首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various vaccine preparations against an infection with Bovine Viral Diarrhea Virus (BVDV) have been used since more than 30 years. To prevent reproduction failure and the generation of persistently infected animals, protection of heifers and cows against transplacental infection is the most important aim of BVDV vaccination. In principal, BVD vaccines with replication competent, attenuated BVDV (modified live vaccines) and vaccines with inactivated BVDV preparations (killed vaccines) are used. In Germany, modified live vaccines as well as killed vaccines are registered, however, only BVDV type I strains are included in both types of vaccines. This paper presents an short overview about the different BVD vaccines and their efficacy and safety. In addition, new vaccine types are mentioned and final conclusions are drawn.  相似文献   

2.
This brief review describes types and quality (efficacy and safety) of bovine viral diarrhoea virus (BVDV) vaccines that are in the market or under development. Both conventional live and killed vaccines are available. The primary aim of vaccination is to prevent congenital infection, but the few vaccines tested are not highly efficacious in this respect, as shown in vaccination-challenge experiments. Vaccination to prevent severe postnatal infections may be indicated when virulent BVDV strains are prevalent. Live BVDV vaccines have given rise to safety problems. A complication for the development of BVDV vaccines is the wide antigenic diversity among wild-type BVDV. There is ample room for improvement of both the efficacy and safety of BVDV vaccines, and it may be expected that better vaccines, among which marker vaccines, will be launched in the future.  相似文献   

3.
Bovine viral diarrhoea virus (BVDV) is one of the most common and economically important viral infections of cattle. As vaccination is common in most European countries, differentiation between infected and vaccinated animals is one of the key challenges facing BVDV eradication campaigns. This study was designed to compare the ability of commercial ELISA kits to differentiate antibodies generated following vaccination with four different commercial inactivated BVDV vaccines from antibodies generated following challenge with virulent BVDV. Although none of the tested vaccine–ELISA combinations was able to differentiate an infected from a vaccinated animal (DIVA) at the individual animal level, p80 blocking ELISAs, in combination with inactivated BVDV vaccines, may have some value under certain circumstances at herd level. In most cases, antibody responses to BVDV vaccines cannot be clearly distinguished from responses seen in the early phase of natural infection. No commercial BVD vaccine showed true marker qualities for DIVA using p80 blocking ELISAs.  相似文献   

4.
牛病毒性腹泻病毒(bovine viral diarrhea virus,BVDV)和猪瘟病毒(classical swine fever virus,CSFV)同属黄病毒科瘟病毒属,猪瘟疫苗中污染BVDV可引起免疫失败。但由于两者在病毒粒子结构、基因组结构和抗原特性等方面均很接近,在血清学上存在交叉反应,因此难以检测猪瘟疫苗中污染的BVDV。文章对BVDV在猪瘟疫苗中的污染情况和检测方法进行了论述,旨在为猪瘟疫苗污染BVDV的检测提供理论基础。  相似文献   

5.
Bovine viral diarrhea virus (BVDV) infections cause respiratory, reproductive, and enteric disease in cattle. Vaccination raises herd resistance and limits the spread of BVDV among cattle. Both killed and modified live vaccines against BVDV are available. While modified live vaccines elicit an immune response with a broader range and a longer duration of immunity, killed vaccines are considered to be safer. One way to improve the performance of killed vaccines is to develop new adjuvants. The goal of this research was evaluate new adjuvants, consisting of combinations of Quil A cholesterol and dimethyldioctadecylammonium (DDA) bromide, for use in killed vaccines. Responses to three novel killed vaccines, using combinations of Quil A and DDA as adjuvants, were compared to responses to a commercial modified live and a commercial killed vaccine. Vaccination response was monitored by measuring viral neutralizing antibodies (VN) levels and by response to challenge. All three novel vaccines were efficacious based on reduction in virus isolation, pyrexia, and depression. Compared to a commercial killed vaccine, the three novel vaccines elicited higher VN levels and reduced injection site inflammation.  相似文献   

