首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. In the semiarid regions of sub-Saharan Africa, fertilizer recovery and nutrient release from organic sources are often moisture limited. Moreover, in these regions runoff brings about large nutrient losses from fertilizer or organic inputs. This study was conducted in the north sudanian climate zone of Burkina Faso (annual rainfall 800 mm, PET 2000 mm yr−1). We assessed the combined and interactive effects of two types of permeable barriers (stone rows and grass strips of Andropogon gayanus Kunth cv. Bisquamulatus (Hochst.) Hack .) and organic or mineral sources of nitrogen on erosion control and sorghum yield. The field experiment (Ferric Lixisol, 1.5% slope) was carried out during three rainy seasons and consisted of 2 replications of 9 treatments, in which the barriers were put along contours and combined with compost, manure and fertilizer nitrogen (N). Compared with the control plots, the average reduction in runoff was 59% in plots with barriers alone, but reached 67% in plots with barriers + mineral N and 84% in plots with barriers + organic N. On average, stone rows reduced soil erosion more than grass strips (66% versus 51%). Stone rows or grass strips without N input did not induce a significant increase of sorghum production. Supplying compost or manure in combination with stone rows or grass strips increased sorghum grain yield by about 142%, compared with a 65% increase due to mineral fertilizers. The sorghum grain yields at 1 m upslope from the grass strips were less than those 17 m from the grass strips. As stones do not compete with plants, the opposite trend was observed with stone rows. We conclude that for these nutrient depleted soils, permeable barriers improve nutrient use efficiency and therefore crop production. However, grass strips must be managed to alleviate shade and other negative effects of the bunds on adjacent crops.  相似文献   

2.
Unsuitable agricultural practices together with adverse environmental conditions have led to degradation of soil in many Mediterranean areas. One method for recovering degraded soils in semiarid regions, is to add organic matter in order to improve soil characteristics, thereby enhancing biogeochemical nutrient cycles. In this study, the effect of adding the organic fraction of urban wastes (both fresh and composted) on different carbon fractions and on microbiological and biochemical parameters (microbial biomass C, basal respiration and different enzymatic activities) of a degraded soil of SE Spain has been assessed in a 2 year experiment. Three months after the addition of the organic material, spontaneous plant growth occurred and the plant cover lasted until the end of the experiment. Organic soil amendment initially increased the levels of soil organic matter, microbial biomass, basal respiration and some enzyme activities related to the C and N cycles These values decreased but always remained higher than those of the unamended soil. The results indicate that the addition of urban organic waste is beneficial for recovering degraded soils, the microbial activity of which clearly increases with amendment. The incorporation of compost seemed to have a greater positive effect on the soil characteristics studied than the incorporation of fresh organic matter.  相似文献   

3.
Soil moisture characteristic curves were determined in long-term trials at the agronomic research center of Saria (latitude 12°16′ N, longitude 2°09′ W) in West-central Burkina Faso. The agronomic treatments combined soil tillage with organic and chemical fertilizers. The twin values for soil moisture and water potential showed that on ploughed plots, moisture content was higher at low suction and lower at high suction than the hand hoed plots. Moisture contents were higher for extreme suctions (pF < 1.5 and >3) on plots that received high dose of animal manure. The bush fallow plots behaved as a ploughed plot at low suction and like a hand hoed plot at the high suction. Field capacities were around 9.50% (g/g) and 8% (g/g), respectively, for hand hoed and ploughed plots, while the wilting points for both were of 5–6% (g/g). Organic matter input improved field capacity and soil water content at wilting point but not the useful available water (UAW). The UAW ≥10 mm on the fallow and the control, while it was <9 mm on the other treatments in 0–20 cm soil layer. Soil structural modifications induced by tillage and organic matter input explained these differences in soil hydrologic regime.  相似文献   

4.
In the soudano–sahelian zone of Burkina Faso, the short-term fallow effect on the soil chemical and microbial properties was evaluated. In four farm experiments, two types of fallows were compared with cultivated fields: a natural vegetation fallow and a fallow enriched with Andropogon gayanus. After 5 to 7 years of experiments, soil chemical and microbial characteristics were determined in laboratory for 0–10 cm soil depth. Soil organic carbon (+64%), nitrogen (+35%), microbial biomass (+76%), basal respiration (+141%), and β-glucosidase activity (+86%) were significantly higher in fallows plots than in cultivated fields. The metabolic quotient was not significantly different on fallows compared to the cropped plots. Also, no significant difference was highlighted between natural vegetation fallows and the A. gayanus-enriched one.  相似文献   

