首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Agronomic use of coal combustion by-products is often associated with boron (B) excess in amended soils and subsequently in plants. A greenhouse study with corn (Zea mays L.) as test plant was conducted to determine safe application rates of five fly ashes and one flue gas desulfurization gypsum (FDG). All by-products increased soil and corn tissue B concentration, in some cases above toxicity levels which are 5 mg hot water soluble B (hwsB) kg?1 soil and 100 mg B kg?1 in corn tissue. Acceptable application rates varied from 4 to 100 Mg ha? for different by-products. Leaching and weathering of a high B fly ash under ponding conditions decreased its B content and that of corn grown in fly ash amended soil, while leaching of the same fly ash under laboratory conditions increased fly ash B availability to corn in comparison to the fresh fly ash. Hot water soluble B in fly ash or FDG amended soil correlated very well with corn tissue B. Hot water soluble B in fly ash amended soil could be predicted based on soil pH and B solubility in ash at different pH values but not so in the case of FDG. Another greenhouse study was conducted to compare the influence of FDG and Ca(OH)2 on B concentration in spinach (Spinacia oleracea L.) leaves grown in soil amended with the high B fly ash. The Ca(OH)2 significantly decreased tissue B content, while FDG did not affect B uptake from fly ash amended soil.  相似文献   

2.
Abstract

To assess the mineral composition of plants growing in pure fly ash, grasses growing on lysimeters filled with alkaline, neutral, or acid fly ash were sampled several times in a 6‐year period. The samples were analyzed for elements essential for plants and animals as well as non‐essential, but environmentally significant, trace elements. Grasses were also sampled from ash dumps that were 20 and 30 years old. Fly ash is not a proper source of plant macronutrients N, P, and K. Plant growth on the alkaline fly ash can be influenced for some time by the high salinity of that ash. Grasses growing on unweathered fly ash were found to be high in Al, B, Co, Fe, Mo, Ni, Pb, and Se. Concentrations of several elements declined in time but levels of B, Fe, Mo, and Ni were still elevated in grasses on both fly ash dumps. All concentrations, except Al, were lower than toxicity levels for plants as found in literature. In plants growing on fresh fly ash concentrations of Mo, Pb, and Se can exceed the maximum tolerable levels for domestic animals. On weathered fly ashes (ash dumps) the Mo, Pb, and Se concentrations in grasses were below the maximum tolerable levels. Effects on animals by Mo in weathered ash may not be excluded because Mo concentrations can be high enough to induce Cu deficiency. Animals that feed on plants grown on fly ash could suffer from Ca, Mg, Na, and P deficiency.  相似文献   

3.
Coal fly ash has physical and chemical characteristics that makeit useful as a soil amendment, one of the more important beingthe potential to permanently improve the soil water relations ofsandy, drought-prone soils. We axemined changes in theinfiltration rate and water holding capacity of a sandy soilafter application of high rates (up to 950 Mg ha-1) of aClass F fly ash. Fly ash was applied to large field plots byeither conventional tillage (CT; moldboard plow-disk) orintensive tillage (IT; chisel plow-rotovate-disk), and tomicroplots using a rototiller. Infiltration rate (i) wasmeasured in both studies with a disk permeameter on threeoccasions over a 12-month period. Ash effects on gravimetric water content (θg) at the 0–40 cm soil depth were measuredduring a 168 hr period following a 2.5 cm rainfall event andwater release curves (33 to 500 kPa) were constructed in thelaboratory using soils from the large plots. In both studiesi was decreased by ~80% one year after additionof fly ash and θgin ash-amended soil was higher than unamended soil throughoutthe 168 hr monitoring period. Soil water distribution variedwith tillage; the IT treatment had the highest θg increasesin the 0–20 cm depth while the CT treatment had θgincreases throughout the 0–40 cm depth. Soil water content anddistribution in ash-amended microplots were similar to ITtreatments. Fly ash amendment not only increased water holdingcapacity but also increased plant available water by 7–13% inthe 100–300 kPa range. These results suggest fly ash amendmentmay have the potential to improve crop production in excessivelydrained soils by decreasing i and increasing the amountof plant available water in the root zone.  相似文献   

