首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Navicular syndrome is a multifactorial disease process in horses with multiple structures in the foot contributing to lameness. Surgical debridement is a treatment option for lesions of the navicular bursa and deep digital flexor tendon. This retrospective case series describes the magnetic resonance imaging (MRI) appearance of the navicular bursa following bursoscopy. Seven horses (three being bilaterally affected) with forelimb lameness isolated to the foot, and pre- and post-operative MRI were included. All limbs had concurrent lesions associated with the deep digital flexor tendon, navicular bone, impar ligament, collateral sesamoidean ligament and/or distal interphalangeal joint. All bursae developed or had progression of proliferative bursal tissue following surgery. At recheck MRI, following rehabilitation protocols, almost all horses had improved to resolved lameness with relatively unchanged concurrent lesions despite the navicular bursa appearance worsening. Outcomes for return to work were poor with only two horses going back to the previous level of work.  相似文献   

2.
Reasons for performing study: Currently, there are limited data regarding the long‐term outcome of horses with foot pain treated with corrective shoeing, rest and rehabilitation, and intrasynovial anti‐inflammatory medication to target lesions detected with MRI. Objective: To report the long‐term (≥12 months) outcome of horses with foot lesions following medical therapy. Hypotheses: 1) There is no association between clinical parameters considered and a poor response to therapy. 2) Horses with a deep digital flexor tendinopathy are less likely to respond to medical therapy than horses without a deep digital flexor tendinopathy. Methods: The medical records of horses with foot pain subjected to MRI examination and medical therapy (2005–2007) were evaluated retrospectively. Data collected included history, signalment, occupation, duration and severity of lameness at the time of MRI, radiological and MRI abnormalities. Number of treatments, complications and long‐term response to treatment were obtained by detailed telephone questionnaires. Association between clinical and MRI findings and long‐term lameness were investigated. Results: Frequent abnormal structures included the navicular bone, the deep digital flexor tendon, the navicular bursa and the distal interphalangeal joint. Thirty‐four of 56 horses (60.7%) failed to return to previous level of exercise due to persistent or recurrent lameness or owners' decision to decrease the horse's athletic level; however, 11 horses (32.3%) were being used for light riding. Prognosis for horses with concurrent deep digital flexor tendon, navicular bone and navicular bursa lesions was worse than horses with individual lesions. Deep digital flexor tendinopathy was strongly associated with persistent or recurrent lameness. Conclusions: Horses with multiple foot lesions managed with conservative therapy have a guarded prognosis for long‐term soundness. Deep digital flexor tendinopathies negatively influence prognosis.  相似文献   

3.
The purpose of this study was to describe the frequency of occurrence of severe ossification of the collateral cartilages (sidebone) coexistent with collateral desmitis of the distal interphalangeal joint (DIPJ) in lame horses. Sidebone was diagnosed and graded on standard radiographs and soft tissue injuries of the foot were diagnosed using standing low‐field magnetic resonance imaging (MRI). Of 15 horses with forelimb lameness and severe sidebone, 9 had evidence of concurrent collateral desmitis of the DIPJ. All 15 horses had damage to other structures (including the deep digital flexor tendon, distal sesamoidean impar ligament, collateral sesamoidean ligament, navicular bone and distal phalanx) within the affected feet as identified on MRI. The clinical and pathophysiological significance of concurrent collateral desmitis of the DIPJ and sidebone is currently uncertain. However, this study shows that injuries to multiple structures within the foot are common and that collateral desmitis of the distal interphalangeal joint is frequently seen in lame horses in conjunction with severe ossification of the collateral cartilages.  相似文献   

