首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three hundred forty-five serum samples from 30 zoological animal species which had been imported into the United States were examined retrospectively for the presence of antibody to bluetongue viruses. Ninety eight (28.4%) were positive for antibody to bluetongue group antigen by the bluetongue agar gel immunodiffusion test. Bluetongue antibodies, most of which were against serotypes exotic to the United States, were detected in 13 animal species from Africa not previously reported to be infected by bluetongue virus. The lack of virus neutralizing antibody to any of the 20 known bluetongue virus types in four of the 28 positive serums studied may indicate the existence of new bluetongue virus serotypes, cross reactions with other orbiviruses or a more rapid decline of neutralizing than precipitating antibody. The possibility of recrudescence of bluetongue virus infection from some inapparently infected zoological animals and existence of a known bluetongue vector (Culicoides variipennis) in the United States would suggest that further assessment of bluetongue in zoological animals be made.  相似文献   

2.
An enzyme-linked immunosorbent assay has been developed to detect antibodies to epizootic hemorrhagic disease of deer virus (EHDV). The assay incorporates a monoclonal antibody to EHDV serotype 2 (EHDV-2) that demonstrates specificity for the viral structural protein, VP7. The assay was evaluated with sequential sera collected from cattle experimentally infected with EHDV serotype 1 (EHDV-1) and EHDV-2, as well as the four serotypes of bluetongue virus (BTV), BTV-10, BTV-11, BTV-13, and BTV-17, that currently circulate in the US. A competitive and a blocking format as well as the use of antigen produced from both EHDV-1- and EHDV-2-infected cells were evaluated. The assay was able to detect specific antibody as early as 7 days after infection and could differentiate animals experimentally infected with EHDV from those experimentally infected with BTV. The diagnostic potential of this assay was demonstrated with field-collected serum samples from cattle, deer, and buffalo.  相似文献   

3.
Six calves were inoculated with 1 of 2 North American serotypes of epizootic hemorrhagic disease virus (EHDV) and then inoculated with the second serotype 16 weeks later. One calf did not develop an immune response to EHDV after primary inoculation and was removed from the study. Viremia after primary inoculation was transient. Although each infected calf developed a high serum neutralizing antibody titer to EHDV, at no time after inoculation with one or both viruses was antibody detected that neutralized any US serotypes of bluetongue virus. After exposure to both serotypes of EHDV, 4 of 5 calves developed antibodies that cross-reacted with group-specific bluetongue virus antigens.  相似文献   

4.
为了建立蓝舌病(BT)的血清学诊断方法,本研究利用原核表达的蓝舌病病毒(BTV)血清型12型VP7纯化蛋白免疫BALB/c小鼠,制备2株单克隆抗体(MAb),分别命名为BTV-2D10和BTV-4H7。IFA试验表明,2株MAb均能与BTV 24个血清型发生特异性反应,而与茨城病病毒(IBAV)、中山病病毒(CV)、赤羽病病毒(AKAV)、牛病毒性腹泻病毒(BVDV)、牛传染性鼻气管炎病毒(IBRV)、牛轮状病毒(BRV)、牛肠道病毒(BEV)、牛呼肠孤病毒(RV)及口蹄疫病毒(FMDV)无交叉反应,表明2株MAb均为BTV群特异性抗体。采用重组表达的VP7蛋白作为包被抗原建立的竞争ELISA方法证明,BTV-4H7 MAb对不同血清型BTV阳性血清具有良好的阻断效果,而对AKAV、IBAV、BRV和FMDV阳性血清无阻断作用。本研究建立的竞争ELISA方法与IDEXX公司的试剂盒检测包括65份已知背景血清和322份采自广西省的山羊血清样品,检测结果符合率分别达100%和98%。该竞争ELISA方法的建立为BTV抗体的监测提供了安全、快速、准确的技术手段。  相似文献   

