首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of winter cover crops enhances environmental benefits and, if properly managed, may supply economic and agronomic advantages. Nitrogen retained in the cover crop biomass left over the soil reduces soil N availability, which might enhance the N fertiliser use efficiency of the subsequent cash crop and the risk of depressive yield and pre-emptive competition. The main goal of this study was to determine the cover crop effect on crop yield, N use efficiency and fertiliser recovery in a 2-year study included in a long-term (10 years) maize/cover crop production system. Barley (Hordeum vulgare L.) and vetch (Vicia sativa L.), as cover crops, were compared with a fallow treatment during the maize intercropping period. All treatments were cropped following the same procedure, including 130 kg N ha−1 with 15N fertiliser. The N rate was reduced from the recommended N rate based on previous results, to enhance the cover crop effect. Crop yield and N uptake, soil N mineral and 15N fertiliser recovered in plants and the soil were determined at different times. The cover crops behaved differently: the barley covered the ground faster, while the vetch attained a larger coverage and N content before being killed. Maize yield and biomass were not affected by the treatments. Maize N uptake was larger after vetch than after barley, while fallow treatment provided intermediate results. This result can be ascribed to N mineralization of vetch residues, which results in an increased N use efficiency of maize. All treatments showed low soil N availability after the maize harvest; however, barley also reduced the N in the upper layers before maize planting, increasing the risk of pre-emptive competition. In addition to the year-long effect of residue decomposition, there was a cumulative effect on the soil’s capacity to supply N after 7 years of cover cropping, larger for the vetch than for the barley.  相似文献   

2.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

3.
Adopting mixtures of legumes and non-legumes can be an efficient tool to merge the advantages of the single species in the fall-sown cover crop practice. Cover crop mixtures are supposed to provide an additional benefit in reducing N leaching risks as compared to pure legume thanks to the N trapping skill of the non-legume companion, but to our knowledge no data are available on the effect of mixed cover crops on N leaching. For this reason, in a three-year study we investigated the effect of barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa Roth.) grown in 100% pure stands or in 50:50 mixtures on the N leaching below the rooting zone as compared to the bare soil. The NO3-N concentration in the soil solution was monitored by suction cup lysimeters placed at 0.9 m depth during the whole growing cycle and after cover crop incorporation into the soil and the amount of leached N was calculated on the basis of estimated drainage.The mixture showed variable biomass accumulation and proportion in the biomass accumulated by companion species across years, but a rather constant N accumulation, with a biomass C/N ratio intermediate between those of the pure crops. In all years, the N trapping effect of the mixture was clear as it decreased NO3-N leaching at the same level of pure barley, both during its own growing cycle and after cover crop incorporation into the soil. Pure vetch showed the highest N source potential as green manure but no NO3-N leaching mitigation effect as compared to the bare soil. Thus we demonstrate here that a mixture of barley and vetch, which was already known to be a “self-buffered system” able to guarantee a good and rather stable N accumulation, is also a “buffering system” for the agroecosystems in the Mediterranean conditions by acting as a N trapping crop able to reduce N leaching.  相似文献   

4.
A better understanding of the fate of fertilizer nitrogen (N) is critical to design appropriate N management strategies in plastic-mulched croplands. We evaluated the effects of plastic mulch on urea-N recovery by crops and loss from soil in furrow-ridge plots, with and without maize (Zea mays L.) cropping, in a semi-arid rain-fed site in China. We applied the same rate of urea-N (281 kg ha−1) to all treatments during the preparation of the furrow-ridges in 2011 and 2012 but 15N-labeled the urea in 2011 only. We used transparent film to cover all soil surfaces in the mulched treatments and seeded maize in furrows in treatments with crop. In 2011, plastic mulch increased the total N uptake in the aboveground biomass of maize by 53%, whereas it decreased the in-season labeled-N uptake by 19%, compared to non-mulched treatment. At harvest in 2011, in mulched treatments the total labeled-N remaining in the 0−170 cm soil layer was 25% greater whereas unaccounted labeled-N was 69% less, than in non-mulched treatments, regardless of whether maize was cropped. In 2012 the effect of mulch on total maize N uptake was comparable to that in 2011, but the residual soil labeled-N uptake by maize was 63% higher in mulched compared to non-mulched treatment. At harvest in 2012, plastic mulch increased total labeled-N remaining in the 0−170 cm depth in cropped soils and unaccounted labeled-N in non-cropped soils, compared with no mulch. Our results indicate that plastic mulch profoundly changes the fate of urea-N in maize production in cold and dry croplands.  相似文献   