4.
Major impediments to the land application of coal combustion byproducts (fly ash) for crop fertilization have been the presence of heavy metals and their relatively low and imbalanced essential nutrient concentration. Although nutrient deficiencies, in particular N, P, and K, may be readily augmented by adding organic wastes such as sewage sludge and animal manure, the indiscriminate application of mixtures to crops can cause excessive soil alkalinity, imbalanced nutrition (P, Mg), phytotoxicities (B, Mn, ammonia, nitrite), and unspecified contamination of the food chain by elements such as As. In this study, nutrient availability data and linear programming (LP) were used to solve these problems by formulating fly ash-biosolid triple mixtures which complied with both plant and soil fertilization requirements, and met existing U.S.A. environmental regulations for total As application in sewage sludge (EPA-503). Thirteen different fly ash samples were LP-formulated with sewage sludge, poultry manure, CaCO3, and KCl to yield 13 unique mixtures, which were then evaluated in greenhouse pot experiments. Results indicated that normal growth and balanced nutrition of sorghum (Sorghumbicolor L.) and soybean (Glycine max (L.) Merr.) crops were achieved in all mixtures, comparable to a balanced fertilizer reference treatment, and significantly better than the untreated control. Phytotoxic levels of B, NH3, NO2 -, overliming problems, and excessive As levels which were previously encountered from indiscriminate use of these waste materials, were all well controlled by LP-formulated mixtures. Most fly ash quantities in mixtures were limited by either available B (< 4 kg ha-1) or total As (< 2 kg ha-1) restrictions during formulation, while the most alkaline fly ash was limited by its high calcium carbonate equivalence (CCE = 53.9%). These results confirmed that fly ash land application should not be at arbitrary fixed rates, but should be variable, depending on the soil, crop, and particularly the fly ash chemistry.  相似文献   

5.
Abstract

Rice is a plant that requires high levels of silica (Si). As a silicate (SiO2) source to rice, coal fly ash (hereafter, fly ash), which has an alkaline pH and high available silicate and boron (B) contents, was mixed with phosphor‐gypsum (hereafter, gypsum, 50%, wt wt?1), a by‐product from the production of phosphate fertilizer, to improve the fly ash limitation. Field experiments were carried out to evaluate the effect of the mixture on soil properties and rice (Oryza sativa) productivity in silt loam (SiL) and loamy sand (LS) soils to which 0 (FG 0), 20 (FG 20), 40 (FG 40), and 60 (FG 60) Mg ha?1 were added. The mixture increased the amount of available silicate and exchangeable calcium (Ca) contents in the soils and the uptake of silicate by rice plant. The mixture did not result in accumulation of heavy metals in soil and an excessive uptake of heavy metals by the rice grain. The available boron content in soil increased with the mixture application levels up to 1.42 mg kg?1 following the application of 60 Mg ha?1 but did not show toxicity. The mixture increased significantly rice yield and showed the highest yields following the addition of 30–40 Mg ha?1 in two soils. It is concluded that the fly ash and gypsum mixture could be a good source of inorganic soil amendments to restore the soil nutrient balance in rice paddy soil.  相似文献   

