首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrogen cyanide (HCN) is a toxic chemical that can potentially cause mild to severe reactions in animals when grazing forage sorghum. Developing technologies to monitor the level of HCN in the growing crop would benefit graziers, so that they can move cattle into paddocks with acceptable levels of HCN. In this study, we developed near-infrared spectroscopy (NIRS) calibrations to estimate HCN in forage sorghum and hay. The full spectral NIRS range (400-2498 nm) was used as well as specific spectral ranges within the full spectral range, i.e., visible (400-750 nm), shortwave (800-1100 nm) and near-infrared (NIR) (1100-2498 nm). Using the full spectrum approach and partial least-squares (PLS), the calibration produced a coefficient of determination (R(2)) = 0.838 and standard error of cross-validation (SECV) = 0.040%, while the validation set had a R(2) = 0.824 with a low standard error of prediction (SEP = 0.047%). When using a multiple linear regression (MLR) approach, the best model (NIR spectra) produced a R(2) = 0.847 and standard error of calibration (SEC) = 0.050% and a R(2) = 0.829 and SEP = 0.057% for the validation set. The MLR models built from these spectral regions all used nine wavelengths. Two specific wavelengths 2034 and 2458 nm were of interest, with the former associated with C═O carbonyl stretch and the latter associated with C-N-C stretching. The most accurate PLS and MLR models produced a ratio of standard error of prediction to standard deviation of 3.4 and 3.0, respectively, suggesting that the calibrations could be used for screening breeding material. The results indicated that it should be feasible to develop calibrations using PLS or MLR models for a number of users, including breeding programs to screen for genotypes with low HCN, as well as graziers to monitor crop status to help with grazing efficiency.  相似文献   

2.
A study was conducted to investigate methods of improving a near-infrared transmittance spectroscopy (NITS) amylose calibration that could serve as a rapid, nondestructive alternative to traditional methods for determining amylose content in corn. Calibrations were developed using a set of genotypes possessing endosperm mutations in single- and double-mutant combinations ranging in starch-amylose content (SAC) from -8.5 to 76%, relative to a standard curve. The influence of three factors were examined including comparing calibrations made against SAC versus grain amylose content (GAC), developing calibrations using partial least squares (PLS) analysis versus artificial neural networking (ANN), and using all samples in the calibrations set versus using progressively narrower ranges of SAC or GAC in the calibration set. Grain samples were divided into calibration and validation sets for PLS analysis while samples used in ANN were assigned to a training set, test set, and validation set. Performance statistics of the validation sets that were considered were the coefficient of determination (R), the standard error of prediction (SEP), and the ratio of the standard deviation of amylose values to the SEP (RPD), which were used to compare all NITS models. The study revealed an NITS prediction model for SAC (R = 0.96, SEP = 5.1%, RDP = 3.8) of similar precision to the best GAC model (R = 0.96, SEP = 2.7%, RPD = 3.5). Narrowing the amylose range of the calibration set generally did not improve performance statistics except for PLS models for SAC in which a decrease in SEP values was observed. In one model, the SEP improved while R and RPD remained constant (R = 0.94, SEP = 4.2%, RPD = 2.8) when samples with SAC values <20% were removed from the calibration set. Although the NITS amylose calibrations in this study are of limited precision, they may be useful when a rough screening method is needed for SAC. For example, NITS may be useful to detect severe contamination during transport and storage of specialty grains or to aid breeders when selecting for amylose content from large numbers of grain samples.  相似文献   