5.
Crop recovery of nitrogen (N) fertiliser in flooded rice systems is low relative to fertiliser N recoveries in aerobic crops, and the N losses have environmental consequences. Recent water shortages across the globe have seen a move towards alternative water management strategies such as delayed permanent water (DPW, also known as delayed flood). To investigate whether N fertiliser regimes used in DPW systems result in greater recovery of N fertiliser than traditional continuously flooded (CF) rice systems, we conducted a multi-N rate field trial using 15N-labelled urea. Around 27% of the 15N-labelled fertiliser was recovered in aboveground biomass at maturity, regardless of water regime or N fertiliser rate, and approximately 20% recovered in the soil to 300 mm depth. Plants in the CF system accumulated more total N at each rate of applied N fertiliser than plants in the DPW system due to greater exploitation of native soil N reserves, presumably because the earlier application of N fertiliser in the CF systems led to greater early growth and higher crop N demand. The greater crop biomass production as a result of higher N uptake in the CF system did not increase grain yields above those observed in the DPW system, likely due to cold weather damage. In the following season at the same site, a single N rate (150 kg N ha−1) trial found no significant differences in crop N uptake, biomass yields, grain yields or 15N-labelled urea recovery in DPW, CF and drill sown-CF (DS-CF) treatments. However, owing to higher 15N fertiliser recovery in the 0–100 mm soil horizon, total plant + soil recovery of 15N was significantly higher in the CF treatment (63%) than the DS-CF and DPW treatments (around 50% recoveries). The loss of 40–50% of the applied N (presumably as NH3 or N2) in both seasons regardless of watering regime suggests that new fertiliser N management strategies beyond optimising the rate and timing of urea application are needed, particularly in light of increasing N fertiliser prices.  相似文献   

6.
Soil nitrogen (N) dynamics can be modified by cover crops in rotations with cereals. Although, roots are a major source of N, little is known about the dynamics of root decomposition of cash and cover crops. The objective of this study was to assess the effects that cover crop species have on i) the decomposition of spring wheat roots during the growth of cover crops, and ii) the decomposition of cover crop roots during the growing season of spring wheat. The experiment aimed also at comparing three non-winter hardy cover crops of varying shoot C/N ratios under low and high N input levels of 6 and 12 g N m−2 y−1, respectively. The experiment included spring wheat (Triticum aestivum L.) as the main crop and non-winter hardy cover crops (yellow mustard (Sinapis alba L.), phacelia (Phacelia tanacetifolia Benth), and sunflower (Helianthus annuus L.) as well as bare soil fallow treatment. Minirhizotrons were used to non-destructively assess the spatial and temporal patterns of root growth and decomposition from 0.10 to 1.00 m. Simultaneously, we grew all crops in soil columns to measure destructively C and N content in the roots. We concluded that wheat root decomposition was not affected by cover crop species. In contrast, during the growing season of wheat root decomposition of yellow mustard was on average twice as high for phacelia and sunflower as a consequence of a higher production of roots with a significantly higher C/N ratio compared to the other cover crops.  相似文献   

