首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Laboratory-scale experiments were conducted to investigate the impact of ozonation on the degradability of wine distillery wastewaters, usually called vinasses, with the goal of developing combined chemical-biological methods for their treatment. Chemical oxygen demand (COD), biological oxygen demand (BOD), total organic carbon (TOC), and ultraviolet absorbance at 254 nm (UV(254)) were taken as reference parameters to follow the pollution level. The vinasses were treated both directly and after being mixed with domestic sewage. Ozonation of pure vinasses required high ozone doses to achieve a significant efficiency for removing the organic matter. Mixing vinasses with domestic sewage allowed higher degradation rates with ozone. Ozone was also demonstrated to be an appropriate oxidizing agent to improve vinasses's biodegradability and organic matter removal. A mathematical model of the ozonation kinetics based on the film theory concept is also presented.  相似文献   

2.
Leachates from two landfills, one municipal and one industrial, were compared with respect to their chemical and adsorptive characteristics. Concentrations of most inorganic constituents were as much as an order of magnitude higher for the industrial leachate. The concentration of organic matter in that leachate, measured as total organic carbon (TOC), was more than two orders of magnitude greater than that of the municipal leachate. Gel permeation studies suggested similar molecular weight distributions for the organic fractions of the two leachates, but specific priority pollutants identified were different. The adsorptive characteristics of the waste samples with respect to activated carbon were evaluated using TOC as a lumped parameter expression of organic matter concentration. Adsorption equilibria and rates for the municipal leachate system were reasonably well described by treating TOC as a single component for modeling purposes. The industrial ieachate required a multicomponent approach. Ideal adsorbed solution theory was used in this case to characterize the behavior of a set of hypothetical TOC components. The approach was able to account, to some degree, for the competitive interactions evident among organic solutes comprising the mixture.  相似文献   

3.
ABSTRACT

The present work aims to perform an experimental reuse study of raw and sustainable treated urban wastewaters in the irrigation of alfalfa (Medicago sativa L.) under semi-controlled conditions. The obtained results highlight a significant effect (p < 0.05) of water quality on soil monitored parameters. Compared to control soils irrigated with groundwater (GW), those irrigated with treated urban wastewaters from the modified activated sludge process (PTW) and raw urban wastewater (RW) showed significant increase in their organic matter (OM) and nutrients content. Indeed, in comparison to GW organic matter (OM) of RW and PTW was 5,37 and 3,84 times higher; Kjeldahl nitrogen (TKN) was 3,50 and 2,81 times higher and total phosphorus (TP) was 4,00 and 3,25 times higher, respectively. The results showed also a significant effect of water quality on yield, macro and microelements concentrations of alfalfa plant. Hence, the highest yield, macro and microelements uptake of the plant were obtained in response to irrigation with PTW and RW compared to control soil GW. Concerning trace metallic elements concentrations, pots irrigated with RW and PTW showed relatively higher concentrations than those of GW pots.  相似文献   

4.
In urban conditions, the widescale availability of organic matter to be recycled and the necessity for soil reconstitution (Technosol) has led to the input of very large quantities of organic matter (up to 50% v/v). The long‐term degradation of these large quantities of organic matter in the soil is not well known. We monitored, over a 60‐month period, the total carbon (C) content and the particulate and biochemical fractions of reconstituted soils placed in 600‐litre boxes under natural conditions. The top layer was a sandy loam amended with 20 or 40% of sphagnum peat or organic compost (sewage sludge, wood chip compost or green waste compost) lying on a layer of sandy loam. We measured C mineralization over time under controlled conditions and built a long‐term model to simulate carbon dynamics where exogenous organic carbon (EOC) was divided into two biodegradable compartments. The model yielded the proportions of EOC that either resisted degradation or contributed to soil organic C storage by mineralization and/or humification. Organic matter degradation was linked to its maturity and to its contents in certain particulate and biochemical fractions but was independent of how much of a given organic matter was introduced. We found a good correlation between the degradable organic compartment and the lignin and cutin‐like, hemicellulose and cellulose‐like fractions larger than 1 mm. The model showed that a large part of initial EOC was still present in the soil after 5 years in a potentially biodegradable but resistant compartment. The degradation of that compartment by mineralization or humification is therefore expected to take longer.  相似文献   