4.
REASONS FOR PERFORMING STUDY: The diagnosis of foot-related lameness often remains elusive and it can be difficult to offer rational treatment, or to predict outcome. OBJECTIVES: To describe the spectrum of injuries of the foot identified using magnetic resonance imaging (MRI), to determine their relative prevalence among MRI diagnoses and to establish the long-term results of treatment. METHODS: The MR images of horses examined from January 2001--December 2003 were reviewed. Horses were selected for MRI if the pain causing lameness was localised to the foot using perineural analgesia but any clinical, radiological or ultrasonographic abnormalities were insufficient to explain the degree of lameness. The clinical significance of lesions identified using MRI was determined with reference to the results of local analgesia, radiography, ultrasonography and nuclear scintigraphy. Follow-up information was obtained in January 2004 for horses which had been examined 6-36 months previously and the outcome classified as excellent (horse returned to full athletic function without recurrent lameness), moderate (sound, but only in light work), or poor (persistent or recurrent lameness). RESULTS: One hundred and ninety-nine horses underwent MRI examinations. Deep digital flexor (DDF) tendonitis was the most common injury (59%) with primary injury in 65 horses (33%) and a further 27 horses (14%) having lesions of the DDF tendon and navicular bone. Seventeen percent of horses had injuries to multiple structures, including 24 with DDF tendonitis. Desmitis of a collateral ligament (CL) of the distal interphalangeal (DIP) joint was the second most common injury (62 horses, 31%), with primary injuries in 30 horses (15%) and a further 32 horses (16%) that had CL desmitis in conjunction with other injuries. Prognosis was best for horses with traumatic injuries of the middle or distal phalanges, with 5 of 7 horses (71%) having an excellent outcome. Horses with primary lesions of the DDF tendon or CL of the DIP joint had excellent results in only 13 of 47 (28%) and 5 of 17 horses (29%), respectively. Horses with combined injuries of the DDF tendon and navicular bone, or primary navicular bone abnormalities, had a poor outcome, with the majority of horses suffering persistent lameness. CONCLUSIONS: A wide variety of lesions associated with foot pain were identified using MRI, a high proportion of which were primary soft tissue injuries with a guarded prognosis for return to full athletic function. POTENTIAL RELEVANCE: It is now possible to propose more rational treatment strategies for the variety of foot injuries identified using MRI than had previously been possible; however, further information concerning aetiopathogenesis of these injuries is needed to improve their management.  相似文献   

5.
REASONS FOR PERFORMING STUDY: Causes of palmar foot pain and the aetiopathogenesis of navicular disease remain poorly understood, despite the high incidence of foot-related lameness. HYPOTHESES: Abnormalities of the deep digital flexor tendon (DDFT) may contribute to palmar foot pain; ageing degenerative changes may be seen in horses free from lameness; and horses with lameness are likely to have a greater severity of abnormalities than age-matched horses with no history of foot pain. METHODS: Feet were selected from horses with a history of uni- or bilateral forelimb lameness of at least 2 months' duration. Histology of the DDFT from the level of the proximal interphalangeal joint to its insertion were examined and the severity of lesions for each site graded. Associations between lesions of the navicular bone, collateral sesamoidean ligaments (CSL), distal sesamoidean impar ligament, navicular bursa, distal interphalangeal (DIP) joint synovium and collateral ligaments of the DIP joint and DDFT were assessed. RESULTS: There was no relationship between age and grade of histological abnormality of the DDFT. There were significant histological differences between groups for lesions of the dorsal layers of the DDFT, but not for lesions of the palmar aspect. There were significant associations between histological grades for the superficial dorsal layer of the DDFT and flexor aspect of the navicular bone; and between the deep dorsal layer of the DDFT and the proximal border and medulla of the navicular bone. The navicular bursa grade was correlated with grades for the superficial dorsal, deep dorsal and deep palmar layers of the DDFT. The histological grades for the CSL and the superficial dorsal layer of the DDFT were also associated. CONCLUSIONS: Pathological abnormalities in lame horses often involved the DDFT in addition to the navicular bone. Vascular and matrix changes may precede changes in the fibrocartilage of the navicular bone. POTENTIAL RELEVANCE: Identification of factors leading to vascular changes within the interstitium of the DDFT and changes in matrix composition, may help in future management of palmar foot pain.  相似文献   