3.
The collective term "conjugated linoleic acid" or "CLA" generally refers to a mixture of conjugated positional and geometric isomers of linoleic (cis-9,cis-12-octodecadienoic) acid. In nature, these isomers are mainly formed in the rumen by biohydrogenation of polyunsaturated fatty acids. This study concerns a first trial of CLA determination in cow's milk fat by Raman spectroscopy. The spectra of pure cis-9-oleic, cis-9,cis-12-linoleic, cis-9,trans-11-linoleic, and trans-10,cis-12-linoleic acids have been examined in comparison with the spectra of selected milk-fat samples containing between 0 and 3% of CLA. The trial of CLA determination by Raman spectroscopy on cow milk fat has reached its objective with the two following results. First, the examination of the Raman spectra allows to identify three specific Raman signals of the chemical bonds associated to the cis,trans conjugated C=C in the rumenic and trans-10,cis-12-octodecadienoic acids at 1652, 1438, and 3006 cm(-1). Second, the calibration of Raman spectrometer for the CLA determination has indicated that these three specific signals suit very well for the accurate and reliable measurement of CLA concentration in milk fat. To our knowledge, the present study is the first successful attempt to determine the CLA content of milk fat by a spectrophotometric method.  相似文献   

4.
玉米非淀粉组分是可再生的生物质资源,为实现玉米皮渣中纤维素及半纤维含量的快速检测,该研究以偏最小二乘法(PLS)建立数学模型,探讨一阶导数及二阶导数平滑等预处理对建模的影响,建立玉米皮渣中纤维素及半纤维素近红外分析模型.研究结果表明,纤维素模型的定标集和验证集相关系数为0.9806和0.9799,定标集标准偏差(SEE...  相似文献   

5.
Near-infrared analysis of fat, protein, and casein in cow's milk.   总被引:13,自引:0,他引:13  
Fat, crude protein, true protein, and casein were determined in cow milks by near-infrared transmission spectroscopy (NIR). Partial and overall PLS calibrations were performed on two sets of samples: partial calibration included 76 unhomogenized samples, whereas overall calibration used 96 homogenized and unhomogenized samples. Standard errors of calibration were 0.12% for fat, 0.06% for crude protein, 0.04% for true protein, and 0.05% for casein in the overall calibration. Validation of the overall calibration with an independent set of samples gave standard errors of prediction of 0. 07% for fat, 0.06% for crude protein and casein, and 0.05% for true protein. Except for fat, all of the statistical parameters were better with overall than with partial calibrations, which indicates that homogenization has an effect on NIR fat determination. Despite the relatively small number of samples included in the calibration model, NIR transmission was found to be a reliable method for the determination of fat and nitrogenous constituents in milk.  相似文献   

6.
二维相关光谱结合偏最小二乘法测定牛奶中的掺杂尿素   总被引:9,自引:5,他引:4  
为了检验牛奶中是否掺杂尿素并将其量化测定,配置含有尿素质量浓度范围为1~20g/L之间40个牛奶样品,以掺杂物尿素浓度为外扰,分别研究了掺杂尿素牛奶的二维相关(近红外-近红外,中红外-中红外,近红外-中红外)光谱特性,在此基础上,分别选择随浓度变化大的4200~4800cm-1和1400~1704cm-1为建模区间,采用偏最小二乘方法建立定量分析模型。研究结果表明:4200~4800cm-1建模分析效果优于1400~1704cm-1建模结果,其交叉验证均方根误差为0.266g/L,对未知样品集预测相关系数达到0.999,预测均方根误差为0.219g/L,这表明所建模型具有较好的预测效果。该方法无需样品处理,成本低,为快速判别牛奶是否掺杂提供了一种新的可能的方法。  相似文献   

