共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To evaluate the cardiopulmonary effects of anesthetic induction with thiopental, propofol, or ketamine hydrochloride and diazepam in dogs sedated with medetomidine and hydromorphone. ANIMALS: 6 healthy adult dogs. PROCEDURES: Dogs received 3 induction regimens in a randomized crossover study. Twenty minutes after sedation with medetomidine (10 microg/kg, IV) and hydromorphone (0.05 mg/kg, IV), anesthesia was induced with ketamine-diazepam, propofol, or thiopental and then maintained with isoflurane in oxygen. Measurements were obtained prior to sedation (baseline), 10 minutes after administration of preanesthetic medications, after induction before receiving oxygen, and after the start of isoflurane-oxygen administration. RESULTS: Doses required for induction were 1.25 mg of ketamine/kg with 0.0625 mg of diazepam/kg, 1 mg of propofol/kg, and 2.5 mg of thiopental/kg. After administration of preanesthetic medications, heart rate (HR), cardiac index, and PaO(2) values were significantly lower and mean arterial blood pressure, central venous pressure, and PaCO(2) values were significantly higher than baseline values for all regimens. After induction of anesthesia, compared with postsedation values, HR was greater for ketamine-diazepam and thiopental regimens, whereas PaCO(2) tension was greater and stroke index values were lower for all regimens. After induction, PaO(2) values were significantly lower and HR and cardiac index values significantly higher for the ketamine-diazepam regimen, compared with values for the propofol and thiopental regimens. CONCLUSIONS AND CLINICAL RELEVANCE: Medetomidine and hydromorphone caused dramatic hemodynamic alterations, and at the doses used, the 3 induction regimens did not induce important additional cardiovascular alterations. However, administration of supplemental oxygen is recommended. 相似文献
2.
Cardiopulmonary and anesthetic effects of the combination of butorphanol,midazolam and alfaxalone in Beagle dogs 下载免费PDF全文
Jeong‐Im Seo Suk‐Hee Han Ran Choi Janet Han Lyon Lee Changbaig Hyun 《Veterinary anaesthesia and analgesia》2015,42(3):304-308
ObjectiveTo evaluate the physiological variables, arterial blood gas values, induction of anesthesia quality, and recovery quality using the combination of butorphanol, midazolam and alfaxalone in dogs.AnimalsTen healthy adult Beagle dogs weighing 8.3 ± 3.1 kg.MethodsRectal temperature (T), pulse rate (PR), respiratory rate (fR), mean arterial pressure (MAP), and arterial blood gases were measured and recorded prior to intravenous (IV) administration of butorphanol, prior to administration of both midazolam and alfaxalone IV 10 minutes later, then every 5 minutes for 20 minutes. M-mode echocardiographic left ventricular (LV) indices were measured before and 5 minutes after administration of alfaxalone. Qualitative scores for induction of anesthesia and recovery were allocated, duration of anesthesia and recovery were calculated, and adverse events were recorded.ResultsScores for induction and recovery quality were excellent. No significant adverse events were observed. Mean ± SD time from induction to extubation and to standing (full recovery) was 29 ± 6 and 36 ± 8 minutes, respectively. There were statistically significant changes in PR, fR and MAP after drug administration. Transient hypercarbia developed after alfaxalone injection. The echocardiographic LV indices were reduced after alfaxalone injection, although those changes were not statistically significant.Conclusions and clinical relevanceThe combination of butorphanol, midazolam and alfaxalone provided excellent quality of induction of anesthesia and exerted minimal cardiopulmonary effects in healthy dogs. 相似文献
3.
4.
A M Klide 《American journal of veterinary research》1976,37(2):127-131
The cardiopulmonary effects of 2 new inhalant anesthetics, enflurane and isoflurane, were studied in nonsedated, previously instrumented, awake dogs. Base line values were determined, and anesthesia was induced and maintained with the drug being studied. Enflurane depressed cardiopulmonary function to a greater extent than isoflurane. The depression of cardiopulmonary function from both agents increased with increasing depth of anesthesia. Enflurance produced muslce twitching, but isoflurane did not. 相似文献
5.
