共查询到20条相似文献,搜索用时 32 毫秒
1.
Amy E. Kochsiek Johannes M.H. Knops Daniel T. Walters Timothy J. Arkebauer 《Agricultural and Forest Meteorology》2009,149(11):1983
The litter carbon (C) pool of a single litter cohort in an agroecosystem is the difference between net primary productivity and decomposition and comprises 11–13% of the total C pool (litter and soil 0–15 cm depth) post-harvest. This litter-C pool is highly dynamic and up to 50% can be decomposed in the first 12 months of decomposition. Thus, understanding litter-C dynamics is key in understanding monthly and annual total ecosystem carbon dynamics. While the effects of management practices such as irrigation and fertilization on productivity are well understood, the effects on decomposition are less studied. While irrigation and fertilization increase productivity, this will only lead to increased litter-C residence time and litter-C pool accretion if these techniques do not also result in equivalent or greater increases in decomposition. Management could potentially have impacts on litter-C accretion by increasing litter inputs, changing plant-C allocation, plant tissue quality, or decomposition rates. We examined carbon loss of one annual cohort of maize litter using in situ nylon litter bags for 3 years in three no-till fields with differing management regimes: irrigated continuous maize with a pre-planting fertilization application and two fertigation events, irrigated maize–soybean rotation with the same fertilization regime as the irrigated continuous maize management regime, and rainfed maize–soybean rotation with a single pre-planting fertilization event. We addressed the effects of these different management regimes on net primary productivity and litter inputs, litter nitrogen (N) concentrations and carbon quality measures, plant C allocation, decomposition rates and the potential changes in the overall litter-C balance. We found that irrigation/fertigation management increased litter inputs, led to changes in plant tissue quality, had no effect on carbon allocation, and increased decomposition rates. This balance of both greater litter inputs and outputs of C from the irrigated management regimes led to a similar litter-C balance for this litter cohort in the irrigated and rainfed management regimes after 3 years of decomposition. Our data clearly show that merely increasing litter-C inputs through irrigation/fertigation practices is not sufficient to increase litter-C residence time because decomposition rates also increase. Therefore, close monitoring of decomposition rates is essential for understanding litter-C pool dynamics. 相似文献
2.
Soil carbon and nitrogen sequestration following the conversion of cropland to alfalfa forage land in northwest China 总被引:5,自引:1,他引:5
Soil C and N contents play a crucial role in sustaining soil quality and environmental quality. The conversion of annually cultivated land to forage grasses has potential to increase C and N sequestration. The objective of this study was to investigate the short-term changes in soil organic C (SOC) and N pools after annual crops were converted to alfalfa (Medicago sativa L. Algonguin) forage for 4 years. Soil from 24 sets of paired sites, alfalfa field versus adjacent cropland, were sampled at depths of 0–5, 5–10 and 10–20 cm. Total soil organic C and N, particulate organic matter (POM) C and N were determined. Organic C, total N, POM-C, and POM-N contents in the 0–5 cm layer were significantly greater in alfalfa field than in adjacent cropland. However, when the entire 0–20 cm layer was considered, there were significant differences in SOC, POM-C and POM-N but not in total N between alfalfa and crop soils. Also, greater differences in POM-C and POM-N were between the two land-use treatments than in SOC and total N were found. Across all sites, SOC and total N in the 0–20 cm profile averaged 22.1 Mg C ha−1 and 2.3 Mg N ha−1 for alfalfa soils, and 19.8 Mg C ha−1and 2.2 Mg N ha−1 for adjacent crop soils. Estimated C sequestration rate (0–20 cm) following crops to alfalfa conversions averaged 0.57 Mg C ha−1 year−1. Sandy soils have more significant C accumulation than silt loam soils after conversion. The result of this suggests that the soils studied have great C sequestration potential, and the conversion of crops to alfalfa should be widely used to sequester C and improve soil quality in this region. 相似文献
3.