6.
Objective Conventional imaging modalities can diagnose the source of foot pain in most cases, but have limitations in some horses, which can be overcome by using magnetic resonance imaging (MRI). However, there are no reports of the MRI appearance and prevalence of foot lesions of a large series of horses with chronic foot lameness. Methods In the present study, 79 horses with unilateral or bilateral forelimb lameness because of chronic foot pain underwent standing low‐field MRI to make a definitive diagnosis. Results Of the 79 horses, 74 (94%) had alterations in >1 structure in the lame or lamest foot. Navicular bone lesions occurred most frequently (78%) followed by navicular bursitis (57%), deep digital flexor tendonopathies (54%) and collateral desmopathy of the distal interphalangeal joint (39%). Effusion of the distal interphalangeal joint was also a frequent finding (53%). Conclusion Low‐field MRI in a standing patient can detect many lesions of the equine foot associated with chronic lameness without the need for general anaesthesia.  相似文献   

7.
Magnetic resonance (MR) imaging is increasingly used in the diagnosis of equine foot pain, but improved understanding of how MR images represent tissue-level changes in the equine foot is required. We hypothesized that alterations in signal intensity and tissue contour would represent changes in tissue structure detected using histologic evaluation. The study objectives were to determine the significance of MR signal alterations in feet from horses with and without lameness, by comparison with histopathologic changes. Fifty-one cadaver feet from horses with a history of lameness improved by palmar digital analgesia (n = 32) or age-matched control horses with no history of lameness (n = 19) were stored frozen before undergoing MR imaging and subsequent histopathological examination at standard sites (deep digital flexor tendon, navicular bone, distal sesamoidean impar ligament, collateral sesamoidean ligament, and navicular bursa). Using MR images, signal intensity and homogeneity, size, definition of anatomic margins, and relationships with other structures were described. Alterations were graded as mild, moderate, or severe for each structure. For each anatomic site examined histologically the structures were described and scored as no changes, mild, moderate, or severe abnormalities, also taking into account adhesion formation within the navicular bursa detected on macroscopic examination. Alterations in MR signal intensity were related to changes at the tissue level detected by histologic examination. A sensitivity and specificity comparison of MR imaging with histologic examination was used to evaluate the significance of MR signal alterations for detection of moderate-to-severe lesions of the deep digital flexor tendon (DDFT), navicular bone, distal sesamoidean impar ligament (DSIL), collateral sesamoidean ligament (CSL) and navicular bursa. Agreement between the MR and histologic grading was assessed for each structure using a weighted kappa agreement. Direct comparison between histology and MR imaging for individual limbs revealed that signal alterations on MR imaging did represent tissue-level changes. These included structural damage, fibroplasia, fibrocartilaginous metaplasia, and hemosiderosis in ligaments and tendons; trabecular damage, osteonecrosis, fibroplasia, cortical defects, and increased vascularity in bone; and fibrocartilage defects. MR imaging had a high sensitivity and specificity for most structures. MR imaging had high specificity for lesions of the DDFT, CSL and navicular bursa, quite high specificity for lesions of the medulla of the navicular bone and its proximal aspect, with moderate specificity for the DSIL, and distal, dorsal and palmar aspects of the navicular bone, and was sensitive for detection of abnormalities in all structures except the dorsal aspect of the navicular bone. When MR and histologic grades alone were compared, there was good agreement between MR and histologic grades for the navicular bursa, DDFT, navicular bone medulla and CSL; moderate-to-good agreement in grades of the distal and palmar aspects of the navicular bone; fair to moderate in grades of the DSIL, and poor agreement for the dorsal and proximal aspects of the navicular bone. The results of this study support our hypothesis and indicate the potential use and limitations of MR imaging for visualization of structural changes within osseous and soft tissue structures of the equine foot.  相似文献   