7.
The sustainability of growing a maize—winter wheat double crop rotation in the North China Plain (NCP) has been questioned due to its high nitrogen (N) fertiliser use and low N use efficiency. This paper presents field data and evaluation and application of the soil–vegetation–atmosphere transfer model Daisy for estimating crop production and nitrate leaching from silty loam fields in the NCP. The main objectives were to: i) calibrate and validate Daisy for the NCP pedo-climate and field management conditions, and ii) use the calibrated model and the field data in a multi-response analyses to optimise the N fertiliser rate for maize and winter wheat under different field managements including straw incorporation.The model sensitivity analysis indicated that a few measurable crop parameters impact the simulated yield, while most of the studied topsoil parameters affect the simulated nitrate leaching. The model evaluation was overall satisfactory, with root mean squared residuals (RMSR) for simulated aboveground biomass and nitrogen content at harvest, monthly evapotranspiration, annual drainage and nitrate leaching out of the root zone of, respectively, 0.9 Mg ha−1, 20 kg N ha−1, 30 mm, 10 mm and 10 kg N ha−1 for the calibration, and 1.2 Mg ha−1, 26 kg N ha−1, 38 mm, 14 mm and 17 kg N ha−1 for the validation. The values of mean absolute deviation, model efficiency and determination coefficient were also overall satisfactory, except for soil water dynamics, where the model was often found erratic. Re-validation run showed that the calibrated Daisy model was able to simulate long-term dynamics of crop grain yield and topsoil carbon content in a silty loam field in the NCP well, with respective RMSR of 1.7 and 1.6 Mg ha−1. The analyses of the model and the field results showed that quadratic, Mitscherlich and linear-plateau statistical models may estimate different economic optimal N rates, underlining the importance of model choice for response analyses to avoid excess use of N fertiliser. The analyses further showed that an annual fertiliser rate of about 300 kg N ha−1 (100 for maize and 200 for wheat) for the double crop rotation with straw incorporation is the most optimal in balancing crop production and nitrate leaching under the studied conditions, given the soil replenishment with N from straw mineralisation, atmospheric deposition and residual fertiliser.This work provides a sound reference for determining N fertiliser rates that are agro-environmentally optimal for similar and other cropping systems and regions in China and extends the application of the Daisy model to the analyses of complex agro-ecosystems and management practices under semi-arid climate.  相似文献   

8.
Winter barley is the major crop on semiarid drylands in central Aragon (NE Spain). In this study we compared, under both continuous cropping (BC) (5–6-month fallow) and a crop–fallow rotation (BF) (16–18-month fallow), the effects of three fallow management treatments (conventional tillage, CT; reduced tillage, RT; no-tillage, NT) on the growth, yield and water use efficiency (WUE) of winter barley during three consecutive growing seasons in the 1999–2002 period. Daily precipitation measurements and monthly measurements of soil water storage to a depth of 0.7 m were used to calculate crop water use (ET) and its components. The average growing season precipitation was 195 mm. Above-ground dry matter (DM) and corresponding WUE were high in years with high effective rainfalls (>10 mm day−1) either in autumn or spring. However, the highest values of WUE for grain yield were mainly produced by effective rainfalls during the time from stem elongation to harvest. Despite the similarity in ET for the three tillage treatments, NT provided the lowest DM production, corresponding to a higher soil water loss by evaporation and lower crop transpiration (T), indicated by the lowest T/ET ratio values found under this treatment. No clear differences in crop yield were observed among the tillage treatments in the study period. On average, and regardless of the type of tillage, BF provided the highest values of DM and WUE and yielded 49% more grain than BC. These differences between cropping systems increased when water-limiting conditions occurred in the early stages of crop growth, probably due to the additional soil water storage under BF at sowing. Although no significant differences in precipitation use efficiency (PUE) were observed between BC and BF, PUE was higher under the BC system, which yielded 34% more grain than the BF rotation when yields were adjusted to an annual basis including the length of the fallow. The crop yield under BF was not dependent on the increase in soil water storage at the end of the long fallow. In conclusion, this study has shown that, although conventional tillage can be substituted by reduced or no-tillage systems for fallow management in semiarid dryland cereal production areas in central Aragon, the practice of long-fallowing to increase the cereal crop yields is not longer sustainable.  相似文献   