6.
Ridpath JF 《Preventive veterinary medicine》2005,72(1-2):17-30; discussion 215-9
In the early 1990s research groups in North America noted that a newly recognized severe acute form of bovine viral diarrhea virus infection, referred to as hemorrhagic syndrome or severe acute BVDV (SA BVDV), was associated with a genetically distinct subgroup of BVDV strains. This new subgroup was named BVDV genotype 2 or BVDV2. All BVDV strains previously characterized in the literature belonged to a separate genotype, BVDV1. However, not all strains identified as BVDV2 were associated with severe acute infections. If I did this deletion, I did not mean to do it. I think it was already here, though. I see there are some other big edits that I did not do; fine. Hollis subsequent surveys of BVDV strains isolated from clinical submissions to diagnostic laboratories and contaminated fetal calf serum suggested that the ratio of BVDV2 to BVDV1 strains in the U.S. approached 50%. Further, while antigenic cross reactivity is seen between BVDV1 and BVDV2 strains, a log or more difference is typically observed in titers against viruses from different genotypes. These observations prompted vaccine manufacturers in North America to produce vaccines against BVDV that contained antigens from both BVDV1 and BVDV2 strains. Under experimental conditions, these new vaccines offered improved protection against type 2 strains, however field data are still insufficient to assess their efficacy in practice. The BVDV genotypes may also be segregated into subgenotypes. Two subgenotypes of both BVDV1 (BVDV1a and BVDV1b) and BVDV2 (BVDV2a and BVDV2b) have been reported in North American. BVDV2a predominates with BVDV2b isolation a rare event. In contrast, BVDV1a and BVDV1b are both commonly isolated. Antigenic differences observed between strains from the BVDV1a and BVDV1b subgenotypes have led to the suggestion that protection may be improved by inclusion of strains from both BVDV1a and BVDV1b in vaccines in addition to BVDV2. The cost to benefit ratio of this proposal is currently a matter of debate.  相似文献   

7.
Functional interaction between lymphoid cells and lymphotropic viruses is particularly evident for bovine viral diarrhea virus (BVDV) in cattle and its closely related virus, the border disease virus (BVDV) in sheep. The most important aspect of acute or chronic phases of BVDV or BDV infection was the host's increased susceptibility to secondary bacterial or viral infection. To study the ability of BVDV to alter the development of the cellular immune responses to concomitant inoculation with T cell-dependent and T cell-independent antigens, lambs were inoculated twice with rabbit RBC and Escherichia coli lipopolysacharide (LPS) and then were infected with a cytopathic strain of BVDV at postinoculation day 3. Leukopenia characterized by lymphopenia developed after BVDV infection. Increased [3H]thymidine incorporation was observed in resting or lectin-stimulated blood mononuclear cells in the first weeks after inoculation in BVDV-infected lambs, but was followed by decreased [3H]thymidine incorporation after the second inoculation for up to 8 weeks after initial inoculation. In contrast, transient decrease of blastogenic responses, associated with toxic effect of LPS, was detected in inoculated noninfected lambs, but was followed by stimulation of cellular immune responses. Inoculated noninfected lambs had good in vitro cellular immune response to rabbit RBC and LPS antigens, whereas lymphocytes from BVDV-infected lambs could not mount lasting cellular immune responses to antigens or BVDV. Results suggest that BVDV infection in lambs modulates the ability of lymphocytes to respond to lectins or antigenic stimuli according to the time after infection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Evolution of bovine viral diarrhea virus vaccines.   总被引:1,自引:0,他引:1  
Control of bovine viral diarrhea virus (BVDV) infection is economically important to the cattle industry because the virus causes a variety of clinical diseases that adversely affect essentially all stages of the production cycle. Production losses primarily stem from reproductive failure and from immunosuppression during acute BVDV infection, which predisposes calves to respiratory or enteric diseases. Control is achieved by implementing herd health pro-grams focused on limiting exposure by avoiding persistently infected (PI) carrier cattle and by optimizing protective immunity through immunization. Vaccination cannot be relied upon solely to protect against fetal infection and losses due to BVD. This is because no single BVDV vaccine has been shown to give complete fetal protection. In addition to strategic use of vaccines, herd management practices should also be implemented to identify and eliminate PI carrier cattle and to avoid exposure to BVDV infection.  相似文献   