W Ingwersen D G Allen D H Dyson W D Black M T Goldberg A E Valliant 《Canadian journal of veterinary research》1988,52(4):423-427
The cardiopulmonary effects of a ketamine/ acepromazine combination was studied in ten cats subjected to a 25% whole blood volume loss. Test parameters included cardiac output, measured via thermodilution, heart rate, respiratory rate, arterial blood pressure (systolic, diastolic and mean) and blood gas analysis. Values for cardiac index, stroke volume and systemic vascular resistance were calculated from these data. Posthemorrhage, cardiac output, cardiac index, stroke volume, heart rate and measurements of arterial blood pressure were significantly decreased (p less than 0.05). Following the induction of ketamine/ acepromazine anesthesia, cardiac output, cardiac index, stroke volume and heart rate showed mild but statistically insignificant declines and were above their respective posthemorrhage values 120 min into ketamine/ acepromazine anesthesia. Measurements of arterial blood pressure showed further declines from their respective posthemorrhage values that were statistically significant (p less than 0.05). Following hemorrhage, respiratory rate increased significantly (p less than 0.05), associated with a fall in arterial CO2 tension. During ketamine/ acepromazine anesthesia, respiratory rate showed a dramatic and significant decline (p less than 0.05) with arterial CO2 tension rising to prehemorrhage values. Systemic vascular resistance, arterial O2 tension and pH remained essentially unchanged throughout the experimental period. 相似文献
6.
W Ingwersen D G Allen D H Dyson W D Black M T Goldberg A E Valliant 《Canadian journal of veterinary research》1988,52(4):428-433
The cardiopulmonary effects of a halothane/oxygen combination were studied in eight cats subjected to a 25% whole blood volume loss. Test parameters included cardiac output measured via thermodilution, heart rate, respiratory rate, arterial blood pressure (systolic, diastolic and mean) and blood gas analysis. Values for cardiac index, stroke volume and systemic vascular resistance were calculated from these data. Posthemorrhage cardiac output, cardiac index, stroke volume and measurements of arterial blood pressure were significantly decreased (p less than 0.05). Heart rate remained unchanged. Following induction of halothane anesthesia the above parameters experienced a further significant decline (p less than 0.05) from their immediate preanesthetic (i.e. posthemorrhage) values. Heart rate also significantly decreased (p less than 0.05). Thirty minutes following the cessation of halothane anesthesia these values returned to near-hemorrhage levels, being above their respective preanesthetic values. Systemic vascular resistance initially rose, peaking ten minutes into halothane anesthesia, before gradually falling to prehemorrhage values at the end of halothane anesthesia. Following hemorrhage, respiratory rate demonstrated a transient increase, associated with an arterial CO2 tension fall, before returning to initial values at the preanesthetic time. During halothane anesthesia respiratory rate remained unchanged whereas arterial CO2 tension rose significantly (p less than 0.05) and pH declined slightly from preanesthetic readings. These returned to prehemorrhage values 30 minutes following the cessation of halothane anesthesia. 相似文献
7.
W Ingwersen D G Allen D H Dyson P J Pascoe M R O''''Grady 《Canadian journal of veterinary research》1988,52(3):386-391
The effects of a halothane/oxygen combination on the cardiopulmonary function of 11 healthy cats were studied. Test parameters included cardiac output, measured via thermo-dilution, heart rate, respiratory rate, arterial blood pressure (systolic, diastolic and mean) and blood gas analysis. Values for systemic vascular resistance, cardiac index and stroke volume were calculated from these data. Cardiac output, cardiac index, heart rate, stroke volume, arterial blood pressure (systolic, diastolic and mean) and arterial blood pH were significantly decreased (p less than 0.001). Respiratory rate was also significantly decreased (p less than 0.007) with arterial CO2 tension being significantly increased (p less than 0.001). Statistically significant changes, where seen, persisted for the duration of the anesthetic period. Arterial O2 tension and systemic vascular resistance remained unchanged. All parameters returned to near pretest values within 30 minutes following cessation of halothane anesthesia. 相似文献
8.