5.
Crop yields are primarily water-limited in dryland production systems in semiarid regions. This study was conducted in a catchment located in the “plateau central” of Burkina Faso to assess the impact of the space between stone lines on runoff and crop performance. The experimental design consisted of four plots in which stone lines were installed. The spacing between the lines was 100 m in the first plot, 50 m in the second, 33 m in the third, and 25 m in the last plot. The soil was a Ferric lixisol and the slope, which is characteristic of the area, was about 1–3%. Subplots placed at regular and fixed distances from the lines were used to monitor soil water content and crop yield. Runoff from all plots was measured using a water discharge recorder. It was found that 31% of rainfall was lost through runoff in plots without stone lines. The efficiency of stone lines in checking runoff and in improving soil water storage increased with reduced stone line spacing (runoff was reduced by an average of 5% on plots where the space between the lines was 33 m, but was reduced by 23% when the stone line spacing was 25 m). Soil water content decreased with increasing distance from the stone line. Sorghum (Sorghum bicolor (L.) Moench) performance was greatly affected by stone line and plant straw and grain yield were doubled in plots with stone lines compared with those of plots without stone lines. At an area of about 6 m from the stone lines (upslope), where organo-mineral sediments were collected, sorghum grain yields were 60% greater than that obtained at 19 m from stone lines. The stone line technique seems to be a sound option to mitigate water stress during dry spells.  相似文献   

6.
Soil structure plays an important role in edaphic conditions and the environment. In this study, we investigated the effects of organic amendment on soil structure and hydraulic properties. A corn field in a semiarid land was separately amended with sheep manure compost at five different rates (2, 4, 6, 8 and 10 t/ha) and corn stover (6 t/ha) in combination with two decomposing agents. The soil structure of different amended soils was analyzed from the aggregate and pore domain perspectives. The internal pore structure of the soil was visualized through X-ray computed tomography and quantified using a pore-network model. Soil aggregate-size distribution and stability, saturated hydraulic conductivity, and water-retention curves were measured by sampling or in situ. The gas permeability and diffusivity of different amended soils were simulated based on the extracted pore networks. The aggregate stability of the amended soils was improved compared with the control, that is, the mean weight diameter increased and the percentage of aggregate destruction decreased. The stability of soil aggregates varied non-monotonically with the application rate of compost and decreased after treatment with corn stover and decomposing agents. The pore-network parameters including air-filled porosity, pore radius, throat length, and coordinate number increased for the amended soils compared with the control. The mean pore size increased with increasing compost incorporation rate. The saturated hydraulic conductivity of the compost-amended soils was higher than that of the control but varied quadratically with the application rate. The saturated hydraulic conductivity of soil treated with corn stover and decomposing agents was clearly higher than that without the agent and the control. The greater gas diffusivity and air permeability indicate that soil aeration improved following the incorporation of organic amendments. The air permeability versus air-filled porosity relationship followed a power law, and the gas diffusivity versus air-filled porosity relationship was characterized by a generalized density-corrected model regardless of amendment. The findings of this study can help improve the understanding of soil structure and hydrological function to organic fertilizer incorporation and further monitor the quality of soil structure through the pore space perspective.  相似文献   

7.
废水灌溉下有机物料对重度盐渍土养分及芦苇生长的影响   总被引:2,自引:0,他引:2  
在山东滨州含盐量为16.7 g.kg 1的重度退化滨海盐碱湿地,研究了造纸废水灌溉条件下添加有机物料对盐渍土养分和芦苇生长的影响,以期为重度退化滨海盐碱湿地的生物修复提供依据。试验从春季开始进行,共设4种处理:翻耕对照(CK)、翻耕+废水灌溉(FF)、翻耕+废水灌溉+秸秆(FFJ)以及翻耕+废水灌溉+污泥(FFW),测定了不同处理下土壤养分、呼吸强度、含盐量及芦苇株高和生物量的变化。结果表明,与对照相比,各处理土壤有机质显著提高,10月末时FFJ、FFW和FF处理土壤有机质含量分别是对照的1.34倍、1.29倍和1.22倍;碱解氮和有效磷含量也高于对照,依次为FFW>FFJ>FF>CK;各处理土壤呼吸强度高于对照,其中FFJ处理显著高于对照,比试验初期提高96%;各处理表层土壤含盐量均出现不同程度降低,以FFJ和FFW降低幅度最大,分别比对照降低22.6%和16.3%;FFW、FFJ和FF处理的芦苇株高显著高于对照,8月末分别是对照的3.1倍、2.7倍和2.2倍;FFJ和FFW处理的芦苇生物量、根冠比和平均叶面积都显著高于对照,而FF处理与对照没有显著差异;FF处理芦苇株高、生物量与土壤有效氮含量相关最为显著,FFJ和FFW处理与土壤有机质含量相关性最为显著。结果表明,废水灌溉为重度盐渍化土壤提供了充足的水分,有机物料能有效提高土壤养分含量,解决了重度盐碱化土壤水分胁迫和养分胁迫的问题,促进芦苇生长,但秸秆和污泥两种有机物料之间没有显著差异。  相似文献   