8.
Palmar foot pain is a common cause of lameness. Magnetic resonance imaging (MRI) has the potential to detect damage in all tissues of the equine foot, but an understanding of the differences in magnetic resonance (MR) images between feet from horses with and without palmar foot pain is required. This study aimed to describe MR findings in feet from horses with no history of foot-related lameness, and to compare these with MR findings in horses with lameness improved by palmar digital local analgesia. Thirty-four limbs from horses euthanized with a clinical diagnosis of navicular syndrome (ameness >2 months duration, positive response to palmar digital nerve blocks and absence of other forelimb problems) (Group L), and 25 feet from age-matched horses with no history of foot pain (Group N) were examined. For each anatomic structure, MR signal intensity and homogeneity, size, definition of margins, and relationships with other structures were described. Alterations in MR signal intensity and homogeneity were graded as mild, moderate, or severe and compared between Groups L and N. Results revealed that there were significant differences in MR images between Groups N and L. Multiple moderate-severe MR signal changes were present in 91% of limbs from Group L and moderate (none were graded severe) in 27% of limbs from Group N. In most Group L limbs, more than three structures and frequently six to eight structures were abnormal. Concomitant abnormalities involved most frequently the deep digital flexor tendon, distal sesamoidean impar ligament, navicular bone, collateral sesamoidean ligament, and navicular bursa (with significant associations in severity grade between these structures), sometimes with involvement of the distal interphalangeal joint and/or its collateral ligaments. It was concluded that findings on MR images were different between horses with and without foot pain, and that pain localized to the foot was associated with MR changes in a variety of structures, indicating that damage to several structures may occur concurrently and that MR imaging was useful for evaluation of foot pain.  相似文献   

9.
Foot pain is the most common cause of lameness in horses. In sport horses, podotrochlear syndrome (‘navicular syndrome’) is reported to be the most frequent condition affecting the front foot. Ultrasonography has the potential to detect damage to the soft tissues as well as the bone surfaces; in some clinics it has become the technique of choice for the identification and documentation of many podotrochlear injuries. The purpose of this paper is to review the main pathological conditions of the proximal part of the podotrochlear apparatus (PTA) that can be diagnosed ultrasonographically, focusing on the deep digital flexor tendon (DDFT), podotrochlear bursa (PTB) and distal digital annular ligament (DDAL). Potentially significant ultrasonographic findings of the DDFT include thickening of one or both lobes, longitudinal tears, focal or diffuse changes in echogenicity, irregularities of the dorsal border and adhesions between the DDFT and the proximal sesamoidean ligament and/or distal sesamoid bone. Deep digital flexor tendon injuries are often associated with concurrent lesions of the PTB (acute to chronic bursitis) and of the DDAL (desmopathy). Both feet should be routinely examined as lesions of the PTA are often bilateral. We currently consider that ultrasonography should be routinely employed as the primary diagnostic procedure to complement radiography of the equine foot.  相似文献   