M S Lagutchik A J Januszkiewicz K T Dodd D G Martin 《American journal of veterinary research》1991,52(9):1441-1447
To assess the effects on heart and lung function, a tiletamine-zolazepam (TZ) anesthetic combination was evaluated in 10 Dorset-type ewes. Ewes were randomly allotted to 2 equal groups. Ewes of groups 1 and 2 were given a single bolus of TZ (12 and 24 mg/kg of body weight, IV, respectively) at time zero. Hemodynamic, pulmonary, and ventilation variables were measured at 15-minute intervals to 120 minutes. Blood gas variables were evaluated at 5-minute intervals for the first 30 minutes, then at 15-minute intervals to 120 minutes. In all sheep, TZ administration induced rapid, smooth induction, with gradual and unremarkable recovery. Anesthesia duration was not significantly different between groups (mean +/- SD, 39 +/- 5 and 40 +/- 14 minutes for groups 1 and 2, respectively). Immediate drug effects included apnea, decreased mean arterial blood pressure, and arterial hypoxemia. Cardiac output was significantly decreased in both groups at all times after drug administration. Significant changes in group-1 ewes included increased pulmonary and systemic vascular resistances and decreased inspired minute ventilation, tidal volume, and respiratory airflow. Significant changes in group-2 ewes included increased systemic vascular resistance and decreased pulmonary arterial pressure, inspired minute ventilation, and respiratory airflow. Both drug dosages induced apneustic breathing patterns and caused significant changes in arterial and venous blood hemoglobin concentrations and PCV. Tiletamine-zolazepam is useful for intermediate-duration anesthesia in sheep.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
Dogs were used to determine cardiopulmonary and chemical restraining effects of racemic ketamine and its enantiomers. Levorotatory ketamine induced the shortest duration of unconsciousness and recumbency when compared with effects of dextrorotatory and racemic ketamine. Administration of racemic ketamine or either of its enantiomers (30 mg/kg of body weight, IV) to dogs recovering from isoflurane anesthesia induced transient, but significant (P less than 0.05), decreases in arterial blood pressure, left ventricular contractility, cardiac output, and total peripheral vascular resistance. Arterial blood pressure and left ventricular contractility significantly (P less than 0.05) increased at later times after ketamine administration. Arterial pH and the PO2 values decreased after IV administration of racemic ketamine or its enantiomers. Significant differences in cardiopulmonary variables were not observed between groups given ketamine or its enantiomers. 相似文献
10.
M C Richter W M Bayly R D Keegan R K Schneider A B Weil C A Ragle 《American journal of veterinary research》2001,62(12):1903-1910
OBJECTIVE: To determine the cardiovascular and respiratory effects of water immersion in horses recovering from general anesthesia. ANIMALS: 6 healthy adult horses. PROCEDURE: Horses were anesthetized 3 times with halothane and recovered from anesthesia while positioned in lateral or sternal recumbency in a padded recovery stall or while immersed in a hydropool. Cardiovascular and pulmonary functions were monitored before and during anesthesia and during recovery until horses were standing. Measurements and calculated variables included carotid and pulmonary arterial blood pressures (ABP and PAP respectively), cardiac output, heart and respiratory rates, arterial and mixed venous blood gases, minute ventilation, end expiratory transpulmonary pressure (P(endXes)), maximal change in transpulmonary pressure (deltaP(tp)max), total pulmonary resistance (RL), dynamic compliance (Cdyn), and work of breathing (W). RESULTS: Immersion in water during recovery from general anesthesia resulted in values of ABP, PAP P(endXes), deltaP(tp)max, R(L), and W that were significantly greater and values of Cdyn that were significantly less, compared with values obtained during recovery in a padded stall. Mode of recovery had no significant effect on any other measured or calculated variable. CONCLUSIONS AND CLINICAL RELEVANCE: Differences in pulmonary and cardiovascular function between horses during recovery from anesthesia while immersed in water and in a padded recovery stall were attributed to the increased effort needed to overcome the extrathoracic hydrostatic effects of immersion. The combined effect of increased extrathoracic pressure and PAP may contribute to an increased incidence of pulmonary edema in horses during anesthetic recovery in a hydropool. 相似文献
11.
Cardiopulmonary effects of a ketamine hydrochloride/acepromazine combination in healthy cats. 总被引:1,自引:1,他引:1 下载免费PDF全文
W Ingwersen D G Allen D H Dyson P J Pascoe M R O''''Grady 《Canadian journal of veterinary research》1988,52(1):1-4
The effect of a ketamine hydrochloride/acepromazine combination on the cardiopulmonary function of 11 healthy cats was studied. Test parameters included cardiac output, measured by thermodilution, heart rate, respiratory rate, arterial blood pressure (systolic, diastolic and mean) and arterial blood gas analysis. Values for systemic vascular resistance, cardiac index and stroke volume were calculated. The cardiac output, cardiac index, stroke volume, arterial blood pressure and arterial blood pH decreased significantly (p less than 0.006). The arterial CO2 increased significantly (p less than 0.006). All changes occurred during the five to 45 minute postinduction time period. The heart rate, respiratory rate, arterial O2 and systemic vascular resistance were not significantly altered. The anesthetic regime maintained an adequate plane of surgical anesthesia for 30-45 minutes. 相似文献
12.
