首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To estimate net ecosystem production (NEP), ecosystem respiration (R E), and gross primary production (GPP), and to elucidate the interannual variability of NEP in a cool temperate broadleaf deciduous forest in Sapporo, northern Japan, we measured net ecosystem exchange (NEE) using an eddy covariance technique with a closed-path infrared gas analyzer from 2000 to 2003. NEP, R E, and GPP were derived from NEE, and data gaps were filled using empirical regression models with meteorological variables such as photosynthetic active radiation and soil temperature. In general, NEP was positive (CO2 uptake) from May to September, either positive or negative in October, and negative (CO2 release) from November to the following April. NEP rapidly increased during leaf expansion in May and reached its maximum in June or July. The four-year averages (±?standard deviation) of annual NEP, GPP, and R E were 443?±?45, 1,374?±?39, and 931?±?11?g?C?m?2?year?1, respectively. The lower annual NEP and GPP in 2000 may have been caused by lower solar radiation in the foliated season. During the foliated season, monthly GPP varied from year to year more than monthly R E. Variations in the amount of incoming solar radiation may have caused the interannual variations in the monthly GPP. Additionally, in May, the timing of leaf expansion had a large impact on GPP. Variations in GPP affected the interannual variation in NEP at our site. Thus, interannual variation in NEP was affected by the incoming solar radiation and the timing of leaf expansion.  相似文献   

2.
We monitored variation in seasonal and annual net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (R E) based on 7-year eddy covariance measurements above a cool?Ctemperate deciduous broad-leaved forest (Japanese beech forest). The 7-year means (±SD) of annual NEP, GPP, and R E were 312?±?64, 1250?±?62, and 938?±?36?g?C?m?2?year?1, respectively. Variation in NEP was much larger than variation in GPP and R E. During the growing season, the main factor controlling carbon balance was air temperature; variation in seasonal integrated NEP was regulated by accumulated air temperature (degree-day) with a significant negative correlation, whereas the seasonal ratio of R E to GPP was correlated positively with accumulated air temperature. Because the deviation of seasonal NEP was also significantly correlated with seasonal R E/GPP, NEP was controlled by R E/GPP, depending on air temperature during the growing season. Seasonal R E in the defoliation and snow seasons was also important for evaluating the annual carbon balance, because the total number of days in the two seasons was quite large owing to a long snowy winter. In the defoliation and snow seasons, we found defoliation season length was a major factor determining seasonal integrated R E, illustrating the positive correlation between R E and defoliation season length. The major factors controlling interannual variations in forest carbon balance are discussed.  相似文献   

3.
The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. The continuous carbon fluxes were measured from May 2004 to April 2005 in the Dahurian larch forest in Northeast China using an eddy covariance method. The results showed that the ecosystem released carbon in the dormant season from mid-October 2004 to April 2005, while it assimilated CO2 from the atmosphere in the growing season from May to September 2004. The net carbon sequestration reached its peak of 112 g.m^-2.month ^-1 in June 2004 (simplified expression of g (carbon).m^-2.month^-1) and then gradually decreased. Annually, the larch forest was a carbon sink that sequestered carbon of 146 g-m^-2.a^-1 (simplified expression of g (carbon).m^-2.a^-1) during the measurements. The photosynthetic process of the larch forest ecosystem was largely affected by the vapor pressure deficit (VPD) and temperature. Under humid conditions (VPD 〈 1.0 kPa), the gross ecosystem production (GEP) increased with increasing temperature. But the net ecosystem production (NEP) showed almost no change with increasing temperature because the increment of GEP was counterbalanced by that of the ecosystem respiration. Under a dry environment (VPD 〉 1.0 kPa), the GEP decreased with the increasing VPD at a rate of 3.0 μmol.m^-2.s^-1kPa -1 and the ecosystem respiration was also enhanced simultaneously due to the increase of air temperature, which was linearly correlated with the VPD. As a result, the net ecosystem carbon sequestration rapidly decreased with the increasing VPD at a rate of 5.2 μmol.m^-2.s-1.kPa^-1. Under humid conditions (VPD 〈 1.0 kPa), both the GEP and NEP were obviously restricted by the low air temperature but were insensitive to the high temperature because the observed high temperature value comes within the category of the optimum range.  相似文献   