8.
水土保持功能评价及其在水土保持区划中的应用   总被引:3,自引:0,他引:3  
随着国家对生态文明建设的日益重视,以及国家及地方主体功能区规划的实施,对于水土保持的功能研究也越来越多.结合全国水土保持规划工作的需要,提出水土保持功能的概念、类型确定原则和功能类型,阐述了水土保持基础功能和社会经济功能的评价方法,以及各基础功能的评价指标体系.以太行山东部山地丘陵区为例,举例说明水土保持功能评价的过程和结果.对全国水土保持区划三级区基础功能进行统计分析,明确各功能的区域比例,提出8个一级区水土保持工作主要方向,维护和提高区域水土保持功能将成为水土保持工作的重点和方向.  相似文献   

9.
Atmospheric biological nitrogen fixation (BNF) by cowpea (Vigna unguiculata) and groundnut (Arachis hypogea) was evaluated using a 2-year (2000–2001) experiment with different fertilizer treatments. The 15N isotopic dilution method with a nonfixing cowpea as test reference crop was used. The effects of the two legumes on soil N availability and succeeding sorghum (Sorghum bicolor) yields were measured. Groundnut was found to fix 8 to 23 kg N ha-1 and the percentage of N derived from the atmosphere varied from 27 to 34%. Cowpea fixed 50 to 115 kg N ha−1 and the percentage of N derived from the atmosphere varied from 52 to 56%. Compared to mineral NPK fertilizer alone, legumes fixed more N from the atmosphere when dolomite or manure was associated with mineral fertilizers. Compared to soluble phosphate, phosphate rock increased BNF by cowpea. Significant correlation (p<0.05, R 2=0.94) was observed between total N yields of legumes and total N derived from the atmosphere. Compared to monocropping of sorghum, the soils of cowpea–sorghum and groundnut–sorghum rotations increased soil mineral N from 15 and 22 kg N ha−1, respectively. Cowpea–sorghum and groundnut–sorghum rotations doubled N uptake and increased succeeding sorghum yields by 290 and 310%, respectively. Results suggested that, despite their ability to fix atmospheric nitrogen, N containing fertilizers (NPK) are recommended for the two legumes. The applications of NPK associated with dolomite or cattle manure or NK fertilizer associated with phosphate rock were the better recommendations that improved BNF, legumes, and succeeding sorghum yields.  相似文献   

10.
Abstract

Kamouraska Ap horizon samples were incubated in the presence of organic amendments, peat moss, straw, compost and green manure, applied at a rate equivalent to 7.5 t of carbon/ha. Water was added to reach 80% of field capacity. The soil‐amendement mixtures were incubated at 37°C for periods of 4, 8, 16, 32 or 64 weeks. Settling tests were performed using a jolting volumeter. Minimum dry bulk density (mDBD), saturated hydraulic conductivity (Ksat) and water content at field capacity were determined. For the unamended soil, mDBD corresponded to 1.1 g.cm‐3 and Ksat max to 265 cm/h. After incubation, mDBD varied from 1.02 to 1.12 g.cm‐3 and Ksat max values were generally below 150 cm/h. The results were discussed in relation to the decomposition of the organic amendments and the formation of stable aggregates.  相似文献   

11.
我国的农业和土壤保持   总被引:3,自引:3,他引:3       下载免费PDF全文
 我国2000多年的农业史表明:通过循环利用有机肥,可以使粮食生产持续发展,保持并逐渐改善土地生产力。非农肥料的最高效投入方式可以增加粮食产量。但在一些地区,出现农民只偏好化肥的趋势。长期使用化肥会导致土壤问题,也会给粮食质量和人类健康带来不利影响,有机肥的使用应当引起特别关注,以改善土壤性状、发展可持续农业。人类创造农业,农业养育人类,为使资源环境进入正确的循环轨道,人类是自然的一个组成部分,而不是自然的敌人。通过对湖南省南部山区红壤的长期试验,表明天然植被恢复对于水土保持极为重要,在阴山北部的观测数据也得到同样的结论。  相似文献   

