首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Recent policy changes in the USA direct agencies managing federal forests to analyze the potential effects of climate change on forest productivity, water resource protection, wildlife habitat, biodiversity, and other values.

Aims

This paper describes methods developed to (1) assess current risks, vulnerabilities, and gaps in knowledge; (2) engage internal agency resources and external partners in the development of options and solutions; and (3) manage forest resources for resilience, not just in terms of natural ecosystems but in affected human communities as well.

Methods

We describe an approach designed to characterize certain climate change effects on forests, and estimate the effectiveness of response options ranging from resistance to a realignment of management objectives.

Results

Field testing on a 6,300 km2 area of conifer forest in the northwestern USA shows this decision model to be useful and cost-effective in identifying the highest sensitivities relating to vegetation management, biological diversity, water resources and forest transportation systems, and building consensus for adaptive strategies and actions.

Conclusions

Results suggest that this approach is an effective means for guiding management decisions to adapt to the effects of climate change, and provides an empirical basis for setting budgetary and management priorities.  相似文献   

2.

? Context

The knowledge of how shrub–seedling interactions vary with summer drought, canopy opening, and tree species is crucial for adapting forest management to climate change.

? Aims

The aim of this study was to assess variation in shrub–oak recruitment associations along a south–north drought climate gradient and between two levels of canopy cover in coastal dune forest communities in a climate change-adapted forest management perspective.

? Material and methods

Mapped data of associational patterns of seedlings of three oak species with interspecific pooled shrubs were analyzed using a bivariate pair correlation function in 10 (0.315 ha) regeneration plots located in forest and recent gap sites along the climate gradient. An index of association strength was calculated in each plot and plotted against a summer moisture index.

? Results

The association strength increased with increasing summer drought from wet south to dry north and from closed forests to gaps.

? Conclusion

Consistent with facilitation theory, our results suggest that climate change may shift associational patterns in coastal dune forest communities towards more positive associations, in particular in canopy gaps. In a perspective of climate change, foresters may need to conserve understory shrubs in gaps in order to promote oak species regeneration.  相似文献   

3.

? Context

Projecting changes in forest productivity in Europe is crucial for adapting forest management to changing environmental conditions.

? Aims

The objective of this paper is to project forest productivity changes under different climate change scenarios at a large number of sites in Europe with a stand-scale process-based model.

? Methods

We applied the process-based forest growth model 4C at 132 typical forest sites of important European tree species in ten environmental zones using climate change scenarios from three different climate models and two different assumptions about CO2 effects on productivity.

? Results

This paper shows that future forest productivity will be affected by climate change and that these effects depend strongly on the climate scenario used and the persistence of CO2 effects. We find that productivity increases in Northern Europe, increases or decreases in Central Europe, and decreases in Southern Europe. This geographical pattern is mirrored by the responses of the individual tree species. The productivity of Scots pine and Norway spruce, mostly located in central and northern Europe, increases while the productivity of Common beech and oak in southern regions decreases. It is important to note that we consider the physiological response to climate change excluding disturbances or management.

? Conclusions

Different climate change scenarios and assumptions about the persistence of CO2 effects lead to uncertain projections of future forest productivity. These uncertainties need to be integrated into forest management planning and adaptation of forest management to climate change using adaptive management frameworks.  相似文献   

4.

Context

Managing forests under climate change requires adaptation. The adaptive capacity of forest tree populations is huge but not limitless. Integrating evolutionary considerations into adaptive forestry practice will enhance the capacity of managed forests to respond to climate-driven changes.

Aims

Focusing on natural regeneration systems, we propose a general framework that can be used in various and complex local situations by forest managers, in combination with their own expertise, to integrate evolutionary considerations into decision making for the emergence of an evolution-oriented forestry.

Methods

We develop a simple process-based analytical grid, using few processes and parameters, to analyse the impact of forestry practice on the evolution and evolvability of tree populations.

Results

We review qualitative and, whenever possible, quantitative expectations on the intensity of evolutionary drivers in forest trees. Then, we review the effects of actual and potential forestry practice on the evolutionary processes. We illustrate the complexity of interactions in two study cases: the evolutionary consequences for forest trees of biotic interactions and of highly heterogeneous environment.

Conclusion

Evolution-oriented forestry may contribute adapting forests to climate change. It requires combining short-term and long-term objectives. We propose future lines of research and experimentation.  相似文献   

5.

??Context

It is assumed that climate change will favour European beech (Fagus sylvatica L.) to Norway spruce (Picea abies [L.] Karst.) at its northern range margins due to climate change and induced disturbance events.

