首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolution of neocortex   总被引:6,自引:0,他引:6  
  相似文献   

2.
The site of induction of long-term potentiation (LTP) at mossy fiber-CA3 synapses in the hippocampus is unresolved, with data supporting both pre- and postsynaptic mechanisms. Here we report that mossy fiber LTP was reduced by perfusion of postsynaptic neurons with peptides and antibodies that interfere with binding of EphB receptor tyrosine kinases (EphRs) to the PDZ protein GRIP. Mossy fiber LTP was also reduced by extracellular application of soluble forms of B-ephrins, which are normally membrane-anchored presynaptic ligands for the EphB receptors. The application of soluble ligands for presynaptic ephrins increased basal excitatory transmission and occluded both tetanus and forskolin-induced synaptic potentiation. These findings suggest that PDZ interactions in the postsynaptic neuron and trans-synaptic interactions between postsynaptic EphB receptors and presynaptic B-ephrins are necessary for the induction of mossy fiber LTP.  相似文献   

3.
Long-term potentiation (LTP) of synaptic strength, the most established cellular model of information storage in the brain, is expressed by an increase in the number of postsynaptic AMPA receptors. However, the source of AMPA receptors mobilized during LTP is unknown. We report that AMPA receptors are transported from recycling endosomes to the plasma membrane for LTP. Stimuli that triggered LTP promoted not only AMPA receptor insertion but also generalized recycling of cargo and membrane from endocytic compartments. Thus, recycling endosomes supply AMPA receptors for LTP and provide a mechanistic link between synaptic potentiation and membrane remodeling during synapse modification.  相似文献   

4.
The microcircuitry of the mammalian neocortex remains largely unknown. Although the neocortex could be composed of scores of precise circuits, an alternative possibility is that local connectivity is probabilistic or even random. To examine the precision and degree of determinism in the neocortical microcircuitry, we used optical probing to reconstruct microcircuits in layer 5 from mouse primary visual cortex. We stimulated "trigger" cells, isolated from a homogenous population of corticotectal pyramidal neurons, while optically detecting "follower" neurons directly driven by the triggers. Followers belonged to a few selective anatomical classes with stereotyped physiological and synaptic responses. Moreover, even the position of the followers appeared determined across animals. Our data reveal precisely organized cortical microcircuits.  相似文献   

5.
Clusters of coupled neuroblasts in embryonic neocortex.   总被引:20,自引:0,他引:20  
The neocortex of the brain develops from a simple germinal layer into a complex multilayer structure. To investigate cellular interactions during early neocortical development, whole-cell patch clamp recordings were made from neuroblasts in the ventricular zone of fetal rats. During early corticogenesis, neuroblasts are physiologically coupled by gap junctions into clusters of 15 to 90 cells. The coupled cells form columns within the ventricular zone and, by virtue of their membership in clusters, have low apparent membrane resistances and generate large responses to the inhibitory neurotransmitter gamma-aminobutyric acid. As neuronal migration out of the ventricular zone progresses, the number of cells within the clusters decreases. These clusters allow direct cell to cell interaction at the earliest stages of corticogenesis.  相似文献   

6.
When new learning occurs against the background of established prior knowledge, relevant new information can be assimilated into a schema and thereby expand the knowledge base. An animal model of this important component of memory consolidation reveals that systems memory consolidation can be very fast. In experiments with rats, we found that the hippocampal-dependent learning of new paired associates is associated with a striking up-regulation of immediate early genes in the prelimbic region of the medial prefrontal cortex, and that pharmacological interventions targeted at that area can prevent both new learning and the recall of remotely and even recently consolidated information. These findings challenge the concept of distinct fast (hippocampal) and slow (cortical) learning systems, and shed new light on the neural mechanisms of memory assimilation into schemas.  相似文献   