10.
11.
REASONS FOR PERFORMING STUDY: Causes of palmar foot pain and the aetiopathogenesis of navicular disease remain poorly understood, despite the high incidence of foot-related lameness. HYPOTHESES: Abnormalities of the collateral sesamoidean ligaments (CSLs), distal sesamoidean impar ligament (DSIL), deep digital flexor tendon (DDFT), navicular bone, navicular bursa, distal interphalangeal (DIP) joint or collateral ligaments (CLs) of the DIP joint may contribute to palmar foot pain. METHODS: Feet were selected from horses with a history of unilateral or bilateral forelimb lameness of at least 2 months' duration that was improved by perineural analgesia of the palmar digital nerves, immediately proximal to the cartilages of the foot (Group 1, n = 32); or from age-matched control horses (Group 2, n = 19) that were humanely destroyed for other reasons and had no history of forelimb foot pain. Eight units of tissue were collected for histology: the palmar half of the articular surface of the distal phalanx, including the insertions of the DDFT and DSIL; navicular bone and insertion of the CSLs; DDFT from the level of the proximal interphalangeal (PIP) joint to 5 mm proximal to its insertion; synovial membrane from the palmar pouch of the DIP joint and the navicular bursa; CLs of the DIP joint and DSIL. The severity of histological lesions for each site were graded. Results were compared between Groups 1 and 2. RESULTS: There was no relationship between age and grade of histological abnormality. There were significant histological differences between groups for lesions of the flexor aspect, proximal and distal borders, and medulla of the navicular bone; the DSIL and its insertion and the navicular bursa; but not for lesions of the CSLs, the dorsal aspect of the navicular bone, distal phalanx and articular cartilage, synovium or CLs of the DIP joint. CONCLUSIONS: Pathological abnormalities in lame horses often involved not only the navicular bone, but also the DSIL and navicular bursa. Abnormalities of the navicular bone medulla were generally only seen dorsal to lesions of the FFC. POTENTIAL RELEVANCE: Adaptive and reactive change may be occurring in the navicular apparatus in all horses to variable degrees and determination of the pathogenesis of lesions that lead to pain and biomechanical dysfunction should assist specific preventative or treatment protocols.  相似文献   

12.
A horse with unilateral forelimb lameness and pain localised to the palmar aspect of the foot was evaluated using radiography and low field magnetic resonance (MR) imaging. A distal border fragment of the navicular bone, an osseous cyst‐like lesion (OCLL) in the distal third of the navicular bone and focal distal sesamoidean impar desmitis were identified as the most likely causes of pain and lameness. No other lesions likely to contribute to pain and lameness were identified on MR images or gross post mortem examination. The OCLL was characterised histologically by enlarged bone lacunae containing proliferative fibrovascular tissue. Focal lesions of the distal aspect of the navicular bone are rarely found in isolation but can be causes of pain and lameness in horses.  相似文献   

13.
REASONS FOR PERFORMING STUDY: The differential diagnosis of foot pain has long proved difficult and the use of magnetic resonance imaging (MRI) offers the opportunity to further the clinical understanding of the subject. OBJECTIVES: To determine the incidence of deep digital flexor tendon (DDFT) injuries in a series of 75 horses with lameness associated with pain localised to the digit, with no significant detectable radiographic or ultrasonographic abnormalities, using MRI; and to describe a variety of lesion types and relate DDF tendonitis with anamnesis, clinical features, response to local analgesic techniques and nuclear scintigraphic and ultrasonographic findings. METHODS: All horses undergoing MRI of the front feet between January 2001 and October 2002 were reviewed and those with DDFT injuries categorised according to lesion type; horses with primary tendonitis (Group I) and those with concurrent abnormalities of the navicular bone considered to be an important component of the lameness (Group II). The response to perineural analgesia of the palmar digital nerves and palmar (abaxial sesamoid) nerves, intra-articular analgesia of the distal interphalangeal (DIP) joint and analgesia of the navicular bursa were reviewed. The result of ultrasonography of the pastern and foot was recorded. Lateral, dorsal and solar pool and bone phase nuclear scintigraphic images were assessed subjectively and objectively using region of interest (ROI) analysis. RESULTS: Forty-six (61%) of 75 horses examined using MRI had lesions of the DDFT considered to be a major contributor to lameness. Thirty-two horses (43%) had primary DDFT injuries and 14 (19%) a combination of DDF tendonitis and navicular bone pathology. Lesions involved the insertional region of the tendon alone (n = 3), were proximal to the navicular bone (n = 23) or were at a combination of sites (n = 20). Lesion types included core lesions, focal and diffuse dorsal border lesions, sagittal plane splits, insertional injuries and lesions combined with other soft tissue injuries. Many horses had a combination of lesion types. Lameness was abolished by palmar digital analgesia in only 11 of 46 horses (24%). Twenty-one of 31 horses (68%) in Group I showed > 50% improvement in lameness after intra-articular analgesia of the DIP joint, whereas 11 of 12 horses (92%) in Group II had a positive response. Twelve of 18 horses (67%) in Group I had a positive response to analgesia of the navicular bursa. Nineteen horses had lesions of the DDFT extending proximal to the proximal interphalangeal joint seen using MRI, but these were identified ultrasonographically in only 2 horses. Scintigraphic abnormalities suggestive of DDFT injury were seen in 16 of 41 horses (41%), 8 in pool phase images and 8 in bone phase images. CONCLUSIONS AND POTENTIAL RELEVANCE: DDFT injuries are an important cause of lameness associated with pain arising from the digit in horses without detectable radiographic abnormalities. Lameness is not reliably improved by palmar digital analgesia, but may be improved by intra-articular analgesia of the DIP joint in at least 68% of horses. Ultrasonography is not sensitive in detecting lesions of the DDFT in the distal pastern region, but a combination of pool and bone phase scintigraphic images of the digit is helpful in some horses. Further follow-up information is required to determine the prognosis for horses with lesions of the DDFT in the digit and to establish whether this is related to lesion severity and/or location.  相似文献   