4.
The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. The continuous carbon fluxes were measured from May 2004 to April 2005 in the Dahurian larch forest in Northeast China using an eddy covariance method. The results showed that the ecosystem released carbon in the dormant season from mid-October 2004 to April 2005, while it assimilated CO2 from the atmosphere in the growing season from May to September 2004. The net carbon sequestration reached its peak of 112 g·m−2·month−1 in June 2004 (simplified expression of g (carbon)·m−2·month−1) and then gradually decreased. Annually, the larch forest was a carbon sink that sequestered carbon of 146 g·m−2·a−1 (simplified expression of g (carbon)·m−2·a−1) during the measurements. The photosynthetic process of the larch forest ecosystem was largely affected by the vapor pressure deficit (VPD) and temperature. Under humid conditions (VPD < 1.0 kPa), the gross ecosystem production (GEP) increased with increasing temperature. But the net ecosystem production (NEP) showed almost no change with increasing temperature because the increment of GEP was counterbalanced by that of the ecosystem respiration. Under a dry environment (VPD > 1.0 kPa), the GEP decreased with the increasing VPD at a rate of 3.0 μmol·m−2·s−1·kPa-1 and the ecosystem respiration was also enhanced simultaneously due to the increase of air temperature, which was linearly correlated with the VPD. As a result, the net ecosystem carbon sequestration rapidly decreased with the increasing VPD at a rate of 5.2 μmol·m−2·s−1·kPa−1. Under humid conditions (VPD < 1.0 kPa), both the GEP and NEP were obviously restricted by the low air temperature but were insensitive to the high temperature because the observed high temperature value comes within the category of the optimum range.  相似文献   

5.
Carbon dioxide (CO2) flux was measured above the forest at the Fujiyoshida site on the northern slope of Mount Fuji in Japan in 2000?C2008 using an eddy covariance technique. The forest mainly consists of Japanese red pine (Pinus densiflora) and Japanese holly (Ilex pedunculosa). The 9-year average of monthly mean net ecosystem production (NEP) ranged from ?0.1?g?C?m?2?day?1 in January to 2.5?g?C?m?2?day?1 in May. The maximum net uptake was observed in May, although gross primary production (GPP) was highest in July. Variation in the leaf amount did not notably affect seasonal variation in GPP. This site was characterized by carbon uptake even in winter, if the meteorological conditions were conducive for photosynthesis and a resulting long period of carbon uptake. The 9-year averages of annual NEP, GPP, and ecosystem respiration (RE) were 388, 1,802, and 1,413?g?C?m?2?year?1, respectively. The annual NEP was lowest in 2003 and highest in 2004 over the 9?years. Year-to-year variability of NEP mainly depended on air temperature and photosynthetically active radiation in summer, and the dependence of the deviation of annual NEP on that of GPP was greater than that of RE. Long-term observational data indicated that the carbon uptake ability at the study site was at a moderate level in comparison with other temperate humid evergreen forests around the world. These data also indicated that the site had a high carbon uptake ability compared with other deciduous forests in Japan because of the duration of carbon uptake.  相似文献   

6.
Abstract

The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   

7.
Despite the low timber productivity of Mediterranean Pinus halepensis Mill. forests in south-eastern Spain, they are a valuable carbon sequestration source which could be extended if young stands and understories were considered. We monitored changes in biomass storage of young Aleppo pine stands naturally regenerated after wildfires, with a diachronic approach from 5 to 16 years old, including pine and understory strata, at two different quality sites (dry and semiarid climates). At each site, we set 21 permanent plots and carried out different thinning intensities at two ages, 5 and 10 years after fires. We found similar post-fire regeneration capacity at both sites in terms of total above-ground biomass storage ~6 Mg ha?1 (3 Mg ha?1 of the above-ground pine biomass plus 3 Mg ha?1 of the above-ground understory biomass), but with a contrasting pine layer structure. Generally, across the diachronic study, the earlier thinning reduced biomass stocks at both sites, except for the best quality site (the dry site), where the earliest thinning (applied at post-fire year 5) enlarged carbon storage by 11 % as compared to non-thinned plots. We found root:shoot ratios of an average 0.37 for the pine layer and 0.45 for the understory layer. These results provided new information which not only furthers our understanding of carbon sequestration in low timber productivity Mediterranean forests, but will also help to develop new guidelines for sustainable management adapted to the high-risk terrestrial carbon losses of fire-prone areas.  相似文献   