7.
8.
Cell cycle dependence of laminar determination in developing neocortex   总被引:29,自引:0,他引:29  
The neocortex is patterned in layers of neurons that are generated in an orderly sequence during development. This correlation between cell birthday and laminar fate prompted an examination of how neuronal phenotypes are determined in the developing cortex. At various times after labeling with [3H]thymidine, embryonic progenitor cells were transplanted into older host brains. The laminar fate of transplanted neurons correlates with the position of their progenitors in the cell cycle at the time of transplantation. Daughters of cells transplanted in S-phase migrate to layer 2/3, as do host neurons. Progenitors transplanted later in the cell cycle, however, produce daughters that are committed to their normal, deep-layer fates. Thus, environmental factors are important determinants of laminar fate, but embryonic progenitors undergo cyclical changes in their ability to respond to such cues.  相似文献   

9.
Conversion of new memories into a lasting form may involve the gradual refinement and linking together of neural representations stored widely throughout neocortex. This consolidation process may require coordinated reactivation of distributed components of memory traces while the cortex is "offline," i.e., not engaged in processing external stimuli. Simultaneous neural ensemble recordings from four sites in the macaque neocortex revealed such coordinated reactivation. In motor, somatosensory, and parietal cortex (but not prefrontal cortex), the behaviorally induced correlation structure and temporal patterning of neural ensembles within and between regions were preserved, confirming a major tenet of the trace-reactivation theory of memory consolidation.  相似文献   

10.
In vivo experience can occlude subsequent induction of long-term potentiation and enhance long-term depression of synaptic responses. Although a reduced capacity for synaptic strengthening may function to prevent excessive excitation, such an effect paradoxically implies that continued experience or training should not improve and may even degrade neural representations. In mice, we examined the effect of ongoing whisker stimulation on synaptic strengthening at layer 4-2/3 synapses in the barrel cortex. Although N-methyl-d-aspartate receptors were required to initiate strengthening, they subsequently suppressed further potentiation at these synapses in vitro and in vivo. Despite this transition, synaptic strengthening continued with additional sensory activity but instead required the activation of metabotropic glutamate receptors, suggesting a mechanism by which continued experience can result in increasing synaptic strength over time.  相似文献   

11.
The neocortex contains excitatory neurons and inhibitory interneurons. Clones of neocortical excitatory neurons originating from the same progenitor cell are spatially organized and contribute to the formation of functional microcircuits. In contrast, relatively little is known about the production and organization of neocortical inhibitory interneurons. We found that neocortical inhibitory interneurons were produced as spatially organized clonal units in the developing ventral telencephalon. Furthermore, clonally related interneurons did not randomly disperse but formed spatially isolated clusters in the neocortex. Individual clonal clusters consisting of interneurons expressing the same or distinct neurochemical markers exhibited clear vertical or horizontal organization. These results suggest that the lineage relationship plays a pivotal role in the organization of inhibitory interneurons in the neocortex.  相似文献   

12.
There are two types of inhibitory postsynaptic potentials in the cerebral cortex. Fast inhibition is mediated by ionotropic gamma-aminobutyric acid type A (GABA(A)) receptors, and slow inhibition is due to metabotropic GABA(B) receptors. Several neuron classes elicit inhibitory postsynaptic potentials through GABA(A) receptors, but possible distinct sources of slow inhibition remain unknown. We identified a class of GABAergic interneurons, the neurogliaform cells, that, in contrast to other GABA-releasing cells, elicited combined GABA(A) and GABA(B) receptor-mediated responses with single action potentials and that predominantly targeted the dendritic spines of pyramidal neurons. Slow inhibition evoked by a distinct interneuron in spatially restricted postsynaptic compartments could locally and selectively modulate cortical excitability.  相似文献   

13.
Storage of spatial information by the maintenance mechanism of LTP   总被引:2,自引:0,他引:2  
Analogous to learning and memory storage, long-term potentiation (LTP) is divided into induction and maintenance phases. Testing the hypothesis that the mechanism of LTP maintenance stores information requires reversing this mechanism in vivo and finding out whether long-term stored information is lost. This was not previously possible. Recently however, persistent phosphorylation by the atypical protein kinase C isoform, protein kinase Mzeta (PKMz), has been found to maintain late LTP in hippocampal slices. Here we show that a cell-permeable PKMz inhibitor, injected in the rat hippocampus, both reverses LTP maintenance in vivo and produces persistent loss of 1-day-old spatial information. Thus, the mechanism maintaining LTP sustains spatial memory.  相似文献   