14.
Magnetic resonance (MR) imaging is often performed to determine the cause of palmar heel pain. We evaluated how distension of the navicular bursa affected the MR appearance of the navicular bursa and associated structures. An MR evaluation was performed on normal cadaver limbs and cadaver limbs from horses with lameness localized to the foot. The normal navicular bursae were injected with 2, 4, or 6 ml of solution. The bursae of the feet from lame horses were injected with 4 or 6 ml, and the MR study was repeated. All bursae were examined grossly to verify the presence or absence of adhesions. Clinical patients that had initial MRI abnormalities suggesting adhesions were also evaluated. Distension of the proximal recess of the normal navicular bursa, proximal to the collateral sesamoidean ligament was achieved with 2 ml. Separation of the collateral sesamoidian ligament from the deep digital flexor tendon (DDFT) was achieved with 4 ml. The separation of the navicular bone from the DDFT and distal sesamoidian impar ligament required 6 ml. Adhesions were more clearly defined in the bursa of the two pathologic cadaver limbs following distension. MR bursography used on clinical patients allowed the determination of the presence or absence of adhesions. In these horses, this determination could not have been definitively made without this technique. MR bursography is useful in horses where the presence of adhesions cannot be clearly defined by MRI.  相似文献   

15.
Despite the increasing use of magnetic resonance imaging (MRI), ultrasound remains a valuable tool to diagnose injuries that cause distal extremity lameness in the horse. The key to a successful examination is a strong knowledge of anatomy in combination with proper ultrasonographic technique and the patience and dedication to learn these skills. Similar to all imaging modalities, it is equally important to recognize and consider the limitations of ultrasound in this region so that findings can be interpreted appropriately. Ultrasound can be used to diagnose injuries to the deep digital flexor tendon (DDFT), straight distal sesamoidean ligament and branches of the superficial digital flexor tendon using standard pastern ultrasonographic technique. The addition of newer techniques to image the DDFT at the level of P2, the navicular bursa and the collateral sesamoidean ligament can enhance the diagnostic utility of ultrasound in horses with distal extremity lameness. Although visibility is limited, ultrasound can be used to diagnose collateral ligament injuries of the coffin joint in many affected horses. Transcuneal imaging may be useful in some horses to detect abnormalities of the distal sesamoidean impar ligament and navicular bone, but evaluation of the DDFT is limited. Ultrasound should be considered in all horses with distal extremity lameness, regardless of the ability to perform advanced imaging procedures. Information gained is often complementary to other imaging modalities and may provide the basis for recheck examination purposes.  相似文献   