??Aims

An old-growth mixed forest of spruce and beech, situated near the northern beech margin, was studied to reveal effects of disturbances and response processes on natural forest dynamics, focussing on the understory.

??Methods

We carried out analyses on understory dynamics of beech and spruce in relation to overstory release. This was done based on a sequence of stand and tree vitality inventories after a series of abiotic and biotic disturbances.

??Results

It became apparent that beech (understory) has a larger adaptive capacity to disturbance impacts and overstory release (68 % standing volume loss) than spruce. Understory dynamics can play a key role for forest succession from spruce to beech-dominated forests. Disturbances display an acceleration effect on forest succession in the face of climate change.

??Conclusion

Beech is poised strategically to replace spruce as the dominant tree species at the study area. Due to an increasing productivity and a lower risk of stand failure, beech may raise into the focus of forestry in southern Sweden.  相似文献   

6.

Context

Climate change is expected to increase forest vulnerability through disturbances such as windstorms and droughts. Forest managers are therefore investigating strategies to increase forest resistance and resilience, especially by promoting uneven-aged and mixed forests through group selection, and by reducing stand stocking and large trees proportion. However, there is little information on the long-term impacts of these two practices.

Aims

The objectives of this study were (1) to develop an original silviculture algorithm designed for uneven-aged management and (2) to use it to assess the effects of the above-mentioned management methods in long-term simulations.

Methods

We simulated individual and group selection techniques in order to study the effects of group size, harvesting intensity and their interactions on wood production, stand heterogeneity, and regeneration in mountain spruce–fir forests. We used the spatially explicit individual-based forest model Samsara2 to simulate forest dynamics.

Results

Our simulation results confirmed the positive effect of group selection practices on structure diversity and regeneration but not on spruce maintenance. Increasing harvesting intensity enabled forest destocking but decreased structure diversity and led to non-sustained yields for the most intensive scenarios.

Conclusion

As adaptation measure, we thus recommend moderate group selection harvesting creating 500 m2 gaps.  相似文献   

7.

Context

Current decision analysis techniques are ineffective for planning thinning operation to improve the forest structure.

Aims

The purpose of this study is to use multi-coefficient goal programming (GP) to plan a thinning schedule that allows more carbon sequestration and diverse forest structure.

Methods

A multi-coefficient GP is applied to plan a thinning schedule for a 2,633-ha plantation forest.

Results

This technique efficiently fine-tunes the thinning schedule to obtain 420,500 tons of carbon sequestration which was a little higher than the result by a multi-segment goal programming (MSGP). Moreover, a fixed-ratio multi-coefficient GP is applied to efficiently generate mosaic of thinned areas with various thinning intensities. Although the captured carbon by a fixed-ratio multi-coefficient GP is lower, the thinned areas can provide various habitats for forest life with multiform contrasting edges.

Conclusion

The use of a multi-coefficient GP allows practicable planning of better thinning alternatives to increase carbon sequestration and forest structure.  相似文献   

8.

Context

The quantification of biomass of woody plants is at the basis of calculations of forest biomass and carbon stocks. Although there are well-developed allometric models for trees, they do not apply well to shrubs, and shrub-specific allometric models are scarce. There is therefore a need for a standardized methodology to quantify biomass and carbon stocks in open forests and woodlands.

Aims

To develop species-specific biomass estimation models for common shrubs, as well as a multispecies shrub model, for the subtropical semiarid Chaco forest of central Argentina.

Methods

Eight shrub species (Acacia aroma, Acacia gilliesii, Aloysia gratissima, Capparis atamisquea, Celtis ehrenbergiana, Larrea divaricata, Mimozyganthus carinatus, and Moya spinosa) were selected, and, on average, 30 individuals per species were harvested. Their total individual dry biomass was related with morphometric variables using regression analysis.

Results

Crown area as well as crown-shaped variables proved to be the variables with the best performance for both species-specific and multispecies shrub models. These allometric variables are thus recommended for standardized shrub biomass assessments.

Conclusion

By accounting for the shrub component of the vegetation, our models provide a way to improve the quantification of biomass and carbon in semiarid open forest and woodlands.  相似文献   

9.

Context

There is strong interest in sustainable forest management systems that preserve characteristics of forests close to naturalness. Assessing the effectiveness of these systems is difficult because defining “natural” baselines from which impacts are estimated is challenging and because the influence of harvesting can have complex interactions with major natural disturbances.