9.
Depending on soil and management, ploughing up grassland for use as arable land can lead to an increase in the release of mineralized nitrogen and a high risk of nitrogen leaching during winter. The amount of N leaching is also dependent on the N efficiency of following crops and the level of N fertilization.In a field experiment in northwest Germany permanent grassland was ploughed and used as arable land. The experiment was conducted over 2 years at three sites and investigated two main factors: (i) succeeding crops, either spring barley (and catch crop)–maize or silage maize–maize; and (ii) N-fertilization either nil or moderate (120 kg N ha−1 for barley or 160 kg for maize). Plant yields, the soil mineral nitrogen (SMN) content and the nitrate leaching losses over winter were determined. On average for the 2-year period, the SMN in autumn and the nitrate leaching losses during winter for the rotation barley–maize were 76 kg ha−1 SMN and 81 kg N ha−1 N leaching losses, and for maize–maize they amounted to 108 and 113 kg ha−1, respectively. The SMN and N leaching losses for the plots with no N fertilizer were 49 and 52 kg N ha−1 and for the plots fertilized at a moderate N level they were 135 and 142 kg N ha−1, respectively.We conclude that although the extent of nitrate leaching is influenced by the site conditions and management of the grassland prior to ploughing, the management after ploughing is the decisive factor. The farmer can significantly reduce nitrate leaching with his choice of succeeding crop and the amount of N fertilization.  相似文献   

10.
Nitrogen fertilisation of maize (Zea mays L.) has become an important economic and environmental issue, especially in high-yielding irrigated Mediterranean areas. Producers have traditionally applied more N fertiliser than required and, as a result, some environmental problems have appeared in recent decades. A 4-year study (2002–2005) was conducted and six N rates (0, 100, 150, 200, 250 and 300 kg N ha?1 year?1) were compared. Before planting 50 kg N ha?1 were applied. The rest of the N was applied in two sidedresses, the first at V3–V4 developing stage and the second at V5–V6. Yield, biomass, grain N uptake, plant N uptake and SPAD-units were greatly influenced by both N fertilisation rate and soil NO3?-N content before planting and fertilising [Nini (0–90 cm)]. At the beginning of the experiment, Nini was very high (290 kg NO3?-N ha?1) and there was therefore no yield response to N fertilisation in 2002. In 2003, 2004 and 2005, maximum grain yields were achieved with 96, 153 and 159 kg N ha?1, respectively. Results showed that N fertilisation recommendations based only on plant N uptake were not correct and that Nini should always be taken into account. On the other hand, the minimum amount of N available for the crop [N applied with fertilisation plus Nini (0–90 cm)] necessary to achieve maximum grain yields was 258 kg N ha?1. This value was similar to plant N uptake, suggesting that available N was able to predict N maize requirements and could be an interesting tool for improving maize N fertilisation.  相似文献   

11.
The advantages and disadvantages of varying mixture proportion of crimson clover (Trifolium incarnatum L.) and Italian ryegrass (Lolium multiflorum Lam.), used as winter cover crops, and cover crop biomass management before maize sowing (Zea mays L.) were studied in a series of field experiments in Eastern Slovenia. Pure stands and mixtures of cover crops on the main plots were split into different cover crop biomass management subplots: whole cover crop biomass ploughed down before maize sowing, aboveground cover crop biomass removed before ploughing and sowing, or aboveground cover crop biomass removed before sowing directly into chemically killed residues.Cover crop and cover crop biomass management affected the N content of the whole aboveground and of grain maize yields, and the differences between actual and critical N concentrations in the whole aboveground maize yield. The whole aboveground and grain maize dry matter yields, and the apparent remaining N in the soil after maize harvesting, showed significant interaction responses to cover crop × management, indicating positive and negative effects. Crimson clover in pure stand provided high, and pure Italian ryegrass provided low maize dry matter yields and N content in the yields in all the observed methods of biomass management. However, within individual management, mixtures containing high proportions of crimson clover sustained maize yields and N contents similar to those produced by pure crimson clover. Considering the expected ecological advantages of the mixtures, the results thereby support their use.  相似文献   