6.
An experiment was conducted for two years in northwest India to explore the feasibility of using coal fly ash for reclamation of waterlogged sodic soils and its resultant effects on plant growth in padi–wheat rotation. The initial pH, electrical conductivity, exchangeable sodium percentage and sodium adsorption ratio of the experimental soil were 9.07, 3.87 dS m−1, 26.0 and 4.77 (me l)−1/2, respectively. The fly ash obtained from electrostatic precipitators of thermal power plant had a pH of 5.89 and electrical conductivity of 0.88 dS m−1. The treatments comprised of fly ash levels of 0.0, 1.5, 3.0, 4.5, 6.0 and 7.5 per cent, used alone as well as in combination with 100, 80, 60, 40, 20 and 10 per cent gypsum requirement of the soil, respectively. There was a slight reduction in soil pH while electrical conductivity of the soil decreased significantly with fly ash as measured after padi and wheat crops. The sodium adsorption ratio of the soil decreased with increasing fly ash levels, while gypsum treatments considerably added to its favourable effects. Fly ash application increased the available elemental status of N, K, Ca, Mg, S, Fe, Mn, B, Mo, Al, Pb, Ni, Co, but decreased Na, P and Zn in the soil. An application of fly ash to the soil also increased the concentrations of above elements except Na, P and Zn in the seeds and straw of padi and wheat crops. The available as well as elemental concentrations in the plants was maximum in the 0 per cent fly ash + 100 per cent gypsum requirement treatment except Na and heavy elements like Ni, Co, Cr. The treatment effects were greater in the fly ash + gypsum requirement combinations as compared to fly ash alone. Saturated hydraulic conductivity and soil water retention generally improved with the addition of fly ash while bulk density decreased. Application of fly ash up to 4.5 per cent level increased the straw and grain yield of padi and wheat crops significantly in both years. The results indicated that for reclaiming sodic soils of the southwest Punjab, gypsum could possibly be substituted up to 40 per cent of the gypsum requirement with 3.0 per cent acidic fly ash. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Liming and wood ash application are measures to decrease acidification of forests soils. The assessment of lime requirement can be based on that base saturation, which indicates a low risk of acid toxicity. Because of a wide spread Mg deficiency in Central European forests, Mg containing lime is normally applied. Ash from untreated wood is applied to decrease soil acidity as well as to improve K and P nutrition. In wood ash, K is the most soluble nutrient, follwed by Ca and Mg. The overall dissolution rate of lime applied to the forest floor is about 1t ha?1 a?1. After liming, soil solution alkalinity and Mg concentrations increase markedly, while changes of Ca, H ions and Al concentrations are less pronounced. After the application of wood ash, K concentrations increase due to the high K content and the high solubility of K in wood ash. After the application of a sufficiently high dosage of lime to the forest floor, the decrease of acidity in deeper soil layers may need decades because of the low solubility of lime. Nitrification and nitrate leaching induced by lime or wood ash may reduce their acid buffering efficiency.  相似文献   

8.
Abstract

Incineration reduces sewage sludge volume, but management of the resulting ash is an important environmental concern. A laboratory incubation study and greenhouse pot experiments with lettuce (Lactuca sativa L.) and corn (Zea mays L.) were conducted to examine the potential for recycling elements in sewage sludge incinerator ash in agricultural systems. Ash rates in both the laboratory and greenhouse were 0, 0.95, 3.8, 15.2, and 61.0 g/kg soil (Typic Hapludoll). Ash was also compared to equivalent rates of citrate soluble P from superphosphate fertilizer in a soil‐less growth medium. During soil: ash incubation, Olsen P and DTPA extractable copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) increased with incubation time at the higher ash rates. Release rates diminished rapidly, however, and the limited release of these elements after 280 days was associated with decreasing pH. In the greenhouse, ash amendment increased extractable soil P, plant tissue P, and the growth of lettuce and corn. Ash was a less effective P source than superphosphate fertilizer in the soil‐less growth medium and Olsen P levels were more consistent with these differences than Bray P. Ash increased extractable soil levels and plant tissue concentrations of calcium (Ca), magnesium (Mg), sodium (Na), Cu, and Zn, but extractable soil manganese (Mn) and plant tissue Mn decreased. Ash increased soil pH and extractable SO4‐S. DTPA extractable Cd and Pb increased, but chromium (Cr) and nickel (Ni) decreased. Lettuce accumulated higher amounts of these trace metals than corn, but tissue concentrations were at control levels or below detection limits in both crops.  相似文献   

9.
Unweathered, acidic fly ash from a coal-fired power plant was applied to alfalfa meal-amended agricultural soil at levels equivalent to 0, 100, 400, and 700 tonne ha?1. Amended soils were placed in respirometer jars and monitored for C02-C evolution over a 37-day period. Fly ash applications of 400 and 700 tonne ha?1 reduced C02-C production significantly compared to 0 and 100 tonne ha?1 treatments. Carbon dioxide-carbon from all treatments was considerably greater than that from soil treated with 1000 ppm CdCl2. The results suggest that soil heterotrophic microbial activity may be impacted minimally by relatively low levels of fly ash application, but may be inhibited by higher levels of fly ash. Several metals were present at potentially toxic levels in the fly ash employed and may have accounted for the inhibition of CO2 C evolution. The availability of some of these metals was indicated in companion plant uptake experiments.  相似文献   