16.
Reasons for performing study: Distal border fragments of the navicular bone can be seen in lame and nonlame horses and their clinical significance remains open to debate. Objectives: To describe the magnetic resonance imaging (MRI) appearance of distal border fragments and the adjacent navicular bone. To investigate the relationship between fragments and other abnormalities of the navicular bone and the distal sesamoidean impar ligament (DSIL). Methods: Horses were included if pain causing forelimb lameness was localised to the foot and high‐field MR images were acquired. The size and location of distal border fragments were recorded. Abnormalities in the adjacent navicular bone were graded to obtain a fragment grade. A total navicular bone grade was assigned. The DSIL was also graded. A Chi‐squared test was used to test for associations between the presence of a fragment and specific lesions involving the distal border of the navicular bone, the total grade of the navicular bone, and the grade of the DSIL. Results: 427 horses were included and 111 fragments observed. There was a significant association between the presence of a fragment and the total navicular bone grade, osseous cyst‐like lesions, increased number and size of the synovial invaginations of the distal border, increased signal intensity on fat suppressed images and size of distal border entheseophytes. Conclusions: There is an association between distal border fragments and other pathological MRI abnormalities of the navicular bone. Potential relevance: Distal border fragments are part of navicular disease, but their contribution to pain and lameness remains to be clarified.  相似文献   

17.
It was hypothesised that in solar bone images of the front feet of clinically normal horses, or horses with lameness unrelated to the front feet, there would be less than a 10% difference in the ratio of uptake of radiopharmaceutical in either the region of the navicular bone, or the region of insertion of the deep digital flexor tendon (DDFT), compared to the peripheral regions of the distal phalanx. Nuclear scintigraphic examination of the front feet of 15 Grand Prix show jumping horses, all of which were free from detectable lameness, was performed using dorsal, lateral and solar images. The results were compared with the examinations of 53 horses with primary foot pain, 21 with foot pain accompanying another more severe cause of lameness and 49 with lameness or poor performance unrelated to foot pain. None of the horses with foot pain had radiological changes compatible with navicular disease. All the images were evaluated subjectively. The solar views were assessed quantitatively using regions of interest around the navicular bone, the region of insertion of the deep digital flexor tendon and the toe, medial and lateral aspects of the distal phalanx. In 97% of the feet of normal showjumpers, there was <10% variance of uptake of the radiopharmaceutical in the navicular bone, the region of insertion of the DDFT and the peripheral regions of the distal phalanx. There was a significant difference in uptake of radiopharmaceutical in the region of the navicular bone in horses with foot pain compared to normal horses. There was a large incidence of false positive results related to the region of insertion of the DDFT. Lateral pool phase images appeared more sensitive in identifying potentially important DDFT lesions. There was a good correlation between a positive response to intra-articular analgesia of the distal interphalangeal joint and intrathecal analgesia of the navicular bursa and increased uptake of radiopharmaceutical in the region of the navicular bone in the horses with primary foot pain. It is concluded that quantitative scintigraphic assessment of bone phase images of the foot, in combination with local analgesic techniques, can be helpful in the identification of the potential source of pain causing lameness related to the foot, but false positive results can occur, especially in horses with low heel conformation.  相似文献   