Aims

We used SORTIE/NZ, an individual tree-based forest dynamics model, to understand how harvesting and earthquake disturbance affect the dynamics of a New Zealand podocarp–angiosperm forest.

Methods

Having parameterized SORTIE/NZ with extensive field data, we ran simulations for three natural dynamics scenarios (no disturbance and two earthquake scenarios) and then added podocarp harvesting scenario to each of these.

Results

Simulations suggest that this forest is experiencing transient dynamics, with a natural rise in the dominance of one species of slow-growing podocarp with and without earthquake. Harvesting podocarps strongly affected its increase in basal area.

Conclusion

Our results indicate that transient dynamics may occur in mixed podocarp forests and major disturbances may have complex interactions with management. Evaluating management impacts without accounting for these complex dynamics may be misleading. Models make predictions about transient trajectories that may help to evaluate these impacts.  相似文献   

10.

? Context

Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales.

? Aims

We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China.

? Method

Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development.

? Results

BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests.

? Conclusion

To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.  相似文献   

11.

Context

Forest structure characterisation approaches using LiDAR data and object-based image analysis remain scarce to forestry agencies as these automated procedures usually require the use of expensive software and highly skilled analysts. The integration of forest expert opinion into semi-automated approaches would simplify the access of forest managers to new technologies and would allow the incorporation of personal experience and the introduction of specific forest management criteria.

Aim

The aim of this study is to explore new alternatives to a previously published automated approach based on LiDAR data and object-based image analysis.

Methods

We compare four approaches, ranging from null to high incorporation of expert opinion and from fully automated to fully manual. These four approaches consist of three stages: (1) forest stand identification from LiDAR models, (2) forest stand classification into forest structure classes (manual and based on cluster analysis), and (3) validation.

Results

Quantitative attributes for validation (i.e. hypsographs and percentiles) provided slightly lower degree of separability for forest structure classes, in the mixed procedures with increasing incorporation of expert opinion than for the fully automated approach.

Conclusions

The new mixed approaches proposed are comparable to the automated procedures for the characterisation of forest structure in heterogeneous pine forest stands. They also offer additional advantages: (1) they make it possible to give a specific management focus and (2) they provide accessibility by the forest managers to the source of LiDAR information.  相似文献   

12.

?Context

Selective logging followed by natural regeneration is rarely employed for restocking subtropical evergreen broad-leaved forests in East Asia compared with the use of clear-cutting.

?Aims

To clarify the succession of these forests, the effects of selective logging on stand structure, species diversity, and community similarity were studied in a mature and regenerating forest in Okinawa, Japan.

?Methods

Four study plots were established, and trees ≥1.2 m height were identified by species name, tree height, and diameter at breast height.

?Results

The results showed that the species composition of regenerating forest was similar to mature forest; however, the former had a greater species density and Shannon–Wiener index than the latter. Castanopsis sieboldii and Distylium racemosum, the predominant trees in the mature forest, continued to dominate the regenerating forest, with a broad layer distribution. High Sørensen and Jaccard community similarity indices for mature and regenerating forest indicated that the regeneration occurred in a progressive succession.

?Conclusion

The similar species composition and stand structure for both mature and regenerating forest, and the higher species diversity for the latter, provided no evidence of forest degeneration and suggested that the regenerating forest may develop into a stand similar to preselective logging forest.  相似文献   

13.

Context

Natural regeneration with broadleaved species and reforestation with coniferous trees are two widely practiced forest regeneration strategies after timber harvesting. They lead to different tree species composition and may cause different understory biodiversity, but the effects on ground bryophyte composition and diversity are not well-known.

Aims

We tested whether natural regeneration with broadleaved species and reforestation with spruce induced different diversities of the ground bryophyte populations 20–40 years after old-growth spruce forest clearcutting in the subalpine regions of southwestern China.

Methods

Differences between natural stands and plantations were compared through the analysis of 13 paired stands, with 78 plots, 390 shrub/herb quadrats, and a total of 1,560 bryophyte quadrats.

Results

Naturally regenerated forests were characterized by lower density and cover and lower tree height but higher herbaceous plant height, shrub cover, and bryophyte diversity. They also harbored many more ground bryophytes. The species richness of pleurocarpous mosses and fans, mats, and turfs were significantly higher in naturally regenerated forests. Frequency difference analysis demonstrated that more bryophyte species preferred ground habitats in naturally regenerated forests than in plantations (116 vs. 48 species). The canonical correspondence analysis indicated that stand structure attributes were more important determinants of ground bryophyte diversity and abundance.