5.
葡萄酒生产废弃物与剩余污泥厌氧共消化研究进展   总被引:1,自引:1,他引:0  
厌氧消化技术被广泛应用于多种行业废弃物的处置。然而,葡萄酒生产废弃物浓度高、pH值低以及季节性变化的特性容易造成负荷冲击,导致反应器微生物流失、运行不稳定。同时,剩余污泥组分复杂、水解率低导致产气效率低。厌氧共消化具有均衡营养素、减缓抑制效应、丰富菌群多样性和提高甲烷产量等优势,也逐渐成为一种重要的葡萄酒生产废弃物与剩余污泥的处置方式。尽管已有二者在不同运行策略下共消化性能的研究,但仍未有报道阐明其共消化的影响因素以及基于葡萄酒生产废弃物特性建立直接种间电子传递的研究进展。因此,该文介绍了葡萄酒生产废水与剩余污泥、葡萄酒生产固体废弃物与剩余污泥的共消化进展,并分别归纳了2种体系中影响消化效能的主要因子;随后总结了共消化体系中基于乙醇建立的直接种间电子传递的研究进展;最后,围绕以上内容展望了共消化技术在葡萄酒生产废弃物与剩余污泥协同处理的前景。  相似文献   

6.
Changes in the concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) identified by the US Environmental Protection Agency as priority pollutants were investigated during the composting process of sewage sludge mixed with rapeseed marc (9:1, weight base). Results showed that total PAHs concentrations of the sludge sampled in different seasons had far exceeded the accepted Europe Union cut-off limits for land application. Phenanthrene, fluorene and dibenz(a, h) anthracene were dominant PAHs in the sludge, accounting for 62.8~69.6% of the total amount of the 16 PAHs. Composting appeared to be an effective method for the removal of PAHs in sewage sludge. After 50 days of composting, a significant reduction of concentration of the total PAHs was detected as compared with the initial concentration in composting material. The significant relationship between the biodegradation of organic matter and the losses of Σ16 PAHs during composting indicated that microbial degradation was the key process responsible for the efficient removal of PAHs from the sludge. Among all tested PAHs, fluorene was the most recalcitrant and became the primary residual PAH in the composted material. The lower removal rate of fluorene during composting was a limiting factor for the potential land application of the sludge. Further studies are needed to enhance the removal of fluorene in order to achieve a safe utilization of this sludge.  相似文献   

7.
The efficiency of composting to remove the pollutants DEHP, PAHs and LAS from organic waste products was investigated. Source separated MSW and sewage sludge, respectively, were composted at temperatures ranging from 35 to 70°C using a laboratory-scale reactor composting system. At regular intervals, compost samples were taken from the reactors for chemical analysis. DEHP disappeared rapidly during composting of MSW; 96 to 99% of the initial content was degraded within 25 days of composting regardless of process temperature. In sewage sludge, the highest degradation of 91% was reached at a composting temperature of 65°C. LAS degradation in sewage sludge was fastest at 55°C, but at both process temperatures tested 99% of the initial content had been removed within 25 days. Degradation of PAHs was less complete. However, in all composting experiments, with MSW as well as sewage sludge, the final PAH concentration was less than in the starting material. Further experiments suggested that less than 0.1% of the pollutants had evaporated. Thus, composting proved to be a promising technique to promote degradation of organic pollutants — especially DEHP and LAS — in MSW and sewage sludge.  相似文献   