The carotid and pulmonary arteries were catheterised in six pigs anaesthetised with thiopentone sodium and halothane. A minimum of five days was allowed to elapse before the investigation. The carotid artery pressure, pulmonary artery pressure, cardiac output, arterial pH, PO2, PCO2, plasma glucose and lactate were measured before and after intravenous injection of xylazine (1 mg kg-1) and ketamine 10 mg kg-1). Complete analgesia was produced for 10 minutes in all pigs but by 25 minutes all animals responded to a painful stimulus. The cardiac output and arterial PO2 were significantly decreased for 30 minutes and 10 minutes, respectively. The total vascular resistance was significantly increased. No statistically significant changes occurred in the other variables measured. 相似文献
13.
Cardiopulmonary effects of acepromazine and of the subsequent administration of ketamine in the dog 总被引:1,自引:0,他引:1
Cardiopulmonary consequences of acepromazine (0.2 mg/kg of body weight, IV) followed by IV administration of ketamine (10 mg/kg) were evaluated in 13 dogs. Acepromazine caused significant decreases in arterial blood pressure, stroke volume, left ventricular work, left ventricular stroke work, breathing rate, minute ventilation, and oxygen consumption. Subsequent administration of ketamine caused significant increases in heart rate, effective alveolar volume, alveolar-arterial Po2 gradient (transient increase), venous admixture (transient increase), and PaCO2 and PVCO2 (transient increases), and caused significant decreases in stroke volume, minute ventilation, physiologic dead space, and arterial and venous PO2 (transient decreases). 相似文献
14.
15.
Allison L. O’Kell Barbara Ambros 《The Canadian veterinary journal. La revue veterinaire canadienne》2010,51(3):305-307
A 3-year-old Labrador retriever was presented to the Western College of Veterinary Medicine for a tibial plateau levelling osteotomy. While performing a pre-operative epidural, thiopental was inadvertently administered into the epidural space. Treatment included epidural saline flushing and intravenous methylprednisolone sodium succinate. No neurologic deficits were detected. 相似文献
16.
Sima Fayyaz DVM BA MSc Carolyn L Kerr DVM DVSc PhD Diplomate ACVA Doris H Dyson DVM DVSc Diplomate ACVA Kuldip K Mirakhur BVSc MVSc PhD 《Veterinary anaesthesia and analgesia》2009,36(2):110-123
ObjectiveTo evaluate and compare the cardiopulmonary effects of induction of anesthesia with isoflurane (Iso), ketamine–diazepam (KD), or propofol–diazepam (PD) in hypovolemic dogs.Study designProspective randomized cross–over trial.AnimalsSix healthy intact, mixed breed, female dogs weighing 20.7 ± 4.2 kg and aged 22 ± 2 months.MethodsDogs had 30 mL kg?1 of blood removed at a rate of 1.5 mL kg?1 minute?1 under isoflurane anesthesia. Following a 30–minute recovery period, anesthesia was reinduced. Dogs were assigned to one of three treatments: isoflurane via facemask using 0.5% incremental increases in the delivered concentration every 30 seconds, 1.25 mg kg?1 ketamine and 0.0625 mg kg?1 diazepam intravenously (IV) with doses repeated every 30 seconds as required, and 2 mg kg?1 propofol and 0.2 mg kg?1 diazepam IV followed by 1 mg kg?1 propofol increments IV every 30 seconds as required. Following endotracheal intubation all dogs received 1.7% end–tidal isoflurane in oxygen. Cardiopulmonary variables were recorded at baseline (before induction) and at 5 or 10 minute intervals following endotracheal intubation.ResultsInduction time was longer in Iso (4.98 ± 0.47 minutes) compared to KD (3.10 ± 0.47 minutes) or PD (3.22 ± 0.45 minutes). To produce anesthesia, KD received 4.9 ± 2.3 mg kg?1 ketamine and 0.24 ± 0.1 mg kg?1 diazepam, while PD received 2.2 ± 0.4 mg kg?1 propofol and 0.2 mg kg?1 diazepam. End–tidal isoflurane concentration immediately following intubation was 1.7 ± 0.4% in Iso. Arterial blood pressure and heart rate were significantly higher in KD and PD compared to Iso and in KD compared to PD. Arterial carbon dioxide partial pressure was significantly higher in PD compared to KD and Iso immediately after induction.Conclusions and clinical relevanceIn hypovolemic dogs, KD or PD, as used in this study to induce anesthesia, resulted in less hemodynamic depression compared to isoflurane. 相似文献
17.