12.
APSIM Nwheat is a crop system simulation model, consisting of modules that incorporate aspects of soil water, nitrogen (N), crop residues, and crop growth and development. The model was applied to simulate above- and below-ground growth, grain yield, water and N uptake, and soil water and soil N of wheat crops in the Netherlands. Model outputs were compared with detailed measurements of field experiments from three locations with two different soil types. The experiments covered two seasons and a range of N-fertiliser applications. The overall APSIM Nwheat model simulations of soil mineral N, N uptake, shoot growth, phenology, kernels m−2, specific grain weight and grain N were acceptable. Grain yields (dry weight) and grain protein concentrations were well simulated with a root mean square deviation (RMSD) of 0.8 t ha−1 and 1.6 protein%, respectively. Additionally, the model simulations were compared with grain yields from a long-term winter wheat experiment with different N applications, two additional N experiments and regional grain yield records. The model reproduced the general effects of N treatments on yields. Simulations showed a good consistency with the higher yields of the long-term experiment, but overpredicted the lower yields. Simulations and earlier regional yields differed, but they showed uniformity for the last decade.In a simulation experiment, the APSIM Nwheat model was used with historical weather data to study the relationship between rate and timing of N fertiliser and grain yield, grain protein and soil residual N. A median grain yield of 4.5 t ha−1 was achieved without applying fertiliser, utilising mineral soil N from previous seasons, from mineralisation and N deposition. Application of N fertiliser in February to increase soil mineral N to 140 kg N ha−1 improved the median yield to 7.8 t ha−1 but had little effect on grain protein concentration with a range of 8–10%. Nitrogen applications at tillering and the beginning of stem elongation further increased grain yield and in particular grain protein, but did not affect soil residual N, except in a year with low rainfall during stem elongation. A late N application at flag leaf stage increased grain protein content by several per cent. This increase had only a small effect on grain yield and did not increase soil residual N with up to 40 kg N ha−1 applied, except when N uptake was limited by low rainfall in the period after the flag leaf stage. The economic and environmental optima in winter wheat were identified with up to 140 kg N ha−1 in February, 90 kg N ha−1 between tillering and beginning of stem elongation and 40 kg N ha−1 at flag leaf stage resulting in a median of 8.5 t ha−1 grain yield, 14.0% grain protein and 13 kg N ha−1 soil residual N after the harvest. The maximum simulated yield with maximum N input from two locations in the Netherlands was 9.9 t ha−1.  相似文献   

13.
Intensive tillage by means of mouldboard ploughing can be highly effective for weed control in organic farming, but it also carries an elevated risk for rapid humus decomposition and soil erosion. To develop organic systems that are less dependent on tillage, a two-year study at Reinhardtsgrimma and Köllitsch, Germany was conducted to determine whether certain legume cover crops could be equally successfully grown in a no-till compared with a reduced tillage system. The summer annual legumes faba bean (Vicia faba L.), normal leafed field pea (Pisum sativum L.), narrow-leafed lupin (Lupinus angustifolius L.), grass pea (Lathyrus sativus L.), and common vetch (Vicia sativa L.) were examined with and without sunflower (Helianthus annuus L.) as a companion crop for biomass and nitrogen accumulation, symbiotic nitrogen fixation (N2 fixation) and weed suppression. Total cover crop biomass, shoot N accumulation and N2 fixation differed with year, location, tillage system and species due to variations in weather, inorganic soil N resources and weed competition. Biomass production reached up to 1.65 and 2.19 Mg ha−1 (both intercropped field peas), and N2 fixation up to 53.7 and 60.5 kg ha−1 (both common vetches) in the no-till and reduced tillage system, respectively. In the no-till system consistently low sunflower performance compared with the legumes prevented significant intercropping effects. Under central European conditions no-till cover cropping appears to be practicable if weed density is low at seeding. The interactions between year, location, tillage system and species demonstrate the difficulties in cover crop species selection for organic conservation tillage systems.  相似文献   