Effects of different land use on soil chemical properties, decomposition rate and earthworm communities in tropical Mexico 总被引:1,自引:0,他引:1
The effects of land use on soil chemical properties were evaluated, and earthworm communities and the decomposition rate of three typical land use systems in tropical Mexico, namely banana plantations (B), agroforestry systems (AF) and a successional forest (S) were compared.The study was carried out from November 2005 to April 2006. A completely randomized sampling design was established in six sites (B1, B2, AF1, AF2, S1 and S2). Soil properties and chemical characteristics (texture, pH, organic carbon (Corg), nutrients, and available Zn and Mn), earthworm communities and the decomposition of Bravaisia integerrima and Musa acuminata litter were analyzed over a period of 8 weeks.All soils were loamy clays with a medium to high content of nutrients. Three principal clusters were generated with the soil chemical properties: a first cluster for forest soils with high Corg and Ntot and low available Zn content, a second cluster for AF1 and a third cluster for B1, B2 and A2.The decomposition of B. integerrima litter was significantly faster (half-life time: 1.8 (AF2)–3.1 (B1) weeks) than that of M. acuminata (4.1 (AF2)–5.8 (S2) weeks). However, the decomposition rates did not differ significantly among the different sites.The greatest earthworm diversities were observed in AF2 and B1. Native species were dominant in the forest soils, whereas exotic species dominated in AF and in the banana plantations. The abundance and biomass of certain earthworm species were correlated to physical and chemical soil parameters. However, litter decomposition rates were not correlated with any of the soil physical–chemical parameters.While none of the land use systems studied led to a decrease in nutrient status, earthworm biodiversity and abundance, or in litter decomposition rate, they did result in a change in earthworm species composition. 相似文献
4.
Effects of two tillage treatments, tillage (T) with chisel plough and no-till (NT), were studied under un-drained and drained soil conditions. Soil physical properties measured were bulk density (ρb), total porosity (ƒt), water stable aggregates (WSA), geometric mean diameter (GMD), mean weight diameter (MWD), organic carbon (OC) and total N concentrations in different aggregate size fractions, and total OC and N pools. The experiment was established in 1994 on a poorly drained Crosby silt loam soil (fine mixed, mesic, Aeric Ochraqualf) near Columbus, Ohio. In 2007, soil samples were collected (0–10, 10–20, and 20–30 cm) from all treatments and separated into six aggregate size classes for assessing proportions of macro (5–8, 2–5, 1–2, 0.5–1, 0.25–0.5) and micro (<0.25 mm) aggregates by wet sieving. Tillage treatments significantly (P ≤ 0.05) influenced WSA, MWD, and GMD. Higher total WSA (78.53 vs. 58.27%), GMD (0.99 vs. 0.68 mm), and MWD (2.23 vs. 0.99 mm) were observed for 0–10 cm depth for NT than T treatments. Relative proportion of macro-aggregates (>0.25-mm) was also more in NT than T treatment for un-drained plots. Conversely, micro-aggregates (<0.25-mm) were more in T plots for both drained and un-drained treatments. The WSA, MWD and GMD decreased with increase in soil depth. The OC concentration was significantly higher (P ≤ 0.05) in NT for un-drained (P ≤ 0.01) treatment for all soil depths. Within macro-aggregates, the maximum OC concentrations of 1.91 and 1.75 g kg−1 in 1–2 mm size fraction were observed in NT for un-drained and drained treatments, respectively. Tillage treatments significantly (P < 0.01) affected bulk density (ρb), and total porosity (ft) for all soil depths, whereas tillage × drainage interaction was significant (P < 0.01) for 10–20 and 20–30 cm depths. Soil ρb was negatively correlated (r = −0.47; n = 12) with OC concentration. Tillage treatments significantly affected (P ≤ 0.05) OC pools at 10–20 cm depth; whereas drainage, and tillage × drainage significantly (P ≤ 0.05) influenced OC pools for 0–10 cm soil layer. The OC pool in 0–10 cm layer was 31.8 Mg ha−1 for NT compared with 25.9 Mg kg−1 for T for un-drained treatment. In comparison, the OC pool was 23.1 Mg ha−1 for NT compared with 25.2 Mg ha−1 for T for the drained plots. In general, the OC pool was higher in NT system, coupled with un-drained treatment than in drained T plots. The data indicate the importance of NT in improving the OC pool. 相似文献
5.