Conclusion

Natural regeneration and reforestation resulted in large differences in ground bryophyte populations. A larger diversity was observed in the former case, and natural regeneration practices can be an effective measure for the protection of ground bryophyte diversity after clearcutting.  相似文献   

14.

? Context

The Kyoto Protocol allows the use of domestic forest carbon sequestration to offset emissions to a limited degree, while bioenergy as an unlimited emission reduction option receives substantial financial support in many countries.

? Aim

The primary objective of this study was to analyze (1) whether these limits on forest carbon sequestration would be binding, thereby leading to inefficient mitigation, and (2) the total potential effect of the protocol on the greenhouse gas (GHG) fluxes in the forest sector.

? Methods

A partial equilibrium model of the Norwegian forest sector was used to quantify the GHG fluxes in a base scenario with no climate policy, a Kyoto Protocol policy (KP policy), and a policy with no cap on forest carbon sequestration (FC policy), assuming that the policies apply the rest of the century.

? Results

Carbon offsets are higher under the KP policy than in the base scenario and likewise higher than under the FC policy in the short run, but the KP policy fails to utilize the forest carbon sequestration potential in the long run as it provides considerably less incentives to invest in forestry than the FC policy.

? Conclusion

The KP increases the Norwegian forest sector’s climate change mitigation compared to no climate policy but less in the long run than a carbon policy with no cap on forest carbon credits.  相似文献   

15.

? Context

Snow gliding is a downhill motion of snow on the ground; observations have shown gliding to be possible not only on open slopes but also in forest stands. Larch stands, with their low canopy density and open forest structure with clearings and gaps, are particularly prone to high glide rates. Snow gliding may have negative effects on juvenescent trees which can be damaged by extraction from the ground.

? Aim

The goal of this study was to determine whether snow gliding depends on forest cover (canopy) and size of clearings.

? Methods

Snow gliding was measured during eight winter periods at six measuring positions (ranging from ‘dense forest’ to ‘open slope’) in and beside a larch stand in the Stubai Valley, Tyrol, Austria.

? Results

The results showed that gliding is strongly influenced by forest cover. Snow gliding increases with decreasing canopy density. The difference between the six measuring positions was highly significant (p?<?0.005).

? Conclusion

The identified glide cracks on at least two measuring positions, indicating extreme glide rates and, therefore, strong negative effects on juvenescent trees. To prevent glide rates of a magnitude such as this requires a mature forest with at least 300 stems/ha.  相似文献   

16.

Context

Fine scale regeneration patterns of coexistent species are influenced by regeneration mechanisms and microsite requirements. Spatial patterns may be either disjunct or overlapping, which will determine competitive effects and microsite dominance, and future forest composition.

Aims

Using American beech (Fagus grandifolia Ehrh.) and sugar maple (Acer saccharum Marshall) as an example, three hypotheses were tested: (1) random beech spatial patterns, (2) clumped spatial patterns of small sugar maple seedlings, and (3) disjunct beech and sugar maple patterns.

Methods

Individual stems were sampled in a contiguous grid of 1-m2 quadrats across a 576-m2 area at three sites. Densities were separated into three height classes (≤30 cm, 30–90 cm, and?>?90 cm, ≤4 cm diameter at breast height). Spatial statistics and regression were used to analyze spatial patterns and correlations.

Results

Beech and seedling sugar maple patterns were patchy, rejecting the first and not rejecting the second hypotheses. Hypothesis three was rejected because patches of the two species overlapped with advance regeneration beech overtopping sugar maple.

Conclusion

Patchy patterns of advance regeneration beech and post-harvest sugar maple establishment suggest spatiotemporal niche partitioning. Beech had a competitive height advantage following harvest, but sugar maple still occurred in beech-free patches and beneath overtopping beech at a fine scale. Self-replacing beech patterns will ensure the species will continue dominance unless a selective chemical or manual treatment is applied that removes beech and releases sugar maple.  相似文献   

17.

Key message

In the African rim of the Western Mediterranean Basin, cork oak forests and pine plantations coexist. Under similar fire regimes, cork oak forest is more resilient in terms of habitat structure (canopy, understory, and complexity of vegetation strata) than pine plantation. By contrast, both woodland types show similar resilience in plant species composition. Resilience in habitat structure varies between the two woodland types because of the resprouting and seeding strategies of cork oak and pine species, respectively. These differences can be relevant for the conservation of biodiversity of forested ecosystems in a future scenario of increased fire frequency and scale in the Mediterranean basin.