14.
In organic agriculture, weeds and nitrogen deficiency are the main factors that limit crop production. The use of relay-intercropped forage legumes may be a way of providing ecological services such as weed control, increasing N availability in the cropping system thanks to N fixation, reducing N leaching and supplying nitrogen to the following crop. However, these ecological services can vary considerably depending on the growing conditions. The aim of this study was to identify early indicators to assess these two ecological services, thereby giving farmers time to adjust the management of both the cover crop and of the following crop.Nine field experiments were conducted over a period of three years. In each experiment, winter wheat was grown as sole crop or intercropped with one of two species of forage legumes; Trifolium repens L. or Trifolium pratense L. Two levels of fertilization were also tested (0 and 100 kg N ha−1). After the intercropping stage, the cover crop was maintained until the end of winter and then destroyed by plowing before maize was sown. Legume and weed biomass, nitrogen content and accumulation were monitored from legume sowing to cover destruction.Our results showed that a minimum threshold of about 2 t ha−1 biomass in the aboveground parts of the cover crop was needed to decrease weed infestation by 90% in early September and to ensure weed control up to December. The increase in nitrogen in the following maize crop was also correlated with the legume biomass in early September. The gain in nitrogen in maize (the following crop) was correlated with legume biomass in early September, with a minimum gain of 60 kg N ha−1 as soon as legume biomass reached more than 2 t ha−1.Legume biomass in early September thus appears to be a good indicator to predict weed control in December as well as the nitrogen released to the following crop. The indicator can be used by farmers as a management tool for both the cover crop and following cash crop. Early estimation of available nitrogen after the destruction of the forage legume can be used to adjust the supply of nitrogen fertilizer to the following crop.  相似文献   

15.
Blending fertilizers with nitrification inhibitors (NI) is a technology to reduce nitrogen (N) losses. The application of NI could increase the soil N supply capacity over time and contribute to an enhancement of N use efficiency (NUE) in some cropping systems. The objectives were to determine in a field experiment located in Central Spain (i) the effect of NI-fertilizers applied to maize (Zea mays L.) during two seasons on yield, N content and NUE compared to conventional fertilizers, (ii) the soil residual effect of NI-fertilizers in a non-fertilized sunflower (Helianthus annuus L.) planted during a third season, and (iii) the possible sources of residual N via laboratory determinations. The maize was fertilized with ammonium sulfate nitrate (ASN) and DMPP (3,4-dimethylpyrazole phosphate) blended ASN (ENTEC®) at two levels (130 and 170 kg N ha−1). A control treatment with no added N fertilizer was included to calculate NUE. The second year, DMPP application allowed a 23% reduction of the fertilizer rate without decreasing crop yield or grain quality. In addition, the sunflower planted after the maize scavenged more N in treatments previously treated with ENTEC® than with traditional fertilizers, increasing NUE in the cropping systems. After DMPP application, N was conserved in non-ready soil available forms during at least one year and subsequently released to meet the sunflower crop demand. The potential N mineralization obtained from aerobic incubation under controlled conditions of soil samples collected before sunflower sowing was higher for ENTEC® than ASN or control treatments. A higher δ15N in the soil indicated larger non-exchangeable NH4+ fixation in soils from the plots treated with ENTEC® or ASN-170 than from the ASN-130 or the control. These results open the opportunity to increase NUE by designing crop rotations able to profit from the effect of NI on the soil residual N.  相似文献   