9.
牛病毒性腹泻病毒致病机制研究进展   总被引:1,自引:0,他引:1  
牛病毒性腹泻(bovine viral diarrhea,BVD)和黏膜病(mucosal disease,MD)均是由牛病毒性腹泻病毒(bovine viral diarrhea virus,BVDV)感染引发的传染病,严重威胁世界养牛业的发展。文章概述了BVDV分型及其分子生物学特征,并从急性感染、经胎盘或子宫感染、持续性感染和黏膜病4个方面总结了近期国内外BVDV致病机制的研究进展。根据序列保守性及是否致细胞病变可将BVDV分为两种基因型和两种生物型,其中,新发现的"HoBi"株归类为瘟病毒属。BVDV基因进化很快,基因组编码4种结构蛋白和8种非结构蛋白,编码蛋白在病毒的复制、翻译及在宿主致病过程中发挥重要作用。BVDV致病机制复杂,急性感染会造成病毒血症、繁殖障碍、免疫抑制等,急性感染牛发生腹泻的原因与BVDV感染胃肠道的肌层、黏膜下层并干扰肠道神经的正常功能相关,非致细胞病变型(NCP)BVDV是造成急性感染的病因。胚胎感染BVDV取决于病毒首次侵袭时胎儿在子宫内的生长阶段。NCP型BVDV具有抑制胎儿体内产生Ⅰ型干扰素的能力,致使该病毒在宿主中得以生存并形成持续性感染牛,当持续性感染牛再次感染与NCP型BVDV高度同源的致细胞病变型(CP)毒株时直接诱发黏膜病。两种生物型的产生是发生持续性感染和黏膜病的重要因素,NCP型可向CP型BVDV进行转化。本综述有助于发现控制BVD-MD传播的新途径,为消灭该病和新型疫苗的研制提供参考。  相似文献   

10.
OBJECTIVE: To evaluate risk of bovine viral diarrhea virus (BVDV) infection between birth and 9 months of age for dairy replacement heifers raised under typical dry-lot management conditions. DESIGN: Longitudinal observational study. ANIMALS: 446 calves. PROCEDURE: Calves were randomly selected from 2 dairies that used killed and modified-live BVDV vaccines. Repeated serologic and BVDV polymerase chain reaction assays were used to estimate risk of BVDV infection in calves of various ages (1 to 60 days; 61 to 100 days; 101 days to 9 months) and to estimate overall infection rate by 9 months of age. RESULTS: Risk of BVDV infection increased with age (maximum risk, 150 to 260 days). Proportion of calves infected with BVDV by 9 months of age was higher for dairy A (0.665), compared with dairy B (0.357). Percentage infected with BVDV type I did not differ between dairy A (18.2%) and dairy B (15.2%), whereas percentage infected with BVDV type II for dairy A (50%) was twice that for dairy B (21%). Between 210 and 220 days of age, infection with BVDV regardless of type was > 1.3%/d on dairy A and 0.5%/d on dairy B. CONCLUSIONS AND CLINICAL RELEVANCE: Under dry-lot conditions, a considerable amount of BVDV infection may occur before 9 months of age. Risk of infection increases with age. Although dairies may appear to have similar management practices, there can be considerably different risks of BVDV infection among dairies.  相似文献   