12.
This study was conducted to quantify nutrient losses by saltation and suspension transport. During two convective storms, mass fluxes of wind-blown particles were measured in a pearl millet (Pennisetum glaucum) field in southwest Niger, on a sandy, siliceous, isohyperthermic Psammentic Paleustalf. The trapped material at three heights (0·05, 0·26 and 0·50 m) and a sample of vertically deposited dust were analyzed for total element contents of K, C, N and P. The nutrient content of the material at 0·05 m was similar to the nutrient content of the topsoil. At 0·50 m, the material was three times richer in nutrients than the topsoil, whereas the deposited dust, trapped at 2·00 m, was 17 times richer. For all four elements, a total element (TE) mass flux profile was fitted throughout the observations. From the TE profiles, the following nutrient losses from the experimental plot were estimated: 57·1 kg ha−1 K, 79·6 kg ha−1 C, 18·3 kg ha−1 N, and 6·1 kg ha−1 P. The TE profiles showed a maximum value in the saltation layer. The suspended TE mass fluxes above the saltation layer were an order of magnitude lower than the saltation fluxes, but extended to greater heights. Therefore, saltation and suspension are both able to transport significant quantities of nutrients. While saltation results in only a local redistribution of nutrients, suspension may transport dust over thousands of kilometers, resulting in a regional loss of nutrients.  相似文献   

13.
Abstract. A no-tillage (NT) system was developed in semiarid Morocco to improve the soil fertility and stabilize yield through conservation of water. Results in two long-term trials (4 and 11 years) were able to show the effects of a no-tillage system in increasing total soil organic matter and total nitrogen. Over time, the quality of the NT soil surface was improved compared with that under conventional tillage (CT) with disc harrows. This effect was the result of an increase in soil organic carbon (SOC) and a slight decline in pH. However, over time, nitrogen decreased in both tillage practices, especially in the 0–25 mm layer (from 0.59 to 0.57 t ha−1 and from 0.44 to 0.42 t ha−1 under NT and CT, respectively). After 4 years of NT an extra 5.62 t ha−1 of SOC was sequestered in the 0–25 mm layer, and after 11 years the SOC increased further to 7.21 t ha−1.  相似文献   

14.
The concentration of cellulose in plant material greatly affects the decomposition rate of plant-derived litter and hence carbon availability. The disappearance of pure cellulose in soil was studied as a measure of plant decomposition and carbon turnover. Our objective was to understand the effect of various cellulose concentrations and plant material added to soil and collected during different seasons, on cellulase concentrations under laboratory conditions (e.g. constant soil moisture and incubation temperature). The percentage of recovery of the enzyme in the control soil and in samples amended with known amounts of cellulose powder was estimated. Several methods for estimating soil cellulase concentrations/activity are available, most based on the determination of released reducing sugars. The method used in this study is based on the cleavage of a cellulose-azure substrate by cellulase to spectrophotometrically detectable fragments. Our results showed a significant correlation (p<0.05) between cellulose concentration and cellulase levels in soil, which varied along the study period. When pure cellulose was added to the soil, cellulase was detected after 7 days of incubation, whereas when plant material was added to the soil, cellulase was detected after 14 days. The recovery of cellulase from soil was also found to be seasonally dependent. The method of cellulase determination used in this study was simple, safe and rapid. From the results presented in this study, it can be assumed that there are seasonally dependent factors that affect the existence and concentration of cellulase in soils of the arid Negev Desert, in addition to organic matter, water and temperature.  相似文献   

15.
水土保持的水环境效应研究   总被引:7,自引:3,他引:7       下载免费PDF全文
 非点源污染已成为我国很多湖库型水源地的主要污染源,给人们的生活和健康以及经济社会的可持续发展造成严重危害。水土保持措施是防治非点源污染,保护水源水质,保障饮水安全的重要手段。笔者界定了水土保持水环境效应的概念;将非点源污染的类型划分为农业型、水土流失型、农村生活型、城市径流型和降水降尘型;首次系统地揭示水土保持的水环境效应机制;定量分析小流域综合治理与区域综合治理水土保持的水环境效应。  相似文献   