8.
The starch manufacturing industrial units, such as sago mills,both in medium and large scale, suffer from inadequate treatment and disposal problems due to high concentration of suspended solids present in the sludge. A laboratory scale study was conducted to investigate the viability of anaerobic treatment of sago waste sludge, enriched in particulate organicmatter, using a fluidized bed reactor. The start-up of the reactor was carried out using a mixture of digested supernatantsewage sludge and cow dung slurry in different proportions. The effect of operating variables such as COD of the effluent, bed expansion, minimum fluidization velocity on efficiency oftreatment and recovery of biogas was investigated. The maximum efficiency of treatment was found to be 82% and the nitrogen enriched digested sludge was recommended for agricultural use. A kinetic model was developed for the degradation of particulate organic matter using the general kinetic equation [dS/dt = K HC SXC] which allowed for a more accurate mathematical representation of the hydrolysis process. Analysing data from a series of batch tests, the best fit value of C was found to be in the range 0.43 to 0.62.  相似文献   

9.
A previous study indicated that regenerated spent fluid catalytic cracking catalyst, added to a test activated sludge system, increased the sludge settling rate, decreased the settled sludge volume (compaction), decreased the supernatant (effluent) TOC and increased the supernatant optical clarity. In addition, phosphate levels were markedly reduced in a municipal sewerage a ctivated sludge system. As an extension of this study, fresh, spent, and regenerated cracking catalysts have been examined to determine if the observed activity could be attributed to the carbon and metals deposited on the catalyst during the cracking operation. To do this the earlier studies have been repeated and adsorption isotherm tests have been conducted with fresh, spent and regenerated catalysts. The results indicate that: (1) the carbon and metals on the catalyst surface do not affect the improved settling and compaction of activated sludge observed when the catalyst is present, nor do they affect TOC removals; (2) none of the catalysts tested adsorb soluble TOC to an appreciable extent; and (3) the presence of catalyst, by enhancing compaction, may stabilize the activated sludge system during wet weather conditions.  相似文献   

10.
Residues of pharmaceuticals present in wastewater and sewage sludge are of concern due to their transfer to aquatic and terrestrial food chains and possible adverse effects on nontargeted organisms. In the present work, uptake and translocation of metformin, an antidiabetic II medicine, by edible plant species cultivated in agricultural soil have been investigated in greenhouse experiment. Metformin demonstrated a high uptake and translocation to oily seeds of rape ( Brassica napus cv. Sheik and Brassica rapa cv. Valo); expressed as an average bioconcentration factor (BCF, plant concentration over initial concentration in soil, both in dry weight), BCF values as high as 21.72 were measured. In comparison, BCFs for grains of the cereals wheat, barley, and oat were in the range of 0.29-1.35. Uptake and translocation to fruits and vegetables of tomato (BCFs 0.02-0.06), squash (BCFs 0.12-0.18), and bean (BCF 0.88) were also low compared to rape. BCFs for carrot, potato, and leaf forage B. napus cv. Sola were similar (BCF 1-4). Guanylurea, a known degradation product of metformin by microorganisms in activated sludge, was found in barley grains, bean pods, potato peel, and small potatoes. The mechanisms for transport of metformin and guanidine in plants are still unknown, whereas organic cation transporters (OCTs) in mammals are known to actively transport such compounds and may guide the way for further understanding of mechanisms also in plants.  相似文献   

11.
The objective of this study is to develop a method to follow the dynamics of sludge‐derived organic carbon, which will allow us to understand the behaviour of trace metals in the sludge‐treated soils. We studied, in a sandy agricultural soil of southwest France, cultivated with maize and amended with sewage‐sludge over 20 years, the dynamics of different sources of organic matter and compared this with a control, which had never received any treatment. For the first time, a method is proposed that will distinguish and quantify sludge‐derived organic carbon, maize‐derived organic carbon, and native organic carbon. This method is based on the mean differences in δ13C abundances between native (−26.5‰), maize (−12.5‰) and sludge (−25.4‰) organic carbon. Three hypotheses on the dynamics of soil organic matter sources are proposed: (i) isotopic differences observed between control and sludge‐treated soils are due only to the incorporation of sludge C, whereas in the others, the control was used to model the incorporation of (ii) maize C or (iii) native C in the sludge‐treated soils. The comparison of the stocks of each source (native C, maize C and sludge C) found in the bulk soil with the sum of corresponding stocks found in particle‐size fractions allowed us to reject the two first hypotheses and to validate the last one. Repeated applications of sewage‐sludge induced accumulation of sludge‐derived organic carbon in the topsoil, and simultaneously contributed to the preservation of maize‐derived organic carbon. When sludge applications ceased, the rapid decrease in soil organic matter stocks was mostly caused by the degradation of the sludge‐derived organic carbon sources. At the same time, the maize‐derived organic carbon shifted from the coarsest fraction (200–2000 μm) to the finest fraction (0–50 μm). Therefore, this study has shown that repeated applications of sewage‐sludge induced changes in soil organic matter dynamics over time.  相似文献   