5.
The Palyam serogroup-specific antigen, VP7, of Chuzan virus strain K-47 was expressed in insect cells by a recombinant baculovirus. The expressed protein appeared as a single band of 38kDa corresponding to the predicted molecular mass of Chuzan virus VP7 by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). In immunoprecipitation analysis, the recombinant VP7 was not only recognized by all polyclonal antibodies against the Palyam serogroup viruses (PALV) tested in this study, but also by antisera to bluetongue virus (BTV) serotype 1, epizootic haemorrhagic disease virus (EHDV) serotypes 1 and 2. However, in Western immunoblot assay, no positive signals were observed between this protein and these antisera, even in the homologous reaction using antiserum to Chuzan virus. These findings demonstrate that the common antigenic determinants on the VP7 proteins of Chuzan virus and the other PALV serotypes are mainly conformational and that the proteins share some epitopes with those of BTV and EHDV beyond the serogroup. No cross-reactivities were detected between Chuzan virus VP7 and antisera to BTV and EHDV in agar gel immunodiffusion (AGID) and indirect ELISA tests, indicating that the recombinant VP7 is useful as a diagnostic reagent for serological tests of congenital abnormalities of cattle caused by PALV.  相似文献   

6.
The Australian bluetongue virus (BTV-20) was compared with six serotypes isolated in southern Africa and North America by peptide mapping of the virus proteins with group antigen properties. The p7 group antigens from each of the seven serotypes analysed did not have identical primary structures and a comparison of shared and unique tryptic peptides has been used as a means of estimating virus relationships. Whereas serological studies have suggested that BTV-20 is closely related to BTV serotypes 4 and 17, comparative peptide mapping of p7 indicates a different set of relationships with viruses from both southern Africa and North America. In contrast with cross-immune precipitation results, peptide mapping of p3 suggest that this protein is not a group specific antigen.  相似文献   

7.
The interferon inducing ability of bluetongue viruses was studied in bovine and feline monolayer cultures inoculated with each of four bluetongue virus serotypes. Interferon was assayed by a plaque reduction method in monolayer cultures with vesicular stomatitis virus as challenge virus. Interferon was produced by bovine turbinate, Georgia bovine kidney, and Crandell feline kidney monolayer cultures in response to bluetongue virus serotypes 10, 11, 13 and 17. The antiviral substances produced by the bluetongue virus infected cultures had properties of interferon.  相似文献   

8.
Immunisation of mice with recombinant VP7 antigen of epizootic hemorrhagic disease virus of deer ( ) induced serum antibody responses to . However, from the 19 monoclonal antibodies (Mab) produced from these mice, 15 were specific for and four for bluetongue virus ( ). No Mabs were identified with the specificity for an epitope of VP7 shared by both and in spite of the fact that they share a large portion of homology in VP7 amino acids composition. These Mabs were divided into five groups based on their specificity and interaction with each other. Group II Mabs, consisting of 13 Mabs, recognises a potential serogroup specific, linear epitope of VP7 antigen. One of the Mabs to (Group V) was identified as VP7 specific with the possibility of being the serogroup specific and recognizes a potential conformational epitope. Two Mabs from these VP7 specific groups were further analysed and found to be useful in a competitive enzyme-linked immunosorbent assay ( - ) for detection of specific antibodies against and in bovine sera.  相似文献   

9.
Immunisation of mice with recombinant VP7 antigen of epizootic hemorrhagic disease virus of deer (EHDV) induced serum antibody responses to EHDV. However, from the 19 monoclonal antibodies (Mab) produced from these mice, 15 were specific for EHDV and four for bluetongue virus (BTV). No Mabs were identified with the specificity for an epitope of VP7 shared by both EHDV and BTV in spite of the fact that they share a large portion of homology in VP7 amino acids composition. These Mabs were divided into five groups based on their specificity and interaction with each other. Group II Mabs, consisting of 13 Mabs, recognises a potential serogroup specific, linear epitope of EHDV VP7 antigen. One of the Mabs to BTV (Group V) was identified as BTV VP7 specific with the possibility of being the serogroup specific and recognizes a potential conformational epitope. Two Mabs from these VP7 specific groups were further analysed and found to be useful in a competitive enzyme-linked immunosorbent assay (C - ELISA) for detection of specific antibodies against EHDV and BTV in bovine sera.  相似文献   

10.
The serological reactivity in indirect ELISA of five different bluetongue virus (BTV) serotypes (4, 10, 15, 16 & 20) was compared using polyclonal antisera raised against virus particles and an outer structural protein, VP2. Rabbit and sheep antisera against BTV-10 produced higher ELISA values with their homologous antigens than with heterologous serotypes. A hyperimmune rabbit serum specific for virus particles was able to distinguish heterologous serotypes from each other, but a sheep serum from an infected animal was not. An antiserum directed against VP2, the protein responsible for serotype specificity in neutralization tests, was not serotype-specific in ELISA and cross-reacted with other serotypes. The discriminatory ability of a BTV-4 antiserum was improved by cross-absorption with heterologous antigens. This greatly reduced the ELISA signals with heterologous serotypes and produced an antiserum that was effectively serotype-specific.  相似文献   