10.
The objective of the investigation was to determine the effectsof sewage sludge application on nutrient concentrations in soil and plant biomass fractions in Scots pine forests (Pinus sylvestris, L.), situated on sandy soils with low pH, in a south to north temperature gradient in Sweden. Twenty tons dw ha-1 of sewage sludge was applied in 50 to 60 yr old pine forests at foursites from Brösarp in South Sweden to Jukkasjärvi in thenorthern parts of the country.Application of 20 ton dw ha-1 of sewage sludge significantlyincreased the concentrations of extractable N, P, K, Ca, Mg and Na, in both the mor layer and in the upper 10 cm of the mineral soil. Three years after sludge application K concentrations were only significantly increased in the upper 10 cm of the mineral soil. After 11 yr the concentrations of P were still at the samelevel in the mor layer as after three years. The concentrations of Ca, Mg and Na had slightly decreased only in the mor layer. There was, in most cases, a statistically significant positive correlation between the amount of applied sludge and nutrientconcentrations in the soil, as well as in pine needles and in leaves of Vaccinium vitis-idaea.In all sites, Mg concentrations in the mor layer was positivelyand significantly correlated with Mg concentrations in current-year pine needles. Similarly, concentrations of Ca, Mg,and P in the mor layer were correlated with concentrations of these elements in current-year shorts of Vaccinium vitis-idaea.  相似文献   

11.
In the heavily forested regions of the northeastern U.S. the potential for producing electricity from wood-fired boilers is also creating a growing supply of wood-ash requiring disposal. Landfill space is expensive and limited, which has resulted in an interest in spreading wood-ash on forest sites. This greenhouse study was designed to provide information on soil and seedling response to wood-ash applications. Red maple (Acer rubrum) seedlings were grown in either O or B horizon forest soil material and amended with six levels of ash (0, 4, 8, 12, 16, and 20 Mg ha?1) and two levels of N fertilizer (0 and 224 kg ha?1). Ash amendments increased pH and exchangeable base cations, and decreased extractable Al and Fe concentrations, in both soil materials. Ash treatments increased seedling foliar K and Na concentrations in O horizon soils, but had little effect on growth. No significant effects on seedling properties from ash in B horizon soils were found. Fertilizer N treatments did not improve seedling growth in either soil material. Soil and seedling response to N were notably different for the different soils used. Based on this short-term study it appears that (a) land applications of wood-ash at the rates used may be a viable approach to recycling this solid waste, and (b) long-term studies are required to evaluate this practice under field conditions.  相似文献   

12.
Abstract

An experiment was conducted to determine the value of fly ash collected from flue gases of the Kwinana coal fired power station in Western Australia, as an amendment for sandy soils and as a replacement for phosphorus or potassium fertilizers. The results showed large increases in clover dry matter production (49% to 278%), attributed to improvements in nutrient and water retention from the fly ash. The fly ash provided a substantial amount of the phosphorus needed by the clover, although application of phosphorus fertilizer further increased dry matter production in the presence of fly ash. No evidence was obtained from plant growth or tissue analysis that the fly ash provided potassium to the pasture. The maximum yield was achieved when 501 ha‐1 of fly ash was applied to the soil. However, only 10 to 401 ha‐1 was required to achieve 75 to 90% of the maximum production. Although a statistically significant increase in cadmium and mercury concentration could be attributed to fly ash, the increase was small and within the range of natural variation of levels found at the sites.  相似文献   

13.
A pot trial was conducted to clarify the interactions of molybdenum (Mo) and selenium (Se) fertilizers on uptake, harvest index and recovery of Mo and Se by pepper crop (Capsicum frutescens L.). Mo was applied at three rates (0, 0.15 and 0.3 mg kg?1) and Se at three rates (0, 0.4 and 0.8 mg kg?1) in soil. Appropriate application of Mo increased Se concentrations in pepper fruit, stem, leaf and root especially in the presence of Se fertilizer. Appropriate application of Se increased Mo concentrations in pepper fruit, stem, leaf and root particularly in the presence of Mo fertilizer. Both Mo and Se had beneficial effects on harvest index and recovery of Mo and Se. These results indicated that there is significant synergetic effect on Mo and Se absorption and translocation, and co-application of these two elements is necessary to produce Mo and Se-rich pepper.  相似文献   