12.
城市污泥生物干化过程的有机质转化与产水规律   总被引:3,自引:1,他引:2  
城市污泥生物干化期间,微生物降解有机质产生水分,影响最终的干化效率。该研究采用自动控制技术进行城市污泥生物干化,测定了干化过程不同阶段的有机质组分转化,并通过水分平衡方程计算了污泥干化过程中堆体的产水量,研究了干化过程的产水规律。结果表明,第1次高温期是有机质降解最快的时期,日均降幅达6.68 kg/(t·d);生物干化完成时,有机质中的易降解有机质(易水解物和脂类)比例由49.91%降至37.94%,腐殖酸的比例由39.34%升至54.14%;堆体总产水量为61.80 kg/t,产水速率排序为:第1次高温期升温期第2次高温期降温期,其中第1次高温期日均产水速率达6.51 kg/(t·d),该时期也是有机质降解速率最大的时期。整个生物干化过程中,堆体产水量与蒸发量的比值为1:6.7,产水量远低于蒸发量,各阶段的产水量变化可为优化生物干化工艺提供参考。  相似文献   

13.
To treat household wastewater, a sequence of ‘primary decantation–trickling filter percolation’ was applied in a lab-scale designed treatment system. Poly-electrolyte was used as coagulant to enhance the primary treatment and charcoal was used as carrier material in the trickling filters. Oxygen was supplied to the trickling filters by means of natural ventilation. In the lab-scale system, the enhanced primary stage removed more than 91% of the suspended solids (SS), and 79% of the total chemical oxygen demand (CODt). The subsequent trickling filtration brought a complete nitrification to the wastewaters at a volumetric loading rate (Bv) of 0.7–1.0 g CODt L-1 d-1. On average, the concentrations of the CODt and SS in the final effluents were about 55 and 15 mg L-1 respectively. With respect to phosphate, physico-chemical removal was the dominant process. About 46–62% of total P was removed from the tested wastewaters. The integrated treatment system also achieved a fair degree of hygienisation. The numbers of total coliforms, fecal coliforms and fecal streptococci were decreased by 2–4 log units. The sludge production of the entire treatment system was about 1.7% (v/v) of the treated wastewater. Only primary sludge was produced; secondary sludge produced in the trickling filters was negligible. The cost savings in terms of minimization of sludge production and aeration energy are estimated to be substantial (i.e. some 50%) relative to a conventional activated sludge system.  相似文献   

14.
Two types of compost, consisting of sweet sorghum bagasse with either sewage sludge or a mixture of pig slurry and poultry manure, were studied in a pilot plant using the Rutgers system. The total degradation of the piles as determined by the weight loss of organic matter during the bio-oxidative and maturation phases accounted for 64% of the organic matter applied and followed a first-order kinetic function. Concentrations of total and organic N increased during the composting process as the degradation of organic C compounds reduced the compost weight. Losses of N through NH3 volatilization were low, particularly in the compost with sewage sludge due to pH values of <7.0 and the low temperatures reached in the compost during the first 2 weeks. The C:N ratio in the two composts decreased from 24.0 and 15.4 to values between 12 and 10. Increases in cation exchange capacity and in fulvic and humic acid-like C revealed that the organic matter had been humified during composting. The humification index, the C:N ratio, fulvic:humic acid-like C, and cation exchange capacity proved to be the most suitable parameters for assessing the maturity of these composts.  相似文献   