土壤动物通过掘穴、取食等活动对凋落物分解起着重要作用。除凋落物本身质量外,气候因子是影响土壤动物对凋落物分解的重要外界因素。然而,目前尚不清楚不同土地利用方式下土壤动物在凋落物分解中的贡献大小是否具有差异,以及气候因子对这一过程的调控作用是否相同。本文运用Meta分析方法,量化土壤动物群对凋落物分解率的影响大小,提取了中国地理范围内56篇文献的308条研究(检索论文发表时间截至2021年5月31日),研究气候因子调控不同土地利用方式下土壤动物对凋落物分解速率的影响。结果表明,土壤动物平均增加了8.10%凋落物的分解。在林地、草地和耕地等不同土地利用方式间,土壤动物对凋落物分解的促进作用均达显著水平(P <0.01),其中在耕地的促进作用最强(12.36%)。土壤动物对凋落物分解的效应值与温度、降水量、海拔、凋落物袋尺寸、试验时长等因素相关。在林地,土壤动物的效应值随低温月(1月)、高温月(7月)平均温度及年均温的增加显著增加(P <0.01);在草地,土壤动物效应值与低温月、高温月平均温度及年均温的相关关系均不显著(P> 0.05),但却表现出随低温月、高温月平均温度... 相似文献
6.
Carbon and nitrogen sequestration and soil aggregation under sorghum cropping sequences 总被引:7,自引:0,他引:7
Management practices, such as no tillage (NT) and intensive cropping, have potential to increase C and N sequestration in agricultural soils. The objectives of this study were to investigate the impacts of conventional tillage (CT), NT, and cropping intensity on soil organic C (SOC) and N (SON) sequestration and on distribution within aggregate-size fractions in a central Texas soil after 20 years of treatment imposition. Tillage regime and cropping sequence significantly impacted both SOC and SON sequestration. At 0–5 cm, NT increased SOC storage compared to CT by 33% and 97% and SON storage by 25% and 117% for a sorghum/wheat/soybean (SWS) rotation and a continuous sorghum monoculture, respectively. Total SOC and SON storage at both 0–5 and 5–15 cm was greater for SWS than continuous sorghum regardless of tillage regime. The majority of SOC and SON storage at 0–5 cm was observed in 250-m to 2-mm aggregates, and at 5–15 cm, in the >2-mm and 250-m to 2-mm fractions. Averaged across cropping sequences at 0–5 cm, NT increased SOC storage compared to CT by 212%, 96%, 0%, and 31%, and SON storage by 122%, 92%, 0%, and 37% in >2-mm, 250-m to 2-mm, 53- to 250-m, and <53-m aggregate-size fractions. No tillage and increased cropping intensity improved soil fertility by increasing soil organic matter levels and potential nutrient supply to crops. 相似文献
7.
Managed pastures have potential for C and N sequestration in addition to providing forage for livestock. Our objectives were to investigate changes in soil organic C (SOC) and soil organic N (SON) concentrations and mineralizable C and N in cattle (Bos indicus) grazed bermudagrass [Cynodon dactylon (L.) Pers.] pastures up to 32 y after establishment. Management included low- and high-grazing intensity, fertilization, and winter overseeding with annual ryegrass (Lolium multiflorum Lam.) and clover (Trifolium sp.). Soil (0-15 cm) was sampled 7, 15, 26, and 32 y after establishment of Coastal and common bermudagrass pastures. No significant differences in SOC or SON concentrations were observed between Coastal and common bermudagrass pastures. Grazing strategies played important roles in C and N sequestration, as high-grazing intensity resulted in a lower increase in SOC and SON concentrations over time compared to low-grazing intensity. Increases in SOC were observed up to 26 y, while increases in SON were observed up to 32 y after establishment of bermudagrass pastures. Soil organic C increased 67 and 39% from 7 to 26 y at low-grazing intensity for bermudagrass+ryegrass and bermudagrass+clover pastures, respectively. SOC and SON concentrations did not increase beyond 15 y after bermudagrass establishment at high-grazing intensity. An exception was the Coastal bermudagrass+ryegrass pastures, which exhibited higher SON at 32 y than at 7 y at both grazing intensities. By 32 y, SON increased 83 and 45% in Coastal bermudagrass+ryegrass pastures at low- and high-grazing intensity, respectively, compared to 7 y. The introduction of clover to pastures decreased SOC and SON relative to ryegrass at high- but not at low-grazing intensity. Potentially mineralizable C increased from 7 to 15 y, while mineralizable N increased from 7 to 32 y. Potentially mineralizable N was also greater for bermudagrass+clover than bermudagrass+ryegrass pastures. Long-term increases in SOC and SON concentrations suggest that managed and grazed pastures have strong potential for C and N sequestration. 相似文献
8.