11.
Seven serotypes (1, 2, 3, 4, 12, 15 and 16) of bluetongue virus were isolated from the blood of sheep and cattle in the People's Republic of China between 1986 and 1996. Six of these viruses were isolated in Yunnan province. The sheep from which serotypes 1 and 16 were isolated showed obvious signs of bluetongue disease, whereas the cattle from which serotypes 2, 3, 4, 12 and 15 were isolated were clinically normal. Phylogenetic analyses of these viruses indicate that they are more closely related to one another, and to an Australian strain of serotype 1, than they are to prototype strains of bluetongue virus serotypes 2, 10, 11, 13 and 17 from the USA.  相似文献   

12.
The results of a serological survey of ruminant livestock in some countries of the Caribbean and South America for type-specific antibody to bluetongue virus are reported. Using the microneutralisation test with the international serotypes 1 to 22 of bluetongue virus, antibodies to several types were detected. Analysis of the data indicated that in 1981-82 bluetongue virus types 6, 14 and 17, or viruses closely related to them, were infecting ruminants in this region of the world. Antibody to the related virus of epizootic haemorrhagic disease (serotype 1) was also detected in cattle. The difficulty in interpreting the epidemiological significance of data generated by a serological survey of this kind is discussed.  相似文献   

13.
Bluetongue virus (BTV) is an arthropod-borne pathogen that causes an often fatal, hemorrhagic disease in ruminants. Different BTV serotypes occur throughout many temperate and tropical regions of the world. In 2006, BTV serotype 8 (BTV-8) emerged in Central and Northern Europe for the first time. Although this outbreak was eventually controlled using inactivated virus vaccines, the epidemic caused significant economic losses not only from the disease in livestock but also from trade restrictions. To date, BTV vaccines that allow simple serological discrimination of infected and vaccinated animals (DIVA) have not been approved for use in livestock. In this study, we generated recombinant RNA replicon particles based on single-cycle vesicular stomatitis virus (VSV) vectors. Immunization of sheep with infectious VSV replicon particles expressing the outer capsid VP2 protein of BTV-8 resulted in induction of BTV-8 serotype-specific neutralizing antibodies. After challenge with a virulent BTV-8 strain, the vaccinated animals neither developed signs of disease nor showed viremia. In contrast, immunization of sheep with recombinant VP5 - the second outer capsid protein of BTV - did not confer protection. Discrimination of infected from vaccinated animals was readily achieved using an ELISA for detection of antibodies against the VP7 antigen. These data indicate that VSV replicon particles potentially represent a safe and efficacious vaccine platform with which to control future outbreaks by BTV-8 or other serotypes, especially in previously non-endemic regions where discrimination between vaccinated and infected animals is crucial.  相似文献   

14.
Sheep were experimentally infected with cloned strains of tissue culture adapted bluetongue virus (BTV) serotypes 10, 11, 13 and 17. All the infected animals developed viremia by Day 2 or 3 post-inoculation (P.I.) and reached maximum viremia on Day 7 P.I. The viremia lasted for 2 to 3 weeks. Animals infected with the different serotypes showed mild clinical bluetongue (BT) responses, characterized by pyrexia and leukopenia, which coincided with the peak of viremia. Antibodies appeared by Day 10 P.I. and reached maximum by Day 28 P.I. There was a temporal relationship between the increase in neutralizing antibody titer, the drop in titer and clearance of virus from the peripheral circulation. Recovery from primary infection protected the animals against secondary challenge with homologous virus.  相似文献   