14.
A greenhouse experiment was conducted to evaluate the availability of metals from sewage sludge and inorganic salts, and the effect of pH and soil type on yield and metal (Zn, Cu, Cd and Ni) uptake by wheat (Triticum aestivum L. var. ‘holly’). Soils used in this study were Hartsells sandy loam (fine-loamy, siliceous Thermic Typic Hapludult) and Decatur silty clay loam (Clayey, kaolinitic, Thermic Rhodic Paleudult). Two treatments of sewage sludge containing metals were applied at the rate of 20 and 100 mt ha?1. Inorganic Salts of Zn, Cu, Cd, and Ni were applied (as sulfate salts) at concentrations equivalent to those found in the 20 and 100 mt ha?1 sludge. One treatment consisted of inorganic metals plus sewage at the 20 Mg ha?1 rate. Two soil pH levels, one at field pH (below 6.0) and another pH adjusted between 6.5 and 7.0 were used. Wheat plants were harvested four weeks after germination. Two more subsequent harvests were made at four week intervals. For each harvest, dry matter yield increased as the rate of sludge application increased for both soil types. The soil pH also influenced the dry matter yield. High yield was observed when the pH was adjusted between 6.5 to 7.0 for both soils. An increase in yield was also observed at each subsequent harvest for most of the treatments. Inorganic salt treatments produced lower dry matter yields when compared with the sludge. Both sludge application and metal salts increased plant tissue concentration of Zn, Cu, Cd, and Ni at field pH for both soils. However, increasing the pH of the soil for both sludge and inorganic salt treatments generally decreased the tissue concentration of the above metals.  相似文献   

15.
A previously unknown requirement for B by garlic (var. Chiang Mai) has been identified at San Pa tong Rice Experiment Station, Chiang Mai Province. Field experiments were conducted following rice cultivation on major soils (Typic Tropaqualfs) in the northern parts of Thailand. Various sources of B fertilizers such as borax, coal fly ash, and fritted trace elements were applied to the soil to compare their effectiveness in alleviating the B deficiency in garlic. The findings indicated that all of the sources used promoted plant productivity from 24 to 40% compared with the untreated plants. The highest yield (6.13 t ha-1) was obtained in a treatment with coal fly ash at 825 g B ha-1. The average size and weight of garlic cloves from this treatment were also the highest. However, in terms of storage, the application of B with other trace elements was found to be preferable.  相似文献   

16.
ABSTRACT

The incorporation of previous crop residues in agricultural management benefits soil fertility, crop production, and environment. However, there is no enough information about maximum residue application level without negative effect over next crop yield. To evaluate maize (Zea mays L.) yield under short-time conservation management with incorporation and/or importation of different residue levels, a biannual rotation experiment was conducted in ash volcanic soil in south-central Chile. The experiment consisted of two previous crops, canola (Brassica napus L.) and bean (Phaseolus vulgaris L.), and four levels of residue incorporation (0%, 50%, 100%, and 200% of generated residue; from 0 to 21.4?Mg?ha?1 for canola and from 0 to 19.0?Mg?ha?1 for bean). Previous crop species and residue level affected some nutrients concentrations in grain and plant and some soil chemical properties, without effect in maize yield, which averaged 16.6?Mg?ha?1. Bean residue increased Ca and reduced S in maize plant, increasing soil P, Ca, Mg and K (P?<?0.05). Maize grain Ca content was positively and proportionally affected by canola residue level and negatively and proportionally affected by bean residue level. All canola residue levels increased soil pH and Mg, but the highest level reduced soil S; soil P concentration increased proportionally with bean residue level. The highest bean residue level increased soil S. Different crop and levels of residue did not affect maize yield but did some plant nutrient concentration, and also affected some soil chemical properties.  相似文献   

17.
Sewage sludge application to semiarid grassland may represent a beneficial means of utilizing this waste product for restoration of degraded sites. Consequently, dried municipal sewage sludge was applied at three rates (22.5, 45, and 90 Mg ha–1) to a degraded semiarid grassland soil in order to determine the effects of sludge amendments on forage productivity, soil heavy metal content, and metal uptake by blue grama (Bouteloua gracilis).Soil and plant properties in control and amended plots were measured after 1, 2, and 5 growing seasons.Soil nutrients increased linearly with increased sludge application in the first two growing seasons. Consequently, forage quality and total production of blue grama improved significantly over the unamended control as the tissue levels of N, P, K, and crude protein increased. Cadmium and Pb in the sludge-treated plots did not increase significantly over the control after 1 and 2 growing seasons. Levels of DTPA-extractable soil micronutrients (Cu, Fe, Mn, Zn) increased linearly with increased sludge application rate to soil concentrations recommended for adequate plant growth. Soil N, P, and K concentrations remained higher in the sludge-amended soils after 5 growing seasons, while Cu and Cd increased to slightly above desireable limits as the soil pH decreased to 7.4 and 7.0 in the 45 and 90 Mg ha–1 treatments, respectively. However, with the exception of Mn which remained within desirable limits, metal concentrations (including Cu and Cd) in blue grama tissue were not significantly different from the control treatment after five growing seasons. Based on soil and plant tissue metal concentrations, it appears that sludge applied at rates between 22.5 and 45 Mg ha–1 will maintain the most favorable nutrient levels coupled with significant improvements in forage production in this semiarid grassland environment.  相似文献   