18.
The medical records of 38 horses with puncture wounds of the navicular bursa were reviewed. Only 12 horses had a satisfactory outcome (breeding or riding). Of the remaining 26 horses, 19 were euthanized, five were sold due to persistent severe lameness, one died, and one was lost to long-term follow-up. Different combinations of conservative management prior to surgical debridement and drainage of the navicular bursa were unsuccessful in resolving the condition. Horses that were treated surgically within 1 week of the injury and had a hind leg affected had the best chance of a satisfactory outcome. Additional wound debridement was necessary in 15 horses after initial surgical treatment. The most common complications encountered were navicular bone osteomyelitis and sepsis of the deep digital flexor tendon. Thirteen of 14 horses that had rupture of the deep digital flexor tendon and subluxation of the distal interphalangeal joint had an unsatisfactory outcome. One mare subsequently developed ankylosis of the distal interphalangeal joint and was a useful brood mare. Two horses that had biaxial palmar digital neurectomy because of persistent lameness were later euthanized because of navicular bone fracture and rupture of the deep digital flexor tendon. Results from limited numbers of bacterial cultures and antibiotic sensitivities suggest that penicillin and an aminoglycoside antibiotic should be used as initial antibiotic therapy. Immediate surgical debridement and appropriate antibiotic treatment are recommended as the minimum therapy for penetrating wounds of the navicular bursa in horses.  相似文献   

19.
REASONS FOR PERFORMING STUDY: Foot pain is a common cause of equine lameness and there have been significant limitations of the methods available for the diagnosis of the causes of foot pain (radiography, nuclear scintigraphy and ultrasonography). Until recently, magnetic resonance imaging (MRI) in the horse has been limited to examination of cadaver limbs. OBJECTIVES: Our purpose was to 1) describe MRI of the foot in live horses, 2) describe MRI findings in horses with foot pain in which a definitive diagnosis could not be established by alternative means and 3) correlate MRI findings with other methods of clinical investigation. METHODS: The feet of 15 horses with unilateral (12) or bilateral (3), forelimb (14) or hindlimb (1) lameness associated with foot pain of previously ill-defined origin were examined using MRI. The horses were examined in right lateral recumbency under general anaesthesia, with the feet positioned in the isocentre of a flared end 1.5 Tesla GE Signa Echospeed magnet. Images were obtained in sagittal, transverse and dorsal planes using 3-dimensional (3D) T2* gradient echo (GRE), spoiled gradient echo, fat-saturated 3D T2* GRE and short inversion recovery sequences. Image acquisition took approximately 1 h. RESULTS: Abnormalities of the distal interphalangeal joint (DIP) cartilage and/or subchondral bone, periarticular osteophyte formation, distension of the DIP joint capsule with or without synovial proliferation, distension of the navicular bursa with or without evidence of chronic inflammation, surface and core lesions in the deep digital flexor tendon, abnormal signal within the navicular bone, evidence of mineralised fragments in the distal sesamoidean impar ligament, irregular outline of and signal in the medial cortex of the distal phalanx, and an abnormal signal on the dorsal aspect of the distal phalanx consistent with laminitis were identified. CONCLUSIONS: MRI permits the diagnosis of a variety of lesions involving different structures within the foot that cannot be diagnosed using other means, thus enhancing our knowledge of the causes of foot pain. Potential relevance: With further experience it is likely that lesions involving other structures will also be identified. Long-term follow-up data is required to determine the prognosis for the injuries described.  相似文献   

20.
Foot pain is an important cause of lameness in horses. When horses with foot pain have no detectable radiographic abnormalities, soft‐tissue assessment remains a diagnostic challenge without magnetic resonance (MR) imaging. Ultrasonography can provide an alternative to MR imaging when that modality is not available but the extent of changes that might be seen has not been characterized. We reviewed the ultrasonographic findings in 39 horses with lameness responding positively to anesthesia of the palmar digital nerves and without radiographically detectable osseous abnormalities. Thirty of the 39 horses had lesions affecting the deep digital flexor tendon (DDFT), 27 had abnormalities in the distal interphalangeal joint of which six had a visible abnormality in the collateral ligament. Ultrasonographic abnormalities were seen in the podotrochlear bursa in 22 horses and in the ligaments of the navicular bone in two horses. Abnormalities of the navicular bone flexor surface were detected in eight horses. In three of the 39 horses, only the DDFT was affected. The other 36 horses had ultrasonographic abnormalities in more than one anatomical structure. Based on our results, ultrasonographic examination provides useful diagnostic information in horses without radiographic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号