11.
A randomized clinical trial was conducted to compare the humoral immune response to 3 different commercial vaccines in dairy heifers housed in 3 different dairy farms in Quebec. All heifers were seronegative to type 1 bovine viral diarrhea virus (BVDV) (Singer strain), type 2 BVDV (NVSL 125c strain), and bovine herpesvirus-1 (BHV-1) at the beginning of the trial. In addition, control heifers in group 1 remained seronegative to the 2 viruses till the end of the trial. Significant differences in humoral immune responses occurred among the 3 commercial vaccines at 4 weeks and 6 months following vaccination. The vaccine in group 2 elicited higher mean antibody titers and seroconversion rates to both type 1 and type 2 BVDV than that in groups 3 or 4. Vaccines in groups 2 and 3 induced higher mean antibody titers to BHV-1 than did the vaccine in group 4.  相似文献   

12.
A protocol is described to measure the protection of the bovine fetus against an experimental bovine virus diarrhea virus (BVDV) infection after vaccination. Two inactivated experimental vaccines were applied twice with a 3 week interval. A mixture of three different Dutch field strains was used as challenge on mainly the 82nd day of gestation to vaccinated and unvaccinated control animals. The challenge was applied 5 months after completion of the two-fold vaccinations. All calves born from unvaccinated control animals were persistently infected. The calves born from dams vaccinated with the two different inactivated BVDV vaccines were persistently infected in 78 and 60%, respectively.  相似文献   

13.
Infection with Bovine Viral Diarrhea Viruses (BVDV) in cattle results in a wide range of clinical manifestations, ranging from mild respiratory disease to fetal death and mucosal disease, depending on the virulence of the virus and the immune and reproductive status of the host. In this study 30 Argentinean BVDV isolates were characterized by phylogenetic analysis. The isolates were genotyped based on comparison of the 5′ untranslated region (5′ UTR) and the E2 gene. In both phylogenetic trees, 76% of the viruses were assigned to BVDV 1b, whereas BVDV 1a, 2a and 2b were also found. Eight of the BVDV 1b isolates were further characterized by cross-neutralization tests using guinea pig antisera and sera from bovines vaccinated with two different commercial vaccines. The results demonstrated the presence of a marked antigenic diversity among Argentinean BVDV isolates and suggest the need to incorporate BVDV 1b isolates in diagnostic strategies.  相似文献   

14.
Bovine viral diarrhea virus (BVDV) infection is an important risk factor for development of shipping fever pneumonia in feedlot cattle, and infects but does not cause morphologic evidence of damage to airway epithelial cells. We hypothesized that BVDV predisposes to bacterial pneumonia by impairing innate immune responses in airway epithelial cells. Primary cultures of bovine tracheal epithelial cells were infected with BVDV for 48 h, then stimulated with LPS for 16 h. Expression of tracheal antimicrobial peptide (TAP) and lingual antimicrobial peptide (LAP) mRNA was measured by quantitative RT-PCR, and lactoferrin concentrations were measured in culture supernatant by ELISA. BVDV infection had no detectable effect on the constitutive expression of TAP and LAP mRNA or lactoferrin concentration in culture supernatant. LPS treatment provoked a significant increase in TAP mRNA expression and lactoferrin concentration in the culture supernatant (p<0.01), and these effects were significantly (p<0.02, p<0.01) abrogated by prior infection of the tracheal epithelial cells with the type 2 ncp-BVDV isolate. In contrast, infection with the type 1 ncp-BVDV isolate had no effect on TAP mRNA expression or lactoferrin secretion. LPS treatment induced a significant (p<0.001) upregulation of LAP mRNA expression, which was not significantly affected by prior infection with BVDV. These data indicate that infection with a type 2 BVDV isolate inhibits the LPS-induced upregulation of TAP mRNA expression and lactoferrin secretion by tracheal epithelial cells, suggesting a novel mechanism by which this virus abrogates respiratory innate immune responses and predisposes to bacterial pneumonia in cattle.  相似文献   

