首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Coxiella burnetii is a zoonotic pathogen with a worldwide distribution that is responsible for Q fever in humans. It is a highly infectious bacterium that can be transmitted from cattle to humans through the consumption of unpasteurized milk. We report the molecular identification of C. burnetii in raw cow's milk being sold directly for human consumption in Brazil without official inspection or pasteurization. One hundred and twelve samples of raw milk were analysed by real‐time quantitative PCR (qPCR), and C. burnetii was detected in 3.57% (4/112) of the samples at a concentration ranging from 125 to 404 bacteria per millilitre. The identification of this zoonotic pathogen in raw milk sold directly for human consumption is a public health concern since C. burnetii can be transmitted through the oral route. This result indicates that health education and other preventive measures should be officially implemented in Brazil to prevent the spread of infection. To our knowledge, this is the first qPCR‐based detection of C. burnetii in raw milk samples from cows sold in Brazil that do not undergo official inspection or pasteurization.  相似文献   

2.
The role of dogs in the transmission of Coxiella burnetii to humans is uncertain, and extensive seroprevalence studies of dogs have not been previously conducted in Australia. This study determined C. burnetii exposure in four diverse canine subpopulations by adapting, verifying and comparing an indirect immunofluoresence assay (IFA) and an enzyme‐linked immunosorbent assay (ELISA) used to detect anti‐C. burnetii antibodies in humans. Canine serum samples (n = 1223) were tested with IFA from four subpopulations [breeding establishments; household pets; free‐roaming dogs in Aboriginal communities; shelter dogs]. The proportions of seropositive dogs were as follows: breeding (7/309, 2.3%), household pets (10/328, 3%), Aboriginal communities (21/321, 6.5%) and shelters (5/265, 1.9%). Dogs from Aboriginal communities were 2.8 times (CI 1.5–5.1; < 0.001) more likely to be seropositive than dogs from other populations. The ELISA was used on 86 of 1223 sera tested with IFA, and a Cohen's Kappa coefficient of 0.60 (CI 0.43–0.78) indicated good agreement between the two assays. This study has established that Australian dogs within all four subpopulations have been exposed to C. burnetii and that a higher seroprevalence was observed amongst free‐roaming dogs associated with Aboriginal communities. As C. burnetii recrudesces during pregnancy and birth products contain the highest concentration of organism, individuals assisting at the time of parturition, those handling pups shortly after birth as well as those residing in the vicinity of whelping dogs are potentially at risk of developing Q fever. However, the identification of active antigen shed in excreta from seropositive dogs is required in order to accurately define and quantify the public health risk.  相似文献   

3.
Q fever (caused by Coxiella burnetii) is a serious zoonotic disease that occurs almost worldwide. Occupational contact with animals increases the risk of exposure, and Q fever vaccination is recommended for veterinary workers in Australia. This study aimed to investigate C. burnetii seroprevalence among unvaccinated veterinary workers in Australia and determine factors associated with a positive serological result. During 2014 and 2015, convenience sampling at veterinary conferences and workplace vaccination clinics was undertaken. Participants completed a questionnaire and provided a blood sample for C. burnetii serology. Participants were predominantly veterinarians (77%), but veterinary support staff, animal scientists, and administration workers also participated. Blood samples (n = 192) were analysed by an immunofluorescence assay and considered positive where the phase I or phase II IgG titre was ≥1/50. Seroprevalence was 19% (36/192; 95% CI 14%–25%). A positive serological result was significantly associated with (a) working in outer regional/remote areas (odds ratio [OR] 6.2; 95% CI 1.9–20.8; reference = major cities; p = .009) and (b) having spent more than 50% of total career working with ruminants (OR 4.8; 95% CI 1.7–13.5; reference = <15% of career; p = .025). These findings confirm an increased risk of exposure to C. burnetii compared to the general population, providing new evidence to support Q fever vaccination of veterinary workers in Australia.  相似文献   