Context

Wildfires have major impacts on ecosystems globally. In fire-prone regions, plant species have developed adaptive traits (resprouting and seeding) to survive and persist due to long evolutionary coexistence with fire. In the African rim of the Western Mediterranean Basin, cork oak forest and pine plantation are the most frequently burnt woodlands. Both species have different strategies to respond fire: cork oak is a resprouter while pines are mostly seeders.

Aims

We have examined the hypothesis that pine plantations are less resilient in habitat structure (canopy, understory, diversity of vegetation strata) and plant composition than cork oak woodlands.

Methods

The habitat structure and plant species composition were measured in 30 burnt and 30 unburnt 700-m transects at 12 burnt sites from north-western Africa, where the two forest types can coexist. Habitat structure and plant species composition were compared between burnt and unburnt transects from cork oak and pine plantation woodlands with generalized linear mixed models and general linear models.

Results

The results showed significant interaction effect of fire and forest type, since cork oak forest was more resilient to fire than was pine plantation in habitat structure. By contrast, both forest types were resilient to fire in the composition of the plant communities, i.e., plant composition prior to fire did not change afterwards.

Conclusion

The higher structural resilience of cork oak forest compared to pine plantation is related to the resprouting and seeding strategies, respectively, of the dominant tree species. Differences in the responses to fire need to be considered in conservation planning for the maintenance of the Mediterranean biodiversity in a future scenario of changes in fire regime.
  相似文献   

18.

Context

Edible stone pine (Pinus pinea L.) nut is a forest product which provides the highest incomes to the owners of stone pine forests.

Aim

The objective of this work is to evaluate the effect of first thinning on growth and cone production in an artificially regenerated stand in order to determine optimum intensity.

Methods

A thinning trial was installed in 2004 to compare two thinning regimes (heavy and moderate) and a control treatment. From 2004 to 2012, six inventories of forest attributes were carried out, and the cone crop was harvested annually. We evaluated the effect of thinnings on growth using repeated measures analysis of variance with a mixed model approach. With regards to cone production, we first estimated the probability of finding cones in a tree by applying a generalized mixed model and then estimated cone production by using a mixed model, including climatic variables.

Results

We found that thinning had a positive influence on tree diameter increment. Thinning increased the probability of finding cones and cone production. However, significant differences between heavy and moderate thinnings were not found.

Conclusion

We recommend early silvicultural treatments in stone pine stands to favor the development of trees and larger edible pine nut production.  相似文献   

19.
Storm damage of Douglas-fir unexpectedly high compared to Norway spruce   总被引:1,自引:0,他引:1  

Context

Since storm damage has a large impact on forest management in Central Europe, we investigated the main storm risk factors for two important conifer species, Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco) and Norway spruce (Picea abies [L.] Karst.).

Aims

We compared general storm damage levels of Douglas-fir and Norway spruce, the latter being known to have high storm risk among European tree species.

Methods

Generalized linear mixed models and boosted regression trees were applied to recorded storm damage of individual trees from long-term experimental plots in southwest Germany. This included two major winter storm events in 1990 and 1999. Over 40 candidate predictors were tested for their explanatory power for storm damage and summarized into predictor categories for further interpretation.

Results

The two most important categories associated with storm damage were timber removals and topographic or site information, explaining between 18 and 54 % of storm damage risk, respectively. Remarkably, general damage levels were not different between Douglas-fir and Norway spruce.

Conclusion

Under current forest management approaches, Douglas-fir may be considered a species with high storm risk in Central Europe, comparable to that of Norway spruce.  相似文献   

20.

Context

In the context of climate change, several forest adaptation options have to be advocated such as a shift to more resistant species.

Aims

We provide an economic analysis of timber species change as a tool for adapting forests to climate change.

Methods

We use the framework of cost–benefit analysis, taking uncertainty into account both exogenously (sensitivity analysis) and endogenously [(quasi-)option value calculations]. We apply the method to assess the economic rationale for converting Norway spruce stands to Douglas-fir in the French Black Mountain.

Results

We find that the Douglas-fir conversion is land expectation value (LEV) maximizing under a wide range of a priori (subjective) probabilities attached to high mortality of Norway spruce under climate change (for probabilities higher than 0.25–0.31). If information about the impacts of climate change is expected to increase over time, and given the large sunk costs attached to conversion, a delay strategy may be preferable to transition and to status quo when the impacts of climate change on Norway spruce mortality are sufficiently ambiguous. In such cases, getting information earlier increases the LEV by €5–60/ha.

Conclusion

Beyond the specifics of the case study, this paper suggests that quasi-option value is a relevant tool to provide insights to forest owners dealing with adaptation decisions in the context of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号