7.
Near-infrared (NIR) spectroscopy calibrations that will allow prediction of the solid fat content (SFC) of milk fat extracted from butter by one measurement during manufacture were developed. SFC is a measure of the amount of the solid fraction of fat crystallized at a temperature expressed as a percentage (w/w). At-line SFC determinations are currently performed by nuclear magnetic resonance (NMR) spectroscopy, which involves a 16 h delay period for tempering of the milk fat at 0 degrees C prior to the SFC measurements, from 0 to 35 degrees C in a series of 5 degrees C increments. The NIR spectra (400-2500 nm) were obtained using a sample holder maintained at 60 degrees C. Accurate predictions for the SFC (%) were developed by principal component analysis (PCA) and partial least-squares (PLS) regression models to relate the NIR spectra to the corresponding NMR values. The independent validation samples (N = 22) had a standard error of prediction (SEP) of 0.385-0.762% for SFC between 0 and 25 degrees C, with SFC reference values ranging between 70.42 and 8.96% with a standard deviation range of 3.36-1.47. The low bias (from -0.351 to -0.025), the slopes (0.935-1.077), and the excellent predictive ability (R2; 0.923-0.978) supported the validity of these calibrations.  相似文献   

8.
The feasibility of Raman spectroscopy in combination with partial least-squares (PLS) regression for the determination of individual or grouped trans-monounsaturated fatty acids (trans-MUFA) and conjugated linoleic acids (CLA) in milk fat is demonstrated using spectra obtained at two temperature conditions: room temperature and after freezing at -80 °C. The PLS results displayed capability for direct semiroutine quantification of several individual CLA (cis-9,trans-11 and trans-10,cis-12 C18:2) and trans-MUFA (trans-4-15 C18:1) in minor concentrations (below 1.0 g/100 g of milk fat). Calibration models were based on reference data cross-correlation or determined by specific scattering signals in the Raman spectra. Distinct bands for trans-MUFA (1674 cm(-1)) and CLA (1653 cm(-1)) from the trans isolated and cis,trans conjugated C ═ C bonds were identified, as well as original evidence for the temperature effect (new bands, peak shifts, and higher intensities) on the Raman spectra of fatty acid methyl ester and triacylglyceride standards, are supplied.  相似文献   

9.
基于近红外光谱技术的淡水鱼品种快速鉴别   总被引:5,自引:1,他引:4  
为探索淡水鱼品种的快速鉴别方法,该文应用近红外光谱分析技术,结合化学计量学方法,对7种淡水鱼品种的判别分类进行了研究。采集了青、草、鲢、鳙、鲤、鲫、鲂等7种淡水鱼,共665个鱼肉样品的近红外光谱数据,经过多元散射校正(multiplicative scatter correction,MSC)、正交信号校正(orthogonal signal correction,OSC)、数据标准化(standardization,S)等20种方法预处理,在1 000~1 799 nm范围内分别采用偏最小二乘法(partial least square,PLS)、主成分分析(principal component analysis,PCA)和BP人工神经网络技术(back propagation artificial neural network,BP-ANN)、偏最小二乘法和BP人工神经网络技术对7种淡水鱼原始光谱数据进行了鉴别分析。结果表明,近红外光谱数据,结合主成分分析和BP人工神经网络技术建立的淡水鱼品种鉴别模型最优,模型的鉴别准确率达96.4%,对未知样本的鉴别准确率达95.5%。模型具有较好的鉴别能力,采用该方法能较为准确、快速地鉴别出淡水鱼的品种。  相似文献   

10.
The amount of energy derived from fat in foods is a requirement of U.S. nutrition labeling legislation and a significant factor in diet development by health professionals. Near-infrared (NIR) spectroscopy has been used to predict total utilizable energy in cereal foods for nutrition labeling purposes, and in the current study, was investigated as a method for evaluation of the amount of energy derived from fat. Using NIR reflectance spectra (1104-2494 nm) of ground cereal samples and reference values obtained by calorimetry and by calculation, modified PLS regression models were developed for the prediction of percent energy from fat and energy from fat/g. The models were able to predict the percent of utilizable energy derived from fat with SECV and R(2) of 1.86-1.89% of kcal (n = 51, range 0-43.0) and 0.98, respectively, and SEP and r(2) of 1.74% of kcal (n = 55, range 0-38.0) and 0.98, respectively, when used to predict independent validation samples. Results indicate that NIR spectroscopy provides useful methods for predicting the energy derived from fat in food products.  相似文献   