15.
Bovine viral diarrhea virus (BVDV) infection continues to have a significant impact upon US cattle producers despite the availability of more than 140 federally licensed vaccines. Detection and control is hampered by viral heterogeneity that results in differences in neutralizing epitopes, cytopathology and virulence. Recently it was found that there are two different genotypes, BVDV1 and BVDV2, among BVDV. BVDV2 isolates make up a significant proportion of the BVDV isolated in North America. Serologically BVDV2 viruses can be distinguished from BVDV1 and border disease viruses. Mab binding also distinguishes between BVDV1, BVDV2 and BDV. Like the BVDV1 viruses, BVDV2 viruses may exist as one of two biotypes, cytopathic or noncytopathic, based on their activity in cultured cells. Cytopathogenic effects on cultured cells does not correlate with virulence in vivo, as BVDV2 associated with hemorrhagic syndrome (HS) are noncytopathic. Variation among BVDV1 and BVDV2 in the 5' UTR is similar. Phylogenetic analysis and differences in virulence suggest that BVDV2 are heterogeneous. Symptoms resulting from BVDV2 infections may range from clinically inapparent to clinically severe. Recently, disease outbreaks associated with acute uncomplicated BVDV infection have been reported in the US and Canada. These outbreaks of clinically severe disease, termed HS, were all associated with viruses from the BVDV2 genotype. Not all BVDV2 isolates cause clinically severe disease. Avirulent BVDV2 isolates do exist and may predominate over virulent BVDV2 in nature. When virulent BVDV2 viruses are inoculated into calves they induce a disease characterized by fever, diarrhea, leukopenia, lymphopenia, neutropenia, thrombocytopenia, and death. Infection with avirulent BVDV2 results in a reduction of luekocytes that may be accompanied by a low-grade fever. These viruses do not cause clinical disease or a clinical leukopenia.  相似文献   

16.
OBJECTIVE: To compare the efficacy of modified-live virus (MLV) vaccines containing either type 1 bovine viral diarrhea virus (BVDV) or types 1 and 2 BVDV in protecting heifers and their offspring against infection associated with heterologous noncytopathic type 2 BVDV challenge during gestation. DESIGN: Randomized controlled study. ANIMALS: 160 heifers and their offspring. PROCEDURES: After inoculation with a placebo vaccine, 1 or 2 doses of an MLV vaccine containing type 1 BVDV, or 1 dose of an MLV vaccine containing both types 1 and 2 BVDV, heifers were bred naturally and challenge exposed with a type 2 BVDV field isolate between 62 and 104 days of gestation. Pregnancies were monitored; after parturition, virus isolation and immunohistochemical analyses of ear-notch specimens were used to determine whether calves were persistently infected. Blood samples were collected at intervals from heifers for serologic evaluation and virus isolation. RESULTS: Persistent infection was detected in 18 of 19 calves from heifers in the control group and in 6 of 18 calves and 7 of 19 calves from heifers that received 1 or 2 doses of the type 1 BVDV vaccine, respectively. None of the 18 calves from heifers that received the type 1-type 2 BVDV vaccine were persistently infected. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the incidence of persistent BVDV infection among offspring from dams inoculated with 1 dose of the MLV vaccine containing types 1 and 2 BVDV was decreased, compared with 1 or 2 doses of the MLV vaccine containing only type 1 BVDV.  相似文献   

17.
Bovine viral diarrhea virus (BVDV) is considered an important cause of economic loss within bovine herds worldwide. In Argentina, only the use of inactivated vaccines is allowed, however, the efficacy of inactivated BVDV vaccines is variable due to its low immunogenicity. The use of recombinant subunit vaccines has been proposed as an alternative to overcome this difficulty. Different studies on protection against BVDV infection have focused the E2 protein, supporting its putative use in subunit vaccines. Utilization of transgenic plants expressing recombinant antigens for the formulation of experimental vaccines represents an innovative and cost effective alternative to the classical fermentation systems.The aim of this work was to develop transgenic alfalfa plants (Medicago sativa, L.) expressing a truncated version of the structural protein E2 from BVDV fused to a molecule named APCH, that target to antigen presenting cells (APCH-tE2). The concentration of recombinant APCH-tE2 in alfalfa leaves was 1 μg/g at fresh weight and its expression remained stable after vegetative propagation. A methodology based an aqueous two phases system was standardized for concentration and partial purification of APCH-tE2 from alfalfa. Guinea pigs parentally immunized with leaf extracts developed high titers of neutralizing antibodies. In bovine, the APCH-tE2 subunit vaccine was able to induce BVDV-specific neutralizing antibodies. After challenge, bovines inoculated with 3 μg of APCH-tE2 produced in alfalfa transgenic plants showed complete virological protection.  相似文献   