15.
Serological surveys revealed that some cattle in northern Australia possessed bluetongue virus (BTV) group-reactive (agar gel diffusion precipitin, AGDP, and complement-fixing, CF) antibodies, but not serum neutralizing (SN) antibodies, to BTV20, a new type previously found in Australia. Attempts were made during 1979 to isolate viruses causing these reactions. There was one isolate of a virus (CSIRO 154) and eight isolates of another virus (CSIRO 156) made from the blood of healthy cattle in the Northern Territory. These viruses could not be distinguished from BTV20 by AGDP, CF or fluorescent-abtibody tests and hence were designated members of the bluetongue serogroup. Serotyping was carried out using the plaque-inhibition and plaque-reduction SN tests. CSIRO 156 virus could not be distinguished from BTV1 by any of the SN tests and it was concluded that it was an Australian isolate of the BTV1 serotype. CSIRO 154 virus was found to be related to, but not identical with, BTV6. It is probably not one of the known 20 BTV serotypes and may represent a new BTV serotype. None of the three Australian BTV isolates is known to cause clinical disease in sheep or cattle under natural conditions, and biochemical comparisons with the African BTV serotypes may show differences not revealed by these serological studies.  相似文献   

16.
4种重要虫媒病的核酸液相芯片高通量检测方法的建立   总被引:1,自引:1,他引:0  
为建立可检测鹿流行性出血热病毒(EHDV)、阿卡斑病毒(AKV)、蓝舌病病毒(BTV)和水泡性口炎病毒(VSV)的液相芯片快速检测技术,用DNAStar软件对GenBank中BTV的VP7基因、EHDV的VP7基因、AKV的N基因和VSV的NP基因序列进行序列分析,设计针对这些基因的特异性探针并标记生物素,分别与不同编号的荧光编码微球偶联后再与这些病毒相应基因的PCR产物杂交反应,用液相芯片检测仪(Liquichip 200)检测荧光信号建立了以上4种虫媒病的快速液相芯片检测方法。检测结果显示,该方法具有较好的特异性,偶联特异性探针的微球只与相应的病毒基因的PCR产物反应,而不与其他虫媒病病毒反应;检测灵敏度达到50~100个TCID50。本研究建立了可以同时检测鹿流行性出血热病毒、阿卡斑病毒、蓝舌病病毒和水泡性口炎病毒的快速高通量液相芯片技术,为其他类似病毒的快速高通量检测提供了借鉴和经验。  相似文献   

17.
Dot and Northern blot hybridization assays were developed to detect and differentiate group A bovine rotavirus serotypes using radiolabeled serotype 6 (Nebraska calf diarrhea virus [NCDV] and United Kingdom [UK] strains) or serotype 10 (Crocker [Cr] strain) VP7 gene probes. Partial length VP7-specific cDNA encompassing areas of major sequence diversity were generated by the polymerase chain reaction (PCR) using either cloned VP7 genes (NCDV and UK strains) or reverse transcribed mRNA (Cr strain) as templates. Radiolabeled probes prepared from the PCR-generated cDNA were tested at various stringency conditions to optimize the hybridization assays. At high stringency conditions (52 C, 50% formamide, 5 x standard saline citrate), the NCDV, UK, and Cr probes serotypically differentiated bovine rotavirus isolates in RNA samples prepared from cell culture propagated viruses or in fecal specimens from infected gnotobiotic calves. The sensitivity and specificity of NCDV and Cr VP7 probes were characterized in dot blot hybridization assays, and the probes were estimated to detect at least 1 ng of viral RNA. The serotyping results obtained using VP7 probes were similar to those obtained using serologic assays. Further development of these assays may provide a useful means for the rapid detection and differentiation of bovine rotavirus serotypes in fecal samples from calves in the field.  相似文献   

18.
Serums from 103 sheep and 24 cattle experimentally infected with one of 3 serotypes of bluetongue virus isolated in Australia were tested for antibody to bluetongue virus in the serum neutralisation test and the agar gel diffusion precipitin test. Antibody to bluetongue virus was first detected by these tests 8 to 10 days after intravenous infection in 4 sheep that were bled daily for serum analysis. The agar gel diffusion test failed to detect antibody in 28% (29/103) of sheep which had seroconverted in the serum neutralisation test. A further 7% (7/103) of sheep serums were negative in both tests 14 to 22 d after infection. Both tests detected antibody to bluetongue virus in all cattle serums by 10 days after detection of viraemia. In comparison with the intravenous route of infection, extended prepatent periods for the commencement of viraemia resulting from intradermal, subcutaneous and intrauterine routes of infection in the cattle caused corresponding delays in the detection of antibody. For example, one cow that was infected by intrauterine inoculation did not become viraemic until 22 d after inoculation and antibody was not detected until 32 d after inoculation.  相似文献   