11.
Visible and near infrared (VIS/NIR) transmission spectroscopy and chemometric methods were utilized for the fast determination of soluble solids content (SSC) and pH of cola beverage. A total of 180 samples were used for the calibration set, whereas 60 samples were used for the validation set. Some preprocessing methods were applied before developing the calibration models. Several PLS factors, extracted by partial least squares (PLS) analysis, were used as the inputs of least squares-support vector machine (LS-SVM) model according to their accumulative reliabilities. The correlation coefficient (r), root mean square error of prediction (rmsEP), bias, and RPD were 0.959, 1.136, -0.185, and 3.5 for SSC, whereas 0.973, 0.053, 0.017, and 4.1 for pH, respectively. An excellent prediction precision was achieved by LS-SVM compared with PLS. The results indicated that VIS/NIR spectroscopy combined with LS-SVM could be applied as a rapid and alternative way for the fast determination of SSC and pH of cola beverage.  相似文献   

12.
近红外光谱法测定玉米秸秆饲用品质   总被引:6,自引:1,他引:5  
为了对玉米秸秆的饲用品质进行可靠、便捷、快速的分析和评价,该研究以不同品种、密度、氮肥和水分处理的不同发育时期和不同部位玉米秸秆为试验材料,应用近红外光谱(NIRS)技术和偏最小二乘法(PLS),采用一阶导数+中心化+多元散射校正的光谱数据预处理方法,构建了玉米秸秆体外干物质消化率(IVDMD)、酸性洗涤纤维(ADF)、中性洗涤纤维(NDF) 和可溶性糖(WSC)含量的NIRS分析模型。所建立的IVDMD、ADF、NDF和WSC含量的NIRS校正模型决定系数(R2cal)分别为0.9906、0.9870、0.9931和0.9802,交叉验证决定系数(R2cv)分别为0.9593、0.9413 、0.9678和0.9342,外部验证决定系数(R2val)分别为0.9549、0.9353、0.9519和0.9191,各项标准差(SEC、SECV和SEP)为0.935~1.904,相对分析误差(RPD)均大于3。结果表明,各参数的NIRS分析模型可用于玉米秸秆饲用品质的分析和品种选育的快速鉴定。  相似文献   

13.
A conjugated linoleic acid (CLA)-rich soy oil has been produced by photoisomerization of soy oil linoleic acid. Nutritional studies have shown that CLA possesses health benefits in terms of reducing certain heart disease and diabetes risk factors. Potato chips are snacks that are readily produced in the CLA-rich soy oil containing CLA levels similar to those of the oil used for frying. The objective of this study was to develop an FTIR method to rapidly determine the CLA content of oil in potato chips. Photoirradiated soy oil samples with ~25% total CLA were mixed with control soy oil, and 100 soy oil samples with total CLA levels ranging from 0.89 to 24.4% were made. Potato chips were fried using each of these 300 g CLA rich soy oil mixtures at 175 °C for approximately 3 min. Duplicate GC-FID fatty acid analyses were conducted on oil extracted from each batch of potato chips. The chip samples were ground and then scanned using ATR-FTIR spectroscopy with the aid of a high-pressure clamp, and duplicate spectra of each sample were averaged to obtain an average spectrum. Calibration models were developed using PLS regression analysis. These correlated the CLA isomer concentrations of potato chips obtained by GC-FID fatty acid analysis with their corresponding FTIR spectral features. The calibration models were fully cross validated and tested using samples that were not used in the calibration sample set. Calibrations for total CLA, trans,trans CLA, trans-10,cis-12 CLA, trans-9,cis-11 CLA, cis-10,trans-12 CLA, and cis-9,trans-11 CLA had coefficients of determinations (R2v) between 0.91 and 0.96 and corresponding root-mean-square error of prediction (RMSEP) ranging from 0.005 to 1.44. The ATR-FTIR technique showed potential as a method for the determination of the CLA levels in unknown potato chip samples.  相似文献   

