those from urea with or without inhibitors. Total reduction in leaching losses for urea + DI and urea + Agrotain compared to urea alone were 89% and 47%, respectively. Application of S with urea + Agrotain reduced leaching losses by an additional 6%. Nitrous oxide emissions were higher from the DAP and urea alone treatments. Urea applied with DI and urea + Agrotain reduced N2O emissions by 37 and 5%, respectively, over urea alone. Compared to urea alone, total pasture production increased by 20, 17, and 15% for urea + Agrotain + S, urea + Agrotain, and urea + DI treatments, respectively, representing 86, 71, and 64% increases in N response efficiency. Total N uptake in urea + Agrotain, urea + Agrotain + S, and urea + DI increased by 29, 22, and 20%, respectively, compared to urea alone. These results suggest that the combination of both urease and nitrification inhibitors may have the most potential to reduce N losses and improve pasture production in intensively grazed systems.  相似文献   

16.
17.
18.
For the purpose of studying the contamination, bioaccumulation and transfer of heavy metals and understanding the effects of soil properties on these, the work was carried out on a regional scale. A total of 30 sets of soil and pairing rice tissues samples (root, straw and grain) were collected in Xiangzhou of Guangxi, China; soil properties and Cd, Cu, Pb and Zn of different rice tissues were analyzed. The mobility and bioaccumulation of Cd, Cu, Pb and Zn were assessed by transfer coefficients and bioaccumulation factors of them. The results indicated that the excess proportions of Cd and Pb were 50%, 3.33% and 30%, 6.67% in soil and rice grain, respectively, according to Chinese maximum permitted concentrations of heavy metals. Cd and Zn showed stronger bioaccumulation and mobility capability; the bioaccumulation and transfer of Cu were slightly lower than Cd and Zn; Pb had the weakest mobility. The bioaccumulation and mobility of heavy metals from soil to rice were restrained by soil pH, CaO, SOC, Fe oxides and Mn.  相似文献   

19.
To reveal the influence of freeze–thaw cycles (FTCs) on soil carbon and nitrogen changes, six typical soils in Northeast China were selected as the research objects to conduct a FTC simulation test in an artificial climate chamber. Three soil volumetric water contents (10%, 20%, 30%) and eight FTCs (0, 2, 4, 6, 8, 10, 15, 20) were set. The results showed that the soil organic carbon (SOC) and microbial biomass carbon (MBC) contents of different soil types under the FTCs initially exhibited a downward and then an upward trend, while the dissolved organic carbon (DOC) content exhibited an upward and then a downward trend. Otherwise, the fourth and sixth FTCs were the key points of change. The SOC, MBC and DOC contents in paddy fields were higher than those in dry fields, showing upward and then downward trends spatially from northeast to southwest. The SOC and MBC contents in each soil type were the highest at the 20% water content, and the DOC content gradually increased with increasing water content. The ammonium nitrogen (NH4+-N) content in different soil types at different water contents under the FTCs showed an upward trend first, then a downward trend and finally an upward trend. The NH4+-N content in paddy fields was higher than that in dry fields. The nitrate nitrogen (NO3-N) content showed a downward trend first, then an upward trend and finally a downward trend. The NO3-N content in dry fields was higher than that in paddy fields. The NH4+-N contents in the three soil types on the Sanjiang Plain were significantly higher than those on the Songnen Plain. The NH4+-N and NO3-N contents showed upward trends with increasing water content, but the differences were not significant. The results have implications for the study of different types of soils and provide references for research on the mechanism of soil carbon and nitrogen transformation in typical farming areas in Northeast China.  相似文献   

20.
Nucleic acid stable isotope probing (SIP) is a powerful tool that can identify and characterize the microorganisms that mediate specific soil processes and explore the flow of C and N through functional groups in the soil food web. While 13C–SIP has been used successfully in a range of applications, methodological constraints have limited the applicability of 15N-labelled compounds in nucleic acid SIP. However, 15N–DNA–SIP can now be achieved and this method when used with 15N2 provides a powerful new tool for characterizing free-living diazotrophs in natural ecosystems. A diverse array of non-cultivated diazotrophs have been observed in soil and yet the characteristics of these organisms and their environmental significance remain almost completely unknown. 15N2–DNA–SIP can identify those diazotrophs that are active in situ while providing access to gene sequences and genome fragments that can yield insights on their evolutionary history and functional capacities. Further insights on the ecology of free-living diazotrophs in soil can be provided by performing 15N2–DNA–SIP on microcosms in which the response of the diazotrophic community is determined in relation to experimental manipulation. We describe the use of 15N2–DNA–SIP to explore linkages between different C sources and N-fixation by specific diazotroph populations in soil. Methane addition to soil was observed to stimulate N-fixation and the organisms that were found to be responsible for this activity were Type II methanotrophs most closely related to the genus Methylocystis. This report provides insights on the use of nucleic acid SIP to identify and characterize microorganisms that mediate specific soil processes and represents the first time that a specific group of methanotrophs has been shown to mediate N-fixation while in the soil environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号