18.
A greenhouse and laboratory study was undertaken to quantify the P-sorption capacity of high pH, high calcium, coal-combustion, waste materials and determine the amount of P fertilization necessary to overcome that P-sorption ability. Three different waste materials (bottom ash, bottom ash/fly ash mixture, and bottom ash/scrubber sludge mixture) were selected based upon their handling properties and their ability to support plant growth. A steady state was apparently established within 18 hr after adding P. Phosphorus sorption behavior was typical of precipitation rather than surface adsorption for all ash materials. The combination of high pH and readily available Ca in the bottom ash and bottom/fly ash mixture favored rapid precipitation of calcium phosphates. The β-tricalcium phosphate that apparently formed in these materials would not provide adequate P for plant growth, and fertilizing with more than 1000 kg P ha?1 would be necessary to provide the needed concentrations. The calcareous bottom ash/sludge mixture would maintain a sufficient P concentration to support plant growth because of its relatively low pH. As leaching and exposure to CO2(g) proceed in the other two ash materials, equilibrium with calcite would be established and P fixing would be a smaller hindrance to plant growth.  相似文献   

19.
Abstract

A field experiment investigating amendments of organic material including farmyard manure, paper factory sludge and crop residues combined with fly ash, lime and chemical fertilizer in a rice-peanut cropping system was conducted during 1997–98 and 1998–99 at the Indian Institute of Technology, Kharagpur, India. The soil was an acid lateritic (Halustaf) sandy loam. For rice, an N:P:K level of 90:26.2:33.3 kg ha?1 was supplied through the organic materials and chemical fertilizer to all the treatments except control and fly ash alone. The required quantities of organic materials were added to supply 30 kg N ha?1 and the balance amount of N, P and K was supplied through chemical fertilizer. Amendment materials as per fertilization treatments were incorporated to individual plots 15 days before planting of rice during the rainy season. The residual effects were studied on the following peanut crop with application of N:P:K at 30:26.2:33.3 kg ha?1 through chemical fertilizer alone in all treatments, apart from the control. An application of fly ash at 10 t ha?1 in combination with chemical fertilizer and organic materials increased the grain yield of rice by 11% compared to chemical fertilizer alone. The residual effect of both lime and fly ash applications combined with direct application of chemical fertilizer increased peanut yields by 30% and 24%, respectively, compared to chemical fertilizer alone. Treatments with fly ash or lime increased P and K uptake in both the crops and oil content in peanut kernel compared to those without the amendments. Alkaline coal fly ash proved to be a better amendment than lime for improving productivity of an acid lateritic soil and enriching the soil with P and K.  相似文献   

20.
Conventional clay capping for post-closure management of landfill commonly cracks and deteriorates over time. As a consequence, water ingress into waste increases as a function of time, potentially causing a range of environmental issues. An alternative approach is known as phytocapping, which utilizes select plant species to control cap stability and moisture percolation. In this study, growth of Arundo donax L. (giant reed), Brassica juncea (L.) Czern. (Indian mustard), and Helianthus annuus L. (sunflower) on a landfill site was studied with different biosolid amendment rates (0, 25, and 50?Mg?ha?1). Cultivation of the landfill cap and amendment with biosolids significantly improved the characteristics of the soil. Growth of each plant species increased due to biosolid addition. Giant reed produced the largest biomass in the 50?Mg?ha?1 biosolid amendment rate (38?Mg?ha?1 dry weight). The high pH and clay content of landfill cap soil, and the low metal concentrations of the biosolid resulted in low heavy metal (copper, zinc, cadmium, and lead) accumulation in leaves of most treatments. The improvement in growth and limited uptake of metal contaminants to plant shoots indicated that biosolid application to landfill clay caps improves the application of phytocapping of old landfill sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号