14.
赵化兵  王洁  董彩霞  徐阳春 《土壤》2014,46(2):256-261
利用可见/近红外反射光谱定量分析技术对梨树鲜叶钾素含量进行快速测定研究。对150个梨树叶片样本进行光谱扫描,其中120个做建模集,30个做验证集。通过对样品的可见/近红外光谱进行多种预处理,并建立钾素预测模型,探讨了可见/近红外光谱数据预处理对预测精度的影响。结果表明,通过原始光谱与S-G(3)平滑相结合的预处理方法,用17个主成分建立的偏最小二乘法模型最好,其交叉验证集和预测集模型的决定系数(R2)分别为0.722 7和0.679 1,交叉验证均方根误差(RMSECV)为1.171,预测的平均相对误差为6.81%,能高效、快速地预测梨树叶片钾素含量,为梨树钾素快速测定提供了新的手段。  相似文献   

15.
A rapid predictive method based on near-infrared spectroscopy (NIRS) was developed to measure acid detergent fiber (ADF), neutral detergent fiber (NDF), and acid detergent lignin (ADL) of rice stem materials. A total of 207 samples were divided into two subsets, one subset (approximately 136 samples) for calibration and cross-validation and the other subset for independent external validation to evaluate the calibration equations. Different mathematical treatments were applied to obtain the best calibration and validation results. The highest coefficient of determination for calibration (R2) and coefficient of determination for cross-validation (1-VR) were 0.968 and 0.949 for ADF, 0.846 and 0.812 for NDF, and 0.897 and 0.843 for ADL, respectively. Independent external validation still gave a high coefficient of determination for external validation (r2) and a low standard error of performance (SEP) for the three parameters; the best validation results were SEP = 0.933 and r2 = 0.959 for ADF, SEP = 2.228 and r2 = 0.775 for NDF, and SEP = 0.616 and r2 = 0.847 for ADL, indicating that NIR gave a sufficiently accurate prediction of ADF and ADL content of rice material but a less satisfactory prediction for NDF. This study suggested that routine screening for these forage quality parameters with large numbers of samples is possible with NIRS in early-generation selection in rice-breeding programs.  相似文献   

16.
Infrared spectroscopy based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate the nine different radiation doses (0, 250, 500, 750, 1000, 1500, 2000, 2500, and 3000 Gy) of rice. Samples ( n = 16 each dose) were selected randomly for the calibration set, and the remaining 36 samples ( n = 4 each dose) were selected for the prediction set. Partial least-squares (PLS) analysis and least-squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavelength bands including near-infrared (NIR) regions and mid-infrared (MIR) regions. The best PLS models were achieved in the MIR (400-4000 cm (-1)) region. Furthermore, different latent variables (5-9 LVs) were used as inputs of LS-SVM to develop the LV-LS-SVM models with a grid search technique and radial basis function (RBF) kernel. The optimal models were achieved with six LVs, and they outperformed PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs (756, 895, 1140, and 2980 cm (-1)) selected by ICA and had better performance than PLS and LV-LS-SVM with the parameters of correlation coefficient ( r), root-mean-square error of prediction, and bias of 0.996, 80.260, and 5.172 x 10 (-4), respectively. The overall results indicted that the ICA was an effective way for the selection of SWs, and infrared spectroscopy combined with LS-SVM models had the capability to predict the different radiation doses of rice.  相似文献   

17.
In order to provide references for leaf nutrition diagnosis of fingered citron, the technique of near infrared reflectance spectroscopy (NIRS) was introduced to analyze nitrogen (N), phosphorus (P), potassium (K), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in the dry-leaf samples of fingered citron. The best calibration model for N was developed with high RSQCAL (0.90), SD/SECV (2.73) and low SEC (1.06 mg g?1), good calibration models were obtained for P, K, Fe and Mn, and no significant correlations were found between the spectra and the individual amounts of Zn and Cu. When tested using a validation set (n = 38), N was well predicted with low values of SEP (1.21 mg g?1) and high RPD (2.5). The values of SEP and RPD were also acceptable for the external validation of P, Fe and Mn. Near-infrared spectroscopy analysis technique shows potential of diagnosing minerals in fingered citron, particularly for N, P, Fe and Mn.  相似文献   