19.
Four lambs and 3 calves, seronegative to bluetongue virus (BTV), were inoculated intravenously with a highly plaque-purified strain of BTV Serotype 10. A single calf and lamb served as controls and were inoculated with uninfected cell culture lysate. All BTV-inoculated lambs exhibited mild clinical manifestations of bluetongue, whereas infected calves were asymptomatic. Viremia persisted in BTV-infected lambs for 35-42 days, and for 42-56 days in BTV-infected calves. Neutralizing antibodies were first detected in sera collected at Day 14 post-inoculation (PI) from 2 BTV-infected calves and all 4 infected lambs, and at Day 28 PI in the remaining calf. The appearance of neutralizing antibody in serum did not coincide with clearance of virus from blood; BTV and specific neutralizing antibody coexisted in peripheral blood of infected lambs and calves for as long as 28 days. The sequential development, specificity and intensity of virus protein-specific humoral immune responses of lambs and calves were evaluated by immunoprecipitation of [35S]-labelled proteins in BTV-infected cell lysates by sera collected from inoculated animals at bi-weekly intervals PI. Sera from infected lambs and calves reacted most consistently with BTV structural proteins VP2 and VP7, and nonstructural protein NS2, and less consistently with structural protein VP5, and nonstructural protein NS1. Lambs developed humoral immune responses to individual BTV proteins more rapidly than calves, and one calf had especially weak virus protein-specific humoral immune responses; viremia persisted longer in this calf than any other animal in the study. The clearance of virus from the peripheral blood of BTV-infected lambs and calves is not caused simply by the production of virus-specific neutralizing antibody, however the intensity of humoral immune responses to individual BTV proteins might influence the duration of viremia in different animals.  相似文献   

20.
African horse sickness virus structure   总被引:4,自引:0,他引:4  
African horse sickness virus (AHSV), of which there are nine serotypes (AHSV-1, -2, etc.), is a member of Orbivirus genus within the Reoviridae family. Both in morphology and molecular constituents AHSV particles are comparable to those of bluetongue virus (BTV), the prototype virus of the genus. The two viruses have seven structural proteins (VP1–7) organized in two layered capsid. The outer capsid is composed of VP2 and VP5. The inner capsid, or core, is composed of two major proteins, VP3 and VP7, and three minor proteins, VP1, VP4 and VP6. Within the core is the virus genome. This genome consists of 10 double-stranded (ds)RNA segments of different sizes, three large, designated L1–L3, three medium, M4–M6, and four small, S7–S10. In addition to the seven stuctural proteins that are coded by seven of the RNA species, four non-structural proteins, NS1, NS2, NS3 and NS3A, are coded by three RNA segments, M5, S8 and S10. The two smallest proteins (NS3 and NS3A) are synthesized by the S10 RNA segment, probably from different in-frame translation initiation codons. Nucleotide sequences of eight RNA segments (L2, L3, M4, M5, M6, S7, S8 and S10) and the predicted amino acid sequences of the encoded gene products are also available, mainly representing one serotype, AHSV-4. In this review the properties of the AHSV genes and gene products are discussed. The sequence and hybridization analyses of the different AHSV dsRNA segments indicate that the segments that code for the core proteins, as well as those that code for NS1 and NS2 proteins, are highly conserved between the different virus serotypes. However, the RNA encoding NS3 and NS3A, and the two segments encoding the outer capsid proteins, are more variable between the AHSV serotypes. A close phylogenetic relationship between AHSV, BTV and epizootic haemorrhagic disease virus (EHDV), three Culicoides-transmitted orbiviruses, has been revealed when the equivalent sequences of genes and gene products are compared. Recently, the four major AHSV capsid proteins have been expressed using recombinant baculoviruses. Biochemically and antigenically these proteins are similar to the authentic proteins. Since the AHSV VP7 protein is highly conserved among the different serotypes, it has been utilized as a diagnostic reagent. The expressed VP7 protein has also been purified to homogeneity and crystallized for three-dimensional X-ray analysis. The expressed outer capsid proteins, VP2 and VP5, have been purified and used to raise antisera in rabbits. The VP2 antisera neutralize virus infections in vitro indicating the importance of this protein for vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号