4.
Coxiella burnetii is considered a re‐emerging zoonosis in many countries. The bacterium is enzootic in livestock and wildlife in the United States, and environmental contamination is widespread. Despite the potential for exposure, the estimated prevalence of Q fever in humans and animals is not well elucidated, and reported human infections in the United States are relatively rare. Zoonotic transmission of the bacterium is usually associated with abortions in domestic ruminants, but other modes of transmission, such as contact with infected blood and/or milk during field dressing of infected wildlife, have not been thoroughly investigated. Studies of zoonotic pathogen transmission between animal reservoir hosts and humans are usually established in response to documented emergence or re‐emergence of a zoonosis in a particular locale, and, as such, the prevalence of infection in wildlife is largely unknown for many zoonotic pathogens, including C. burnetii. The objective of this study was to create a disease risk surface for C. burnetii seroprevalence in wild white‐tailed deer (Odocoileus virginianus) in New York State. Blood samples were collected from hunter‐harvested deer from across New York State in 2009 and 2010. The samples were processed and tested for the presence of anti‐C. burnetii antibodies via indirect microimmunofluorescence assays using phase II C. burnetii strain RSA439. Overall, 14.50% of the tested white‐tailed deer were C. burnetii phase II seropositive. The dual Kernel density estimation method was used to create a smoothed disease risk surface, which revealed variation in seroprevalence ranging from 0% to 32.0%. Areas of higher seroprevalence were detected in four discrete areas of Central New York and in one additional area in the southwest corner of the northern part of the state. This suggests certain locales where humans may be at increased risk for exposure to the bacterium secondary to contact with potentially infected deer.  相似文献   

5.
6.
The Netherlands underwent a large Q fever outbreak between 2007 and 2009. In this paper, we study spatial and temporal Coxiella burnetii exposure trends during this large outbreak as well as validate outcomes against other published studies and provide evidence to support hypotheses on the causes of the outbreak. To achieve this, we develop a framework using a dose–response model to translate acute Q fever case incidence into exposure estimates. More specifically, we incorporate a geostatistical model that accounts for spatial and temporal correlation of exposure estimates from a human Q fever dose–response model to quantify exposure trends during the outbreak. The 2051 cases, with the corresponding age, gender and residential addresses, reside in the region with the highest attack rates during the outbreak in the Netherlands between 2006 and 2009. We conclude that the multiyear outbreak in the Netherlands is caused by sustained release of infectious bacteria from the same sources, which suggests that earlier implementation of interventions may have prevented many of the cases. The model predicts the risk of infection and acute symptomatic Q fever from multiple exposure sources during a multiple‐year outbreak providing a robust, evidence‐based methodology to support decision‐making and intervention design.  相似文献   

7.
To estimate the effect of vaccination in preventing acute Q fever in individuals occupationally exposed to Coxiella burnetii, a systematic review and meta‐analysis were undertaken in controlled trials and observational studies. Publications were obtained through a scoping study of English and non‐English articles, and those reporting a commercially licensed or licensable vaccine compared with an unvaccinated or placebo control group were included in the review. Two authors performed independent assessment of risk of systematic error and data extraction. One controlled trial and five cohort publications met the inclusion criteria. All trials used a Henzerling phase I vaccine. A random‐effects meta‐analysis estimated significant protection in abattoir workers (RR = 0.07; 95% confidence interval [CI] 0.02–0.22) compared with the control individuals. In individuals with rare or sporadic contact with the abattoir, a significant benefit of vaccination was also found (RR = 0.06; 95% CI 0–0.93). Overall, the vaccine effectively prevented acute Q fever in individuals responsible for handling animals or their products and those working in the abattoir but not directly exposed to animals (RR = 0.06; 95% CI 0.02–0.18). Caution must be taken when interpreting the effect of C. burnetii vaccination as significant heterogeneity amongst publications was observed. A meta‐regression found no significant univariate associations. This may reflect the uncertainty provided by reported data in the cohort publications. Potential systematic biases were present in the publications, and evidence included may not be sufficiently robust to extrapolate the effect of vaccination on occupationally exposed groups beyond the population of abattoir employees in Australia where all included studies occurred.  相似文献   