Decomposition of soil organic matter (SOM) and plant litter has been shown to be affected by high solar radiation; this could partly explain why biogeochemical models underestimate decomposition in arid and semi-arid ecosystems. We set out to test the effect of using traditional PVC chambers for measuring soil gas fluxes versus quartz chambers that allowed passage of light during field measurements in a dry-land field in Davis, CA. Results showed that fluxes from quartz-top chambers were on average 29% higher than from opaque chambers. We also studied the effect of solar light exposure on decomposition of native grass litter and SOM in a field experiment where plots were shaded or left exposed for 157 days during summer; litter did not seem to be affected by exposure to light. However, we concluded that SOM decomposition was affected by light exposure since shaded soil had similar respiration to sunlight-exposed soil indicating that microbial respiration occurred under the shade while photo-degradation likely occurred under the sun. Additionally, 15N-labeled grass was placed in litter bags in the field with either clear filters to allow light or aluminum covers to block light; 3-month exposure caused a change in lignin degradability as indicated by the change in the Ad/Al ratio. Incubation of that litter showed 9.3% more CO2 produced from litter in clear and aluminum bags than unexposed litter. This showed that photo-facilitation occurred although to a small degree and was a result of light exposure and/or heat degradation. We attributed the similar respiration from clear- and aluminum-exposed litter to heat degradation of the aluminum-exposed litter. In conclusion, our results show that in hot dry ecosystems conventional PVC chambers underestimate measured CO2 flux rates; sunlight exposure changes litter chemistry and appears to affect the degradation of soil organic matter, but the magnitude of degradation depends on an interaction of factors such as soil temperature and moisture. 相似文献
9.
The accumulation of litter on the forest floor was identified as a potential problem in managed plantations of Pinus patula (Schlechtd. et Cham.) in the Mpumalanga Province of South Africa in the late 1980s. Litter accumulation in pine plantations is regarded as a threat to site productivity as organic acids are released, moisture penetration is altered and nutrients are immobilised within the litter. This study examines the cycling of nutrients in a 42-year-old P. patula stand in which litter has accumulated. Samples of the vegetation, litter and soil components were collected and chemically analysed for total nitrogen (N), phosphorus (P) and the major cations potassium (K+), calcium (Ca2+) and magnesium (Mg2+). Complete nutrient budgets for N and P, and the cation pool sizes were determined. It was evident from these studies that large reserves of N (1442 kg ha−1) and P (103 kg ha−1) are stored in the litter layers, with levels of cations being low. The presence of large nutrient reserves within the litter and the predominance of fine feeder roots distributed within this layer indicated that a tightly closed plant–litter–plant nutrient cycle was in operation for the cycling of N and P. This may not be true for the major cations. Management of the litter should ensure retention of as many nutrients as possible in the system. This could be achieved through controlled burning to reduce nutrient loss through volatilisation; increasing forest floor temperatures by altering the planting density and application of dolomitic lime to replace cations and to alleviate the acidic conditions making the litter more favourable for decomposing organisms. 相似文献
10.