15.
A rhizobox experiment was conducted to compare iron (Fe) oxidation and changes of pH, redox potential (Eh) and fractions of zinc (Zn) and lead (Pb) in rhizosphere and non-rhizosphere soils of four emergent-rooted wetland plants (Echinodorus macrophyllus, Eleocharis geniculata, Hydrocotyle vulgaris and Veronica serpyllifolia) with different radial oxygen loss (ROL) from roots. The results indicated that all these wetland plants decreased pH and concentration of Fe(Ⅱ) but increased the Eh in the rhizosphere soils. Pb and Zn were transformed from unstable fractions to more stable fractions in the rhizosphere soils, so decreasing their potential metal mobility factors (MF). Among the four plants, E. macrophyllus, with the highest ROL and root biomass, possessed the greatest ability in formation of Fe plaque and in the reduction of heavy metal MFs in the rhizosphere soil. Wetland plants, with higher ROLs and root biomass, may thus be effective in decreasing potential long-term heavy metal bioavailabilities.  相似文献   

16.
Sluszny  C.  Graber  E. R.  Gerstl  Z. 《Water, air, and soil pollution》1999,115(1-4):395-410
Fresh amendment of soil with sewage sludge and composted sewage sludge resulted in increased sorption of three s-triazine herbicides: atrazine, ametryn and terbuthylazine. The extent of increased sorption (as evaluated by sorption coefficients Kd or Kf) was a function of soil type, such that sorption in amended organic carbon-poor soil (0.4% OC) was more enhanced than in amended organic carbon-rich soil (1.55% OC). Despite significant differences between the organic amendments in terms of humic and fulvic acid content, humin content, soluble organic matter content, total organic matter content, and H/C and O/C atomic ratios, organic matter composition had no discernible effect on either sorption distribution coefficients or on isotherm linearity in amended soils. Soils amended with composted sludge had the same sorption potential as did soils amended with the analogous uncomposted sludge. After incubating soil-sludge mixtures for a year at room temperature, organic matter content decreased to original pre-amendment levels. Sorption coefficients for the three compounds similarly decreased to initial pre-amendment values. Organic carbon normalized sorption coefficients (Koc) were essentially identical in the soils, amended soils, and incubated amended soils, indicating that sludge and compost derived organic matter does not have a significantly different sorption capacity as compared with the original soils, despite compositional differences.  相似文献   

17.
菌渣垫料堆肥过程碳素物质转化规律   总被引:5,自引:0,他引:5  
好氧堆肥是一种有效处理农业废弃物的方法,有利于实现农业资源的循环利用。但堆肥也有它的缺点,堆肥过程中的碳素损失是造成温室气体形成的重要原因。因此研究碳素在堆肥过程中的转化规律对于如何减少堆肥潜在的负面环境影响十分重要。该研究以生猪养殖发酵床废弃垫料及秀珍菇菌渣为原料,利用强制通风静态堆肥技术研究垫料和菌渣不同配比及添加EM菌剂对堆肥过程碳素物质转化的影响。结果表明,堆肥过程中总有机碳呈逐渐下降趋势;胡敏酸呈逐渐增加的趋势;微生物量碳和可溶性碳呈先增后降的变化趋势。堆肥结束时,碳素降解率为5.7%~10.2%,胡敏酸增加了56.0%~131.0%,可溶性有机碳增加了54.5%~81.5%,微生物生物量碳增加了31.7%~73.4%。以垫料为主料的堆肥处理碳素损失高于以菌渣为主料的处理,添加EM菌剂可以加速有机质的矿化分解和提高腐殖质化指数。  相似文献   