8.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

9.
Forest biomass pools are the major reservoirs of atmospheric carbon in both coniferous and broad-leaved forest ecosystems and thus play an important role in regulating the regional and global carbon cycle. In this study, we measured the biomass of trees, understorey, and detritus in temperate (coniferous and broad-leaved) forests of Kashmir Himalaya. Total ecosystem dry biomass averaged 234.2 t/ha (ranging from 99.5 to 305.2 t/ha) across all the forest stands, of which 223 t/ha (91.9–283.2 t/ha) were stored in above- and below-ground biomass of trees, 1.3 t/ha (0.18–3.3 t/ha) in understorey vegetation (shrubs and herbaceous), and 9.9 t/ha (4.8–20.9 t/ha) in detritus (including standing and fallen dead trees, and forest floor litter). Among all the forests, the highest tree, understorey, and detritus biomass were observed in mid-altitude Abies pindrow and Pinus wallichiana coniferous forests, whereas the lowest were observed in high-altitude Betula utilis broad-leaved forests. Basal area has showed significant positive relationship with biomass (R2 = 0.84–0.97, P < 0.001) and density (R2 = 0.49–0.87). The present study will improve our understanding of distribution of biomass (trees, understorey, and detritus) in coniferous and broad-leaved forests and can be used in forest management activities to enhance C sequestration.  相似文献   

10.
We estimated forest biomass carbon storage and carbon density from 1949 to 2008 based on nine consecutive forest inventories in Henan Province,China.According to the definitions of the forest inventory,Henan forests were categorized into five groups: forest stands,economic forests,bamboo forests,open forests,and shrub forests.We estimated biomass carbon in forest stands for each inventory period by using the continuous biomass expansion factor method.We used the mean biomass density method to estimate carbon stocks in economic,bamboo,open and shrub forests.Over the 60-year period,total forest vegetation carbon storage increased from34.6 Tg(1 Tg = 1×10~(12)g) in 1949 to 80.4 Tg in 2008,a net vegetation carbon increase of 45.8 Tg.By stand type,increases were 39.8 Tg in forest stands,5.5 Tg in economic forests,0.6 Tg in bamboo forests,and-0.1 Tg in open forests combine shrub forests.Carbon storageincreased at an average annual rate of 0.8 Tg carbon over the study period.Carbon was mainly stored in young and middle-aged forests,which together accounted for 70–88%of the total forest carbon storage in different inventory periods.Broad-leaved forest was the main contributor to forest carbon sequestration.From 1998 to 2008,during implementation of national afforestation and reforestation programs,the carbon storage of planted forest increased sharply from 3.9 to 37.9 Tg.Our results show that with the growth of young planted forest,Henan Province forests realized large gains in carbon sequestration over a 60-year period that was characterized in part by a nation-wide tree planting program.  相似文献   

11.
Tree carbon (C) uptake (net primary productivity excluding fine root turnover, NPP') in a New Zealand Pinus radiata D. Don plantation (42 degrees 52' S, 172 degrees 45' E) growing in a region subject to summer soil water deficit was investigated jointly with canopy assimilation (A(c)) and ecosystem-atmosphere C exchange rate (net ecosystem productivity, NEP). Net primary productivity was derived from biweekly stem diameter growth measurements using allometric relations, established after selective tree harvesting, and a litterfall model. Estimates of A(c) and NEP were used to drive a biochemically based and environmentally constrained model validated by seasonal eddy covariance measurements. Over three years with variable rainfall, NPP' varied between 8.8 and 10.6 Mg C ha(-1) year(-1), whereas A(c) and NEP were 16.9 to 18.4 Mg C ha(-1) year(-1) and 5.0-7.2 Mg C ha(-1) year(-1), respectively. At the end of the growing season, C was mostly allocated to wood, with nearly half (47%) to stems and 27% to coarse roots. On an annual basis, the ratio of NEP to stand stem volume growth rate was 0.24 +/- 0.02 Mg C m(-3). The conservative nature of this ratio suggests that annual NEP can be estimated from forest yield tables. On a biweekly basis, NPP' repeatedly lagged A(c), suggesting the occurrence of intermediate C storage. Seasonal NPP'/A(c) thus varied between nearly zero and one. On an annual basis, however, NPP'/A(c) was 0.54 +/- 0.03, indicating a conservative allocation of C to autotrophic respiration. In the water-limited environment, variation in C sequestration rate was largely accounted for by a parameter integrative for changes in soil water content. The combination of mensurational data with canopy and ecosystem C fluxes yielded an estimate of heterotrophic respiration (NPP' - NEP) approximately 30% of NPP' and approximately 50% of NEP. The estimation of fine-root turnover rate is discussed.  相似文献   