18.
We investigate the potential of near-infrared (NIR) spectroscopy to predict some heavy metals content (Zn, Cu, Pb, Cr and Ni) in several soil types in Stara Zagora Region, South Bulgaria, as affected by the size of calibration set using partial least squares (PLS) regression models. A total of 124 soil samples from the 0–20 and 20–40 cm layers were collected from fields with different cropping systems. Total Zn, Cu, Pb, Cr and Ni concentrations were determined by Atomic Absorption Spectrometry. Spectra of air dried soil samples were obtained using an FT-NIR Spectrometer (spectral range 700–2,500 nm). PLS calibration models were developed with full-cross-validation using calibration sets of 90 %, 80 %, 70 % and 60 % of the 124 samples. These models were validated with the same prediction set of 12 samples. The validation of the NIR models showed Cu to be best predicted with NIR spectroscopy. Less accurate prediction was observed for Zn, Pb and Ni, which was classified as possible to distinguish between high and low concentrations and as approximate quantitative. The worst model performance in cross-validation and prediction was for Cr. Results also showed that values of root mean square error in cross-validation (RMSEcv) increased with decreasing number of samples in calibration sets, which was particularly clear for Cu, Pb, Ni and Cr content. A similar tendency was observed in the prediction sets, where RMSEP values increased with a decrease in the number of samples, particularly for Pb, Ni and Cr content. This tendency was not clear for Zn, while even an increase in RMSEP for Cu with the sample size was observed. It can be concluded that NIR spectroscopy can be used to measure heavy metals in a sample set with different soil type, when sufficient number of soil samples (depending on variability) is used in the calibration set.  相似文献   

19.
大米胶稠度近红外光谱分析数学模型的建立   总被引:4,自引:1,他引:4  
胶稠度是评价大米蒸煮食用品质的重要指标之一。研究了运用近红外光谱分析技术检测大米胶稠度的测试原理,对60个样品的光谱数据用偏最小二乘法(PLS)建立了测定大米胶稠度的数学模型,其回判结果与化学分析值之间的相关系数为0.95,建模标准差为0.66;用41个样品对建立的数学模型进行了交叉验证,其检测结果与用标准化学分析方法测得结果的相关系数达0.92,预测标准差为0.78。试验证明,可以利用近红外光谱分析技术对大米胶稠度进行快速检测。  相似文献   

20.
农产品产地加工与储藏工程技术分类   总被引:1,自引:1,他引:0  
生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为校正集,25%的样本作为验证集。采集牛肉新鲜切口处400~1170 nm波长范围内的漫反射光谱,用国标方法测定牛肉含水率。经过多元散射校正(multiplicative scatter correction, MSC)、变量标准化(standard normalized variate, SNV)和直接正交信号校正(direct orthogonal signal correction, DOSC)等方法预处理,在400~1170 nm范围内分别建立多元线性回归(multiple linear regression, MLR)模型、主成分回归(principal component Regression, PCR)模型和偏最小二乘回归(partial least squares regression, PLSR)模型。结果表明使用MSC预处理方法建立的模型预测效果最佳,其中用PLSR建模结果最好,校正集的相关系数和校正标准差分别是0.92和0.0069,验证集的相关系数和验证标准差分别是0.92和0.0047,外部验证的相关系数和验证标准差分别是0.85和0.0054。结果表明,可见/近红外光谱结合MSC预处理方法建立的PLSR模型,可以对牛肉含水率进行准确的快速无损评价,为生鲜牛肉含水率快速无损检测技术的应用提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号