18.
城市污泥与调理剂混合堆肥过程中有机质组分的变化   总被引:5,自引:4,他引:1  
【目的】研究城市污泥堆肥过程中各项有机质组分及碳、 氮在堆肥过程中的形成与转化,以期改善堆肥的生物有效性,促进其土地利用。【方法】在工厂规模化下,以城市污泥、 蘑菇渣锯末以及返混料按照6∶3∶1的质量比混合形成堆肥物料,辅以强制通风措施和翻抛,进行为期18 d的高温堆肥试验。堆肥期间定期采样,测定指标包括温度、 C/N值、 pH、 含水率、 有机质降解率、 水溶性组分、 半纤维素、 纤维素和木质素,研究堆肥期间不同阶段堆肥物料中有机质组分的动态变化。【结果】堆体温度随着发酵时间的延长呈现先升高后降低的趋势,最高温度达到71.3℃; 含水率由60.7%降低到51.4%,pH呈现先升高后降低的趋势,总体处于6.0~7.5之间; 总有机碳含量持续下降,氮素含量表现为高温期持续下降随后呈上升的趋势; 初始阶段,堆肥物料中四种成分含量分布为: 水溶性组分纤维素半纤维素木质素,至堆肥结束变化为: 纤维素水溶性组分木质素半纤维素,经过堆肥之后水溶性组分及半纤维素含量分别由39.5%和20.1%下降为27.9%和14.4%,纤维素含量由初始的21.8%上升至29.5%,木质素含量相对稳定不变。物料经过堆肥化处理后达到腐熟标准,水溶性组分和半纤维素含量分别降低了38.6%和38.8%,纤维素和木质素含量在高温期分别降解了11.7%和18.5%; 物料总量降低了9.8%。水溶性组分的主要降解阶段为高温期,期间降解部分占总降解量的65.5%; 半纤维素的主要降解阶段为稳定期,稳定期降解部分占总降解量的69.1%,且有继续降解的趋势; 纤维素和木质素仅在高温期有少量降解; 氮素则表现为高温期铵态氮的损失及稳定期硝态氮的积累。【结论】堆肥化处理在实现污泥减量化基础上,污泥中有机质得到了稳定化,有利于城市污泥的土地利用。  相似文献   

19.
Pulp and paper industries face serious environmental challenges, especially with regard to the conservation of water resources. Chemical thermal mechanical pulping (CTMP) is a process of pulping that combines chemical and mechanical pulping. This reduces the volume of water used in the process. But on the other hand, CTMP generates an effluent with high concentration of organic matter and is difficult to treat. This study evaluated the efficiency in the combination of physicochemical pretreatment by coagulation-flocculation-sedimentation (CFS) process and advanced oxidation process (AOP) by Fenton in sequence to treat CTMP effluent of a Brazilian industry. At first, the best treatment conditions for this type of effluent were determined. To evaluate the efficiency, pH, chemical oxygen demand, biochemical oxygen demand, total organic carbon, lignin contents, color, total phenolic contents, turbidity, and solids were measured before and after treatment. The acute toxicity on Daphnia magna was also determined. The treatment with CFS showed better results in the removal of solids and Fenton in the removal of recalcitrant compounds, such as lignin, demonstrating the need to use them in sequence. Combining CFS and Fenton to treat CTMP effluent allowed to achieve a removal efficiency of 95% for TOC, 61% for COD, and 76% for lignin contents.  相似文献   

20.
为评价磺胺类抗生素在沉积物中降解行为,以最常用的磺胺类药物——磺胺甲恶唑(SMZ)为对象,通过不同的环境条件下室内模拟实验,研究了其在沉积物中的降解动态以及相关环境因素(微生物、含氧量、光照、沉积物种类和药物起始浓度等)对降解过程的影响情况。结果表明,SMZ在沉积物中的降解途径主要为兼性厌氧微生物降解,非生物降解等其他降解途径只占较小比例。SMZ的降解速率与沉积物的有机质含量密切相关,高有机质含量的沉积物中SMZ的降解更快,沉积物中的光敏剂也能促进SMZ的降解。高浓度的SMZ通过抑制沉积物微生物的活性,使得其降解显著下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号