16.
针对全国水土保持区划中确定的22个具有水源涵养功能的基本功能区,利用第1次全国水利普查获取的水力侵蚀数据,分析这些区域的水力侵蚀现状.结果表明:1)水源涵养基本功能区水力侵蚀以轻中度侵蚀为主,超过80%,强烈、极强烈、剧烈面积分布较少,与全国基本状况相似;2)与第2次全国土壤侵蚀遥感调查成果相比,水源涵养基本功能区水力侵蚀整体上有所好转,水力侵蚀总面积减少3.75%,轻中度侵蚀面积大幅减少,减幅超过20%;3)水源涵养基本功能区局部地区水力侵蚀形势严峻,极强烈和剧烈侵蚀面积虽然不大,但是与第2次遥感调查成果相比,面积均有所增加,相对增幅较大,说明局部地区存在水力侵蚀恶化的现象.  相似文献   

17.
水土保持综合措施对红壤坡地养分流失作用过程研究   总被引:4,自引:4,他引:4  
为了研究红壤坡地养分流失规律,通过江西省水土保持生态科技园2006~2007年野外试验,分析了3种生态措施、3种典型降雨红壤坡地N、P流失过程。结果表明:不同降雨类型下采取生态措施能对整个径流过程中的总氮和总磷浓度起到明显的控制作用,且各处理径流中氮和磷的流失主要集中在径流初期,后期均匀稳定。养分流失均以侵蚀泥沙携带养分流失为主,但随着降雨的减小,泥沙携带养分流失量占养分总流失量的比例会降低。各处理侵蚀泥沙均有养分富集现象,而且随着降雨的减小而增大。  相似文献   

18.
Nest structures of two termite species (Trinervitermes spp.) with epigeal (above-ground) mounds were analyzed to compare their nutrient status with that of adjacent soils. To take into account soil variability, the observations and samplings were made in three toposequences of different and representative West African savanna soils. The data showed the high degree of adaptation of these termite species to a large range of soil types and environments. Mounds of Trinervitermes geminatus and Trinervitermes trinervius, both grass-feeders, contained more clay, organic matter (OM), and exchangeable cations than the surrounding surface layer soil. The storage of OM and exchangeable cations was determined for T. geminatus nests and compared to the surrounding soil. Despite substantial nutrient storage in mounds, its total weight appeared low when compared to the nutrient storage in the surrounding 0–15 cm of soil surface layer. This illustrates how contradictory points of view on the use of termite mounds in agriculture need to be clarified using a classical approach that takes into account data by species; and this also evaluates the contribution of different termite mounds to nutrient fluxes and storage and the exact stocking rate of living mounds.  相似文献   

19.
This paper describes the results of a survey on farmers' perceptions of the effect of woody natural vegetation on wind erosion. Sixty farmers were interviewed in three villages in northern Burkina Faso. The farmers mentioned that the presence of woody vegetation between the crops could benefit yield, but feared competition between the natural vegetation and the crop. Vegetation in a field was considered to increase deposition and decrease erosion on that field. The most important vegetative characteristics that affect wind erosion were, according to the farmers, vegetation's shape, porosity, flexibility and arrangement of the vegetation in the field. At present, most farmers do not apply this knowledge to the management of the natural woody vegetation on their fields. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Few earthworms are present in production agricultural fields in the semi-arid plains of Colorado, where earthworm populations may be constrained by limited water and/or organic matter resources. We conducted a 12-week laboratory incubation study to determine the potential of a non-native endogeic earthworm (Aporrectodea caliginosa) to survive in a low-organic matter Colorado soil (1.4% organic C content), supplemented with or without biosolids, and to determine the effects of A. caliginosa on soil microbial biomass and soil nutrient availability. A factorial design with three main effects of A. caliginosa, biosolids addition, and time was used. Data was collected through destructively sampling at one, two, four, eight, and twelve weeks. During the 12-week study, 97.5% of the worms in the soil survived, and the survival of the earthworms was not significantly affected by the addition of biosolids. The addition of biosolids, however, did significantly reduce the gain in mass of the earthworms (8% mass gain compared to 18% in soil without biosolids). The presence of A. caliginosa significantly increased soil NH4-N, and NO3-N concentrations by 31% and 4%, respectively, which was less than the six fold increases in both soil NH4-N, and NO3-N concentrations supplied from biosolids. Microbial biomass carbon was not affected by A. caliginosa, but microbial biomass N was affected by an earthworm × biosolids interaction at week 1 and 12. We concluded that A. caliginosa can survive in a low-organic matter Colorado soil under optimal moisture content and that once established, A. caliginosa can provide modest increases in inorganic N availability to crops Colorado agroecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号