Litter bags containing sterile Scots pine (Pinus sylvestris) needles (19.8% lignin, 26.5% cellulose and 0.34% N) were inoculated with two species of fungi in the laboratory and then placed in the litter layer of a pine plantation. Marasmius androsaceus, which can degrade lignocellulose, was initially displaced by other fungal colonisers and was not detected in the litter after 2–3 months; but was re-isolated from the needles after 12 months. Trichoderma viride, which is a cellulolytic species and also antagonistic to other fungi, dominated the litter throughout the experiment. The control litter was naturally colonised by litter fungi. After 12 months, mass losses were similar at 52% for M. androsaceus and 48% for T. viride, compared with 36% for the control litter colonised by a more complex fungal community. Lignin concentrations increased with time in control litter and with T. viride because mass losses of carbohydrates were greater than those of lignin. Litter inoculated with M. androsaceus showed significant lignin decomposition throughout the experiment but cellulose concentrations showed a proportional increase in the first 6 months, suggesting that the fungus was preferentially exploiting hemicellulose and non-structural carbohydrates. Analysis of TFA-extractable sugars (mainly from hemicellulose) and CuO-derived phenylpropanoid moieties from lignin confirmed the differential patterns of resource decomposition which were not evident from total mass losses. During the initial stages of decomposition, T. viride was as effective in utilising structural polysaccharides as the complex fungal community in the control litter. Furthermore, M. androsaceus not only exhibited unexpectedly low cellulolytic activity but also facilitated lignin depolymerisation after the fungus was no longer detectable in the litter. The pre-inoculation of litter with these two fungal species therefore affected the overall dynamics of decomposition at a biochemical level. This study illustrates the importance of understanding the effects and interactions of specific fungi, rather than assumptions about the functional competence of diverse communities, on the processes of litter decomposition. Received: 5 July 2000 相似文献
11.
Improved understanding of the interactive relationships of plant material decomposition kinetics to biochemical characteristics and nitrogen availability is required for terrestrial C accounting and sustainable land management. In this study, 15 typical and/or native Australian plant materials were finely ground and incubated with a sandy soil at 25 °C and 55% water holding capacity without nitrogen (−N) or with nitrogen (+N) addition (77 mg N kg−1 soil as KNO3). The C mineralisation dynamics were monitored for 356 days and the initial biochemical characteristics of the plant materials were determined by NMR and wet-chemical analyses.Under the −N treatment, C mineralisation rates of the plant materials were positively correlated with their initial N contents during the first several weeks, and then negatively correlated with lignin and polyphenols contents during the late stages of incubation. Thus the ratios of lignin/N, polyphenols/N and (lignin+polyphenols)/N had more consistent correlation with the cumulative amounts of C mineralised throughout the incubation than did any single component. In terms of the C types determined by NMR analysis, the C mineralisation rates were initially related positively to carbonyl C contents, and then negatively to aryl and O-aryl C contents from day 3 onwards.Addition of NO3−-N accelerated C mineralisation during the early stages, but resulted in lower cumulative C mineralisation at the end of the incubation for most plant materials. Under the +N treatment, the decomposition rates were correlated with the contents of lignin and the sum of cellulose+acid detergent-extractable non-phenolic compounds, or with aryl, O-aryl and N-alkyl+methoxyl C contents. Regardless of the N treatment, the ratios of aryl/carbonyl, O-aryl/carbonyl and (aryl+O-aryl)/carbonyl C had the closest and most consistent correlations with the cumulative C mineralisation among all biochemical indices examined.A double exponential model with defined mineralisation rate constants for the active and slow pools was used to describe the C mineralisation dynamics. The biological meanings of the kinetically estimated active and slow pool sizes are interpreted and their relationships to the initial chemical/biochemical composition of the plant materials are explored. 相似文献
12.