18.
Cardiopulmonary effects of a medetomidine-ketamine combination administered intravenously in gopher tortoises 总被引:1,自引:0,他引:1
OBJECTIVE: To determine whether IV administration of a combination of medetomidine and ketamine depresses cardiopulmonary function in healthy adult gopher tortoises. DESIGN: Prospective study. ANIMALS: 3 adult male and 3 adult female nonreleasable gopher tortoises. PROCEDURE: Prior to the study, carotid and jugular catheters were surgically placed in each tortoise for blood collection, direct arterial blood pressure monitoring, and drug administration. Heart rate, direct carotid arterial blood pressure, and body temperature were measured before and every 5 minutes for 45 minutes after IV injection of medetomidine (100 microg/kg [45.5 microg/lb]) and ketamine (5 mg/kg [2.3 mg/lb]). Carotid arterial blood samples were collected before and 5, 15, 30, and 45 minutes after medetomidine-ketamine administration to determine pH, PO2, and PCO2. Atipamezole (500 mg/kg [227 microg/lb], IV) was administered 30 minutes after administration of medetomidine-ketamine. RESULTS: The medetomidine-ketamine combination caused a moderate increase in arterial blood pressure, and moderate hypercapnia and hypoxemia. There were no significant changes in heart rate or body temperature. Intravenous administration of atipamezole rapidly induced severe hypotension. CONCLUSIONS AND CLINICAL RELEVANCE: The combination of medetomidine and ketamine administered IV resulted in effective short-term immobilization adequate for minor diagnostic procedures in gopher tortoises. This combination also caused moderate hypoventilation, and it is recommended that a supplemental source of oxygen or assisted ventilation be provided. Atipamezole administration hastens recovery from chemical immobilization but induces severe hypotension. It is recommended that atipamezole not be administered IV for reversal of medetomidine in tortoises and turtles. 相似文献
19.
20.
Erkert RS Macallister CG Campbell G Payton ME Shawley R Clarke CR 《Journal of veterinary pharmacology and therapeutics》2005,28(3):299-304
Local anesthesia and tissue inflammation associated with lidocaine infiltration and lidocaine/prilocaine topical anesthetic cream for episioplasty in mares were compared. Twenty-two mares were randomly assigned to lidocaine or lidocaine/prilocaine topical anesthetic cream treatment groups. Perineum and vulva were cleaned, 8-12 g (approximately 1 g/cm per side of vulva) of topical anesthetic cream was applied, and the area was covered by plastic wrap 30 min prior to beginning procedure. Alternately, lidocaine was injected (1 mL) every centimeter just prior to the procedure. Episioplasty was conducted using standard methods, but employing simple interrupted sutures. Horses were not sedated and use of a twitch was recorded. Four millimeter punch biopsies were harvested 1, 3, and 10 days following episioplasty and scored for degree of inflammation by a blinded pathologist. Clinical inflammation scores were assigned when biopsies were obtained. Seven of 11 horses receiving lidocaine infiltration required twitching, but none of the horses that received the anesthetic cream required twitching. Six of 11 and seven of 11 of the lidocaine and anesthetic cream groups, respectively, required twitching for episioplasty. Except for the clinical scores on day 3, no statistical differences for clinical and histopathologic scores between samples from the two treatment groups for a given day were identified. Use of lidocaine/prilocaine topical anesthetic cream was as effective as lidocaine infiltration in providing local anesthesia when performing episioplasty in mares. Its use decreased the need for twitching horses as well as the risk of deformation of the labia caused by lidocaine infiltration. 相似文献