16.
Beneficial soil biota, and in particular, arbuscular mycorrhizal fungi (AMF) are increasingly being recognized as key elements of organic and low-input agriculture where agrobiodiversity is central to enhanced crop production. However, the role of AMF in diversified organic systems, especially in field crops, is still poorly understood. A 3-year field experiment was carried out in Central Italy to investigate whether organic cropping systems that promote species and genetic diversity are more prone to mycorrhizal symbiosis increasing tomato growth, production and yield quality. Three tomato cultivars with varying genetic diversity were grown following four cover treatments: Indian mustard (Brassica juncea L. Czern.), hairy vetch (Vicia villosa Roth), a commercial mixture of seven cover crop species (Mix 7) and no-till fallow. Plants were either inoculated or not in nursery, with the two AMF isolates Funneliformis mosseae (IMA1) and Rhizoglomus intraradices (IMA6) used alone or mixed in a 1:1 volume ratio. On average, Mix 7 produced higher shoot dry matter (5.0 t ha−1) than V. villosa (3.5 t ha−1) or B. juncea (2.5 t ha−1). Pre-transplant inoculation increased tomato root colonization at flowering and harvest compared to the non inoculated plants (31.8 vs 23.6%) and cv. Rio Grande was on average the best colonized. The mean fresh weight of marketable fruits was 18.4, 28.0 and 28.6 t ha−1 for cvs. Rio Grande, Roma and Perfect Peel, respectively. Cover crops inconsistently affected tomato marketable fruit production in year 1, while in years 2 and 3, Vicia villosa and Mix 7 showed the best effect respectively. In year 3, among the pre-inoculated plants those treated with isolate IMA6 showed a higher production of marketable fruit number m−2 (56.7) than those inoculated either with IMA1 (51.5) or the mixed inocula (52.1). Most fruit quality parameters were affected by tomato genotype. This study shows that while increased agrobiodiversity is important to increase agroecosystem resilience, AMF, crop and cover crop functional identity may be more important than diversity per se to promote mycorrhizal symbiosis and productivity of field grown organic tomato.  相似文献   

17.
We studied the interaction between Eucalyptus saligna woodlots and maize crop in southern Rwanda. Three sites were selected and in each, a eucalypt woodlot with mature trees and a suitable adjoining crop field of 12.75 m × 30 m was selected. This was split into two plots of 6 m × 12 m and further subdivided into nine sub-plots running parallel to the tree-crop interface. Maize was grown in both 6 m × 12 m plots and one of these received fertiliser. Soil moisture, nutrients and solar radiation were significantly reduced near the woodlots, diminishing grain yield by 80% in the 10.5 m crop-field strip next to the woodlot. This reduction however affects only 10.5% of the maize crop field, leaving 89.5% unaffected. Spreading the loss to a hectare crop field, leads to an actual yield loss of 0.21 t ha−1, equivalent to 8.4%. Expressing yield loss in tree-crop systems usually presented as a percentage of yield recorded near the trees to that obtained in open areas may be misleading. Actual yields should be reported with corresponding crop field areas affected. Variation in grain yield coincided with those for soil moisture, soil N and K; all increasing from the woodlot-maize interface up to 10.5 m and remaining similar to the values in open areas thereafter. Solar radiation continued to increase with distance up to 18 m from the woodlot-maize interface. Harvest index in unfertilised maize exceeded that in the fertilised treatment reflecting the crop’s strategy to allocate resources to grain production under unfavourable conditions. Fertilisation increased maize yield from 1.3–2.6 t ha−1 but the trend in the woodlot effects on maize remained unaltered.  相似文献   

18.
In order to better understand how mixed crop cultures mitigate stressful conditions, this study aims to highlight the beneficial effect of the intercropping legume-cereal in enhancing soil phosphorus (P) availability for plant growth and productivity in a P-deficient soil of a northern Algerian agroecosystem. To address this question, common bean (Phaseolus vulgaris L. cv. El Djadida) and maize (Zea mays L. cv. Filou), were grown as sole- and inter-crops in two experimental sites; S1 (P-deficient) and S2 (P-sufficient) during two growing seasons (2011 and 2012). Growth, nodulation and grain yield were assessed and correlated with the rhizosphere soil P availability. Results showed that P availability significantly increased in the rhizosphere of both species, especially in intercropping under the P-deficient soil conditions. This increase was associated with high efficiency in use of the rhizobial symbiosis (high correlation between plant biomass and nodulation), plant growth and resource (nitrogen (N) and P) use efficiency as indicated by higher land equivalent ratio (LER > 1) and N nutrition index (for maize) in intercropping over sole cropping treatments. Moreover, the rhizosphere P availability and nodule biomass were positively correlated (r2 = 0.71, p < 0.01 and r2 = 0.62, p < 0.01) in the intercropped common bean grown in the P-deficient soil during 2011 and 2012. The increased P availability presumably improved biomass and grain yield in intercropping, though it mainly enhanced grain yield in intercropped maize. Our findings suggest that modification in the intercropped common bean rhizosphere-induced parameters facilitated P uptake, plant biomass and grain yield for the intercropped maize under P-deficiency conditions.  相似文献   