整合1980年—2013年中国农田土壤有机物料腐解试验的相关文献,分析了华南、华北、西北和东北等典型农业区不同类型有机物料腐解一年后的残留率(h1)及其驱动因子。结果表明,中国不同有机物料h1平均为0.335 g g-1,受到物料类型、区域以及二者交互作用等因素的显著影响。总体上,h1在物料类型上呈绿肥秸秆根茬≈有机肥,在区域上呈华南≈华北西北≈东北。但h1的区域差异因物料类型而异。其中,绿肥、秸秆和根茬的h1均呈华北华南和东北,而有机肥的h1在各区域间差异不显著。同时,h1的物料类型差异也因区域而异。在湿润半湿润的华南、华北和东北地区,h1均呈根茬秸秆和绿肥;而在干旱半干旱的西北地区,受水分条件的限制,各物料类型间h1差异不显著。逐步回归结果显示,木质素与氮素含量之比(lignin∶N)是绿肥、秸秆和根茬腐解的首要影响因子,而年均温和干燥指数居于其次,表明农田土壤中植物性有机物料的腐解,物料性质较气候因子占主导。但对于腐解或半腐解状态的有机肥,其腐解已不受气候和物料性质的显著影响。此外,单一气候因子或物料性质对h1变异性的解释率往往不超过15%,气候和物料性质的综合解释率尚低于40%,表明要准确预测农田土壤有机物料的腐解过程,需要更多地重视区域或点位特征(例如,土壤理化和生物学性质等)的影响。 相似文献
13.
Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a major process providing DOM in soils. Herein, we examine processes causing the commonly observed increase in contribution of aromatic compounds to WSOM during litter decomposition, and unravel the relationship between lignin degradation and the production of aromatic WSOM. We analysed amounts and composition of water-soluble organic matter (WSOM) produced during 27 months of decomposition of leaves and needles (ash, beech, maple, spruce, pine). The contribution of aromatic compounds to WSOM, as indicated by the specific UV absorbance of WSOM, remained constant or increased during decomposition. However, the contribution of lignin-derived compounds to the total phenolic products of 13C-labelled tetramethylammonium hydroxide (13C-TMAH) thermochemolysis increased strongly (by >114%) within 27 months of decomposition. Simultaneous changes in contents of lignin phenols in solid litter residues (cupric oxide method as well as 13C-TMAH thermochemolysis) were comparably small (−39% to +21% within 27 months). This suggests that the increasing contribution of lignin-derived compounds to WSOM during decomposition does not reflect compositional changes of solid litter residues, but rather the course of decomposition processes. In the light of recently published findings, these processes include: (i) progressive oxidative alteration of lignin that results in increasing solubility of lignin, (ii) preferential degradation of soluble, non-lignin compounds that limits their contribution to WSOM during later phases of decomposition. 相似文献
14.
U. Reh W. Kratz G. Kraepelin C. Angehrn-Bettinazzi 《Biology and Fertility of Soils》1990,9(2):188-191
Summary Changes in the physicochemical properties of three kinds of litter (Prunus serotina leaves, Carpinus betulus leaves, and Pinus sylvestris needles) were analyzed by differential scanning calorimetry and differential thermogravimetry after decomposition for 12 to 27 months under field conditions. As expected, holocellulose was always decomposed to a larger extent than the corresponding lignin components, leading to an enrichment of lignin in the residue. These lignins were more or less modified depending on the plant species. Moreover, the results suggest that energy-rich crystalline cellulose accumulates during decomposition at the expense of easier degradable amorphous cellulose and hemicelluloses. The quotient Q, from the corresponding calorimetry and thermogravimetry values, was introduced to estimate the specific energy content as a measure for the decomposition of litter components.Dedicated to the late Prof. Dr. W. Kühnelt 相似文献
15.