14.
We observed robust coupling between the high- and low-frequency bands of ongoing electrical activity in the human brain. In particular, the phase of the low-frequency theta (4 to 8 hertz) rhythm modulates power in the high gamma (80 to 150 hertz) band of the electrocorticogram, with stronger modulation occurring at higher theta amplitudes. Furthermore, different behavioral tasks evoke distinct patterns of theta/high gamma coupling across the cortex. The results indicate that transient coupling between low- and high-frequency brain rhythms coordinates activity in distributed cortical areas, providing a mechanism for effective communication during cognitive processing in humans.  相似文献   

15.
A major direct GABAergic pathway from zona incerta to neocortex   总被引:4,自引:0,他引:4  
Retrograde fluorescent tracers were used to demonstrate a previously unknown but sizable direct gamma-aminobutyric acid (GABA)-containing neuronal pathway from the zona incerta to the neocortex in rats. This incertocortical pathway was found to project bilaterally to the entire neocortex and exhibited a rough corticotopic organization. Many of the zona incerta neurons projecting to the parietal and occipital cortices could also be immunohistochemically stained with antibodies to glutamic acid decarboxylase and GABA. Few of these neurons were immunoreactive to tyrosine hydroxylase antibodies, which identify dopamine-containing neurons. Injections in the frontal and entorhinal cortices labeled many neurons near or within the dopaminergic A13 subdivision of the zona incerta. In addition, the incertocortical system was found to be significantly larger during early postnatal (2 to 3 weeks) development. The projection pattern of this newly discovered pathway resembles that of the monoaminergic and cholinergic systems, arising from the brainstem and forebrain, suggesting possible similarities of function.  相似文献   

16.
Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons   总被引:26,自引:0,他引:26  
Rhythmic activity in the neocortex varies with different behavioral and pathological states and in some cases may encode sensory information. However, the neural mechanisms of these oscillations are largely unknown. Many pyramidal neurons in layer 5 of the neocortex showed prolonged, 5- to 12-hertz rhythmic firing patterns at threshold. Rhythmic firing was due to intrinsic membrane properties, sodium conductances were essential for rhythmicity, and calcium-dependent conductances strongly modified rhythmicity. Isolated slices of neocortex generated epochs of 4- to 10-hertz synchronized activity when N-methyl-D-aspartate receptor-mediated channels were facilitated. Layer 5 was both necessary and sufficient to produce these synchronized oscillations. Thus, synaptic networks of intrinsically rhythmic neurons in layer 5 may generate or promote certain synchronized oscillations of the neocortex.  相似文献   

17.
A puzzling feature of the neocortex is the rich array of inhibitory interneurons. Multiple neuron recordings revealed numerous electrophysiological-anatomical subclasses of neocortical gamma-aminobutyric acid-ergic (GABAergic) interneurons and three types of GABAergic synapses. The type of synapse used by each interneuron to influence its neighbors follows three functional organizing principles. These principles suggest that inhibitory synapses could shape the impact of different interneurons according to their specific spatiotemporal patterns of activity and that GABAergic interneuron and synapse diversity may enable combinatorial inhibitory effects in the neocortex.  相似文献   

18.
19.
The amount of early cell loss in five neocortical areas was inversely related to adult numbers of neurons in those areas. Differential cell death predicted particularly the thickness of the upper cortical laminae; it was not related to neuron numbers in the lower laminae. Cell loss thus determines some features of local neocortical differentiation.  相似文献   

20.
Memories are more easily disrupted than improved. Many agents can impair memories during encoding and consolidation. In contrast, the armamentarium of potential memory enhancers is so far rather modest. Moreover, the effect of the latter appears to be limited to enhancing new memories during encoding and the initial period of cellular consolidation, which can last from a few minutes to hours after learning. Here, we report that overexpression in the rat neocortex of the protein kinase C isozyme protein kinase Mζ (PKMζ) enhances long-term memory, whereas a dominant negative PKMζ disrupts memory, even long after memory has been formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号