19.
Converting pasture to cropping is common in many of the world’s agricultural systems. This conversion results in substantial net mineralisation of soil organic matter that builds up during a phase of pasture. A few studies have shown that this mineralisation leads to increased nitrous oxide (N2O) emissions compared to long-term pasture or long-term cropping. Understanding of interactions leading to these significant emissions is still scarce but is needed to identify mitigation options for this situation. In this study, the Agricultural Production Systems sIMulator (APSIM) was used to investigate the optimal timing of pasture termination (relative to crop planting) and management of nitrogen (N) in crops after pasture termination to maximise crop yield and limit N2O emissions. Beforehand, APSIM’s performance in simulating yields and N2O emissions was tested against data from field experiments conducted in the temperate high-rainfall zone of southern Australia where N2O emissions were monitored with automatic gas collection chambers during the first year of cropping wheat after terminating long-term pasture on two adjacent sites in two consecutive years. Field experiments and simulation scenarios showed very high N2O emissions (up to 48 kg N2O-N ha−1 yr−1) in the first year of wheat after pasture termination, even without N fertiliser application. Measured cumulative N2O emissions, crop yields and soil mineral N and water content dynamics were simulated well with APSIM. Including a routine into APSIM to account for N2O transport through the soil profile improved the simulation of daily N2O emissions considerably, leading to up to 67% of the measured variability in daily N2O emissions being explained by the model. We predicted that a short fallow between termination of pasture and sowing wheat, instead of a long fallow which is the common practice, reduces N2O emissions by more than half in the first year of cropping without a noteworthy impact on crop yield. Reducing N fertiliser applications in the first few years after pasture termination by taking available soil mineral N into account, and applying the fertiliser six to twelve weeks after sowing instead of at sowing was predicted to further reduce N2O emissions. Since the model was calibrated against experimental data during the first year after pasture termination only, experiments determining N2O emissions in the first two or three years after terminating pasture are needed to confirm our predictions.  相似文献   

20.
In order to limit overproduction and pollution risks, low N fertiliser agricultural systems are likely to be advocated in Europe. An experiment was carried out in 1994 and 1995 to compare N uptake and N utilisation of two-rowed and six-rowed winter barley (Hordeum vulgare L.). Two sets of two-rows and six-rows, composed of 18 varieties each, were cultivated in northern France on a haplic luvisol without (N1) and with 100–110 kg/ha (N2) N fertiliser. Mean grain yield was 596 g/m2 at N1 and 779 g/m2 at N2. On average six-rows outyielded two-rows by 4% (34 g/m2) at N2 and 11% at N1 (70 g/m2). Ears/m2 was the yield component which fell most sharply between N2 and N1 (718 and 510 ears/m2 on average). Six-rows had fewer ears/m2 at both N levels but they lost more ears than two-rows (−33% and −26%, respectively). While the number of grains/ear was approximately the same for two-rows at both N levels (21.9 grains/ear on average) in 1995, it was significantly higher at N1 than at N2 for six-rows (44.7 and 38.5, respectively). Thousand kernel weight was higher at N1 than at N2, the difference being higher for six-rows (+7%) than for two-rows (+4%). N uptake efficiency (total plant N/soil N supply) was identical at N2 and higher for six-rows at N1 in 1995. Total N utilisation efficiency (total above-ground dry weight/total plant N) was equal at both N levels. HI (grain yield/total above-ground dry weight) was higher at N1 in both years and at N2 in 1994 for six-rows. Six-rows outyielded two-rows at high and low N levels. This was therefore associated mainly with higher HI and not with better N uptake or utilisation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号