Yelinda?Araujo "author-information "> "author-information__contact u-icon-before "> "mailto:yaraujo@inia.gov.ve " title= "yaraujo@inia.gov.ve " itemprop= "email " data-track= "click " data-track-action= "Email author " data-track-label= " ">Email author Flavio?J.?Luiz?o Eleusa?Barros 《Biology and Fertility of Soils》2004,39(3):146-152
The aim of the study was to determine the effect of adding two tropical earthworm species, Rhinodrilus contortus and Pontoscolex corethrurus, to mesocosms on the availability of mineral N (NH4 + and NO3 – concentrations), soil microbial biomass (bio-N), and the decomposition rates of three contrasting leaf litter species, in a glasshouse experiment. The mesocosms were filled with forest soil and covered with a layer of leaf litter differing in nutritional quality: (1) Hevea brasiliensis (C/N=27); (2) Carapa guianensis (C/N=32); (3) Vismia sp., the dominant tree species in the second growth forest (control, C/N= 42); and, (4) a mixture of the former three leaf species, in equal proportions (C/N=34). At the end of the 97-day experiment, the soil mineral N concentrations, bio-N, and leaf litter weight loss were determined. Both earthworm species showed significant effects on the concentrations of soil NO3 – (p<0.01) and NH4 + (p<0.05). Bio-N was always greater in the mesocosms with earthworms (especially with R. contortus) and in the mesocosms with leaf litter of H. brasiliensis (6 µg N g–1 soil), the faster decomposing species, than in the other treatments (0.1–1.6 µg N g–1). Thus, earthworm activity increased soil mineral-N concentrations, possibly due to the consumption of soil microbial biomass, which can speed turnover and mineralization of microbial tissues. No significant differences in decomposition rate were found between the mesocosms with and without earthworms, suggesting that experiments lasting longer are needed to determine the effect of earthworms on litter decomposition rates. 相似文献
16.
The transformation of leaf litter into fecal pellets by saprophagous macroarthropods has long been suggested to play an important role in litter decomposition by altering microbial processes. However, conflicting results are reported in the literature, and it is currently not clear to what extent varying initial litter quality contributes to distinct microbial responses to the transformation of litter into feces. Here we performed a screening test using a wide range of distinct leaf litter from 26 tree species. We fed these litters to the macroarthropod species Glomeris marginata during one week under controlled conditions, and compared microbial responses in uningested leaf litter with that of feces produced from the 26 different leaf litter types. We assessed substrate induced respiration (SIR) as an integrative measure of microbial responses. We found that litter SIR was highly variable across species and well related to initial litter quality. However, variability in feces SIR was strongly reduced and only weakly related to initial litter quality. Moreover, the difference between feces and litter SIR decreased with increasing litter SIR as a result of higher microbial stimulation in litter with low associated litter SIR. Our data clearly showed that the direction and magnitude of microbial stimulation in feces depend strongly on the litter type. Therefore, the consequence of litter transformation into macroarthropod fecal pellets for microbial decomposers and possibly for subsequent decomposition of feces is specific to litter species. 相似文献
17.
Soil carbon (C) sequestration may be a viable technology to reduce increases in greenhouse gas emissions until cleaner fuel technology is available. Crop plants with increased lignin levels may lead to increased soil C sequestration. Grain sorghum (Sorghum bicolor) exhibiting lower lignin due to the naturally occurring brown midrib mutation (bmr) may allow an assessment of the potential of biotechnology to affect soil C sequestration by manipulating plant lignin levels. A 194-d laboratory microcosm experiment was conducted to investigate the mineralization of bmr and normal plant residue from four sorghum hybrids. Cross-polarization magic angle spinning 13C-nuclear magnetic resonance of the residue agreed with chemical analysis that the bmr residue contained altered lignin and less lignin per mass weight. Ground bmr or normal grain sorghum residue was added to soil, with or without an inorganic nitrogen (N) amendment. Initial C mineralization from microcosms receiving bmr residue was higher than from microcosms receiving normal residue, but the differences were not maintained through the 194-d experiment. Total residue C mineralization was not different between bmr or normal isolines, and accounted for only 26% of the originally added residue C. Greater variability was observed between sorghum lines than between bmr or normal isolines. The addition of N to soil resulted in increased soil C mineralization. With no added N, however, microcosm C mineralization was most strongly correlated with the lignin/N ratio. With added N, microcosm C mineralization was most strongly correlated with hemicellulose content. The soil microbial community, as assessed by phospholipid and neutral-lipid fatty acid analysis, was not affected by bmr or normal genotype, but the addition of N resulted in significant changes to the soil microbial community, most notably changes to the soil fungi. Results indicate that potential does exist to modify plant residue chemistry to increase soil C sequestration, but soil fertility and microbial community dynamics are important considerations and may further enhance C sequestration potential. 相似文献
18.