8.
Patients receiving immunosuppressive cancer treatments in settings where there is a high degree of human–animal interaction may be at increased risk for opportunistic zoonotic infections or reactivation of latent infections. We sought to determine the seroprevalence of selected zoonotic pathogens among patients diagnosed with haematologic malignancies and undergoing chemotherapeutic treatments in Romania, where much of the general population lives and/or works in contact with livestock. A convenience sample of 51 patients with haematologic cancer undergoing chemotherapy at a referral clinic in Cluj‐Napoca, Romania, was surveyed regarding animal exposures. Blood samples were obtained and tested for evidence of infection with Bartonella species, Coxiella burnetii and Toxoplasma gondii, which are important opportunistic zoonotic agents in immunocompromised individuals. 58.8% of participants reported living or working on a farm, and living or working on a farm was associated with contact with livestock and other animals. 37.5% of participants were IgG seroreactive against one or more of five Bartonella antigens, and seroreactivity was statistically associated with living on farms. Farm dwellers were 3.6 times more likely to test IgG seroreactive to Bartonella antibodies than non‐farm dwellers. 47.1% of the participants tested T. gondii IgG positive and 13.7% tested C. burnetii IgG positive, indicating past or latent infection. C. burnetii IgM antibodies were detected in four participants (7.8%), indicating possible recent infection. These results indicate that a large proportion of patients with haematologic cancer in Romania may be at risk for zoonotic infections or for reactivation of latent zoonotic infections, particularly with respect to Bartonella species. Special attention should be paid to cancer patients' exposure to livestock and companion animals in areas where much of the population lives in rural settings.  相似文献   

9.
Since World War II, the military has experienced outbreaks of Q fever among deploying units including recent case reports of Q fever in US military personnel returning from serving in the Middle East during Operation Iraqi Freedom and Operation Enduring Freedom. Occupational exposure and prevalence of Q fever among US Army Veterinary Corps officers have not been examined. A retrospective serosurvey and observational study of 500 military veterinarians were conducted using archived serum specimens from military veterinarians who entered and served between 1989 and 2008 and were tested for exposure to Coxiella burnetii. Corresponding longitudinal health‐related, demographic, medical and deployment data were examined. A total of 69 (13.8%) individuals at military entry and 85 (17%) had late career positive titres. A total of 18 (3.6%) individuals showed seroconversion. Women were more likely to be seropositive after military service [prevalence ratio (PR) 1.96; 95% confidence interval (CI) 1.15–3.35] and were also more likely to seroconvert (incidence rate ratio 3.55; 95% CI 1.19–12.7). Women who deployed to Operation Iraqi Freedom were more likely to be seropositive (PR 3.17; 95% CI 1.03–9.71). Veterinarians with field service and pathology specialties had the highest incidence rates (7.0/1000 PY; 95% CI 4–12 and 3–19, respectively). This is the first report documenting US military veterinarians' exposure to C. burnetii. Military veterinarians are at risk prior to service, with moderate number of new cases developing during service and most maintaining titres for long periods of time. Women consistently demonstrated higher seroprevalence and incidence levels. As increasing numbers of women enter the veterinary profession and subsequently the US Army, this may warrant close monitoring. This study likely underestimates exposure and risk and does not address chronic health effects, which may be valuable to explore in future health studies.  相似文献   

10.
Q fever in humans and coxiellosis in livestock are both caused by Coxiella burnetii. The public health importance of vaccination against C. burnetii shedding from sheep and goats was evaluated using systematic review and meta‐analysis to provide evidence for policy direction to prevent potential zoonotic spread. Publications reporting shedding of C. burnetii in vaginal and uterine secretions, milk, placenta and faeces were included. A single observational (one goat) and seven experimental (four goat and three sheep) vaccine studies were included in the review. No relevant publications on other interventions were identified. Random effects meta‐analyses were performed for the risk of shedding in individuals in the control and vaccinated groups and for the mean difference in the level of bacterial shedding in sheep and goats stratified by age and previous exposure status. Limited data were available for further analytic evaluation. From the pooled analysis, an inactivated phase I vaccine significantly reduced the risk of shedding from uterine (RR = 0.10; 95%CI 0.05–0.20) secretions in previously sensitized goats. Individual studies reported significant risk reduction in milk (RR = 0.03; 95%CI 0.01–0.26), vaginal secretions (RR = 0.40; 95%CI 0.22–0.75) and faeces (RR = 0.79; 95%CI 0.63–0.97) from naïve goats. The pooled mean levels of bacteria shed from placental [mean difference (MD = ?5.24 Log10; 95%CI ?6.75 to ?3.7)] and vaginal (MD = ?1.78 Log10; 95%CI ?2.19 to ?1.38) routes were significantly decreased in vaccinated naïve goats compared with controls. Shedding through all other routes from vaccinated goats was not significantly different than shedding from control goats. No effect of vaccination was found on the risk of shedding or the mean level of shedding in vaccinated sheep compared with control sheep. Our conclusions are based on a limited amount of data with variable risk of systematic error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号