18.
Bovine viral diarrhea (BVD) infection caused by bovine viral diarrhea virus (BVDV), a Pestivirus of the Flaviviridae family, is an important cause of morbidity, mortality and economical losses in cattle worldwide. E2 protein is the major glycoprotein of BVDV envelope and the main target for neutralising antibodies (NAbs). Different studies on protection against BVDV infection have focused on E2, supporting its putative use in subunit vaccines. A truncated version of type 1a BVDV E2 (tE2) expressed in mammalian cells was used to formulate an experimental oleous monovalent vaccine. Immunogenicity was studied through immunisation of guinea pigs and followed by trials in cattle. Calves of 8-12?months were vaccinated, twice with a 4?week interval, with either a tE2 subunit vaccine (n?=?8), a whole virus inactivated vaccine (n?=?8) or left untreated as negative control group (n?=?8). Four weeks after the last immunisation the animals were experimentally challenged intranasally with a non-cythopathic BVDV strain. Following challenge, BVDV was isolated from all unvaccinated animals, while 6 out of 8 animals vaccinated with tE2 showed complete virological protection indicating that the tE2 vaccine presented a similar performance to a satisfactory whole virus inactivated vaccine.  相似文献   

19.
A survey of bovine viral-diarrhoea virus (BVDV) infection was carried out in a non-vaccinated cattle population from the Asturias region of Spain in 1997 to assess seroprevalence and identify risk factors associated with infection. Twenty-eight herds were included; 529 cows were bled. Information regarding the herd and each animal sampled were recorded through a personal interview with the farmer. The true prevalence was estimated to be 21%. According to the antibody-age profiles and the herd-management characteristics, no persistently infected animals were suspected at that time within the herds sampled. Random-effects logistic regression found two major factors associated with seropositivity: age and cow origin. Results suggested that BVDV infection could be controlled in that area by livestock-trade control (without vaccines). In addition, an increasing risk of abortion was not observed when cows were seropositive to both BVDV and Neospora caninum infections.  相似文献   

20.
Bovine viral diarrhoea virus (BVDV) is an endemic pathogen worldwide and eradication strategies focus on the identification and removal of persistently infected (PI) animals arising after in utero infection. Despite this, acute infections with BVDV can persist for months or years after the removal of the PI source despite repeated screening for PIs and tight biosecurity measures. Recent evidence for a prolonged duration of viraemia in the testicles of bulls following acute BVDV infection suggests the possibility of a form of chronic persistence that may more closely resemble the persistence strategies of hepatitis C virus (HCV). To investigate the potential for virus transmission from infected and recovered cattle to virus naïve hosts we established an acute infection of 5 BVDV-naïve calves and monitored animals over 129 days. Infectious BVDV was detected in white blood cells between days 3 and 7 post-challenge. The animals seroconverted by day 21 post-infection and subsequently were apparently immune and free from infectious virus and viral antigen.Animals were further monitored and purified white blood cells were stimulated in vitro with phytohaemagglutinin A (PHA) during which time BVDV RNA was detected intermittently.Ninety-eight days following challenge, blood was transferred from these apparently virus-free and actively immune animals to a further group of 5 BVDV-naïve calves and transmission of infection was achieved. This indicates that BVDV-infected, recovered and immune animals have the potential to remain infectious for BVDV-naïve cohorts for longer than previously demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号