We have investigated whether decomposer fungi translocate litter-derived C into the underlying soil while simultaneously translocating soil-derived inorganic N up into the litter layer. We also located and quantified where the translocated C is deposited within the soil aggregate structure. When 13C-labeled wheat straw was decomposed on the surface of soil amended with 15N-labeled inorganic N, we found that C and N were reciprocally transferred by fungi, with a significant quantity (121-151 μg C g−1 whole soil) of litter-derived C being deposited into newly formed macroaggregates (>250 μm sized aggregates). Fungal inhibition reduced fungal biomass and the bidirectional C and N flux by approximately 50%. The amount of litter-derived C found in macroaggregates was positively correlated with litter-associated fungal biomass. This fungal-mediated litter-to-soil C transfer, which to our knowledge has not been demonstrated before for saprophytic fungi, may represent an important mechanism by which litter C enters the soil and becomes stabilized as soil organic matter within the macroaggregate structure. 相似文献
19.
Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management 总被引:3,自引:3,他引:3
M.S. Dolan C.E. Clapp R.R. Allmaras J.M Baker J.A.E. Molina 《Soil & Tillage Research》2006,89(2):221-231
Soil organic carbon (SOC) and nitrogen (N) are directly influenced by tillage, residue return and N fertilization management practices. Soil samples for SOC and N analyses, obtained from a 23-year field experiment, provided an assessment of near-equilibrium SOC and N conditions. Crops included corn (Zea mays L.) and soybean [Glycine max L. (Merrill)]. Treatments of conventional and conservation tillage, residue stover (returned or harvested) and two N fertilization rates were imposed on a Waukegan silt loam (fine-silty over skeletal, mixed, superactive, mesic Typic Hapludoll) at Rosemount, MN. The surface (0–20 cm) soils with no-tillage (NT) had greater than 30% more SOC and N than moldboard plow (MB) and chisel plow (CH) tillage treatments. The trend was reversed at 20–25 cm soil depths, where significantly more SOC and N were found in MB treatments (26 and 1.5 Mg SOC and N ha−1, respectively) than with NT (13 and 1.2 Mg SOC and N ha−1, respectively), possibly due to residues buried by inversion. The summation of soil SOC over depth to 50 cm did not vary among tillage treatments; N by summation was higher in NT than MB treatments. Returned residue plots generally stored more SOC and N than in plots where residue was harvested. Nitrogen fertilization generally did not influence SOC or N at most soil depths. These results have significant implications on how specific management practices maximize SOC storage and minimize potential N losses. Our results further suggest different sampling protocols may lead to different and confusing conclusions regarding the impact of tillage systems on C sequestration. 相似文献
20.
David A. Wardle Marie-Charlotte NilssonOlle Zackrisson Christiane Gallet 《Soil biology & biochemistry》2003,35(6):827-835
When the litter of a given species decomposes, it will often break down in the proximity of litters from other species. We investigated the effects of litters of 10 different species in a boreal forest of northern Sweden on each others' decomposition and N release rates; this was done through the use of litterbags containing two compartments separated by single mesh partition. Different litters could be placed on opposite sides of this mesh so that they were in contact with each other. Treatments consisted of all the possible pairwise combinations of the 10 species, with members of each pair placed in different compartments of the same litterbag. Litterbags were harvested after 1, 2 and 4 years in the field. Species differed significantly in their effects on decomposition and N loss rates of associated litters. Generally, litters from feather mosses and lichens showed the greatest promotion of decomposition on associated litters, while some vascular plant species, notably Empetrum hermaphroditum, showed the least. At year four, feather mosses also had the greatest positive effects on N loss from the litters of associated species. There were several instances in which litter of a given species decomposed at different rate when litter from its own species, rather than that of a different species, was placed in the adjacent litterbag compartment. This was particularly apparent in the second year, when across the entire data set, litters decomposed fastest when associated with their own litters. Generally, slowly decomposing litters had the greatest positive effects on decomposition of associated litters. It is proposed that in boreal forests slow decomposing litters (particularly those of feather mosses) may contribute to enhancing moisture attention in the litter layer, which in turn promotes the decomposition and N release of associated litters. Further, while litter mixing effects were clearly demonstrated in our study, they were also shown to be of secondary importance to the effects of species identity on decomposition. 相似文献