12.
Tropical forests store a large part of the terrestrial carbon and play a key role in the global carbon (C) cycle. In parts of Southeast Asia, conversion of natural forest to cacao agroforestry systems is an important driver of deforestation, resulting in C losses from biomass and soil to the atmosphere. This case study from Sulawesi, Indonesia, compares natural forest with nearby shaded cacao agroforests for all major above and belowground biomass C pools (n = 6 plots) and net primary production (n = 3 plots). Total biomass (above- and belowground to 250 cm soil depth) in the forest (approx. 150 Mg C ha?1) was more than eight times higher than in the agroforest (19 Mg C ha?1). Total net primary production (NPP, above- and belowground) was larger in the forest than in the agroforest (approx. 29 vs. 20 Mg dry matter (DM) ha?1 year?1), while wood increment was twice as high in the forest (approx. 6 vs. 3 Mg DM ha?1 year?1). The SOC pools to 250 cm depth amounted to 134 and 78 Mg C ha?1 in the forest and agroforest stands, respectively. Replacement of tropical moist forest by cacao agroforest reduces the biomass C pool by approximately 130 Mg C ha?1; another 50 Mg C ha?1 may be released from the soil. Further, the replacement of forest by cacao agroforest also results in a 70–80 % decrease of the annual C sequestration potential due to a significantly smaller stem increment.  相似文献   

13.
Carbon sequestration is increasingly recognized as an ecosystem service, and forest management has a large potential to alter regional carbon fluxes − notably by way of harvest removals and related impacts on net ecosystem production (NEP). In the Pacific Northwest region of the US, the implementation of the Northwest Forest Plan (NWFP) in 1993 established a regional socioecological system focused on forest management. The NWFP resulted in a large (82%) decrease in the rate of harvest removals on public forest land, thus significantly impacting the regional carbon balance. Here we use a combination of remote sensing and ecosystem modeling to examine the trends in NEP and net ecosystem carbon balance (NECB) in this region over the 1985-2007 period, with particular attention to land ownership since management now differs widely between public and private forestland. In the late 1980s, forestland in both ownership classes was subject to high rates of harvesting, and consequently the land was a carbon source (i.e. had a negative NECB). After the policy driven reduction in the harvest level, public forestland became a large carbon sink − driven in part by increasing NEP − whereas private forestland was close to carbon neutral. In the 2003-2007 period, the trend towards carbon accumulation on public lands continued despite a moderate increase in the extent of wildfire. The NWFP was originally implemented in the context of biodiversity conservation, but its consequences in terms of carbon sequestration are also of societal interest. Ultimately, management within the NWFP socioecological system will have to consider trade-offs among these and other ecosystem services.  相似文献   

14.
Analysis of the impacts of forest management and climate change on the European forest sector carbon budget between 1990 and 2050 are presented in this article. Forest inventory based carbon budgeting with large scale scenario modelling was used. Altogether 27 countries and 128.5 million hectare of forests are included in the analysis. Two forest management and climate scenarios were applied. In Business as Usual (BaU) scenario national fellings remained at the 1990 level while in Multifunctional (MultiF) scenario fellings increased 0.5–1% per year until 2020, 4 million hectare afforestation program took place between 1990 and 2020 and forest management paid more attention to current trends towards more nature oriented management. Mean annual temperature increased 2.5 °C and annual precipitation 5–15% between 1990 and 2050 in changing climate scenario. Total amount of carbon in 1990 was 12 869 Tg, of which 94% in tree biomass and forest soil, and 6% in wood products in use. In 1995–2000, when BaU scenario was applied under current climatic conditions, net primary production was 409 Tg C year−1, net ecosystem production 164 Tg C year−1, net biome production 84.5 Tg C year−1, and net sequestration of the whole system 87.4 Tg C year−1 which was equal to 7–8% of carbon emissions from fossil fuel combustion in 1990. Carbon stocks in tree biomass, soil and wood products increased in all applied management and climate scenarios, but slower after 2010–2020 than that before. This was due to ageing of forests and higher carbon densities per unit of forest land. Differences in carbon sequestration were very small between applied management scenarios, implying that forest management should be changed more than in this study if aim is to influence carbon sequestration. Applied climate scenarios increased carbon stocks and net carbon sequestration compared to current climatic conditions.  相似文献   

15.
Forest management influences several ecosystem processes, including carbon exchange between forest ecosystem and atmosphere. The aim of this paper was to study the carbon cycle over different age classes of two managed forests in the Italian Alps through direct measurements and modelling. For this purpose, ecosystem carbon dynamics of a beech forest (Fagus sylvatica L.) and of a spruce forest (Picea abies (L.) Karst.) were investigated using a chronosequence approach. In both forests, five forest development stages were identified (thicket, pole wood, young forest, mature forest and the regeneration phase) with an age spanning from 42 to 163?years for the beech forest and from 35 to 161?years for the spruce forest. Measured total ecosystem carbon stock increased up to 80–100?years, with a mean of 232?MgC?ha?1 in the beech forest and of 299?MgC?ha?1 in the spruce forest. Calculated net ecosystem production (NEP) was found to decrease linearly with age and had an average value of 2.2 and 4.4?MgC?ha?1?year?1 for beech and spruce forest, respectively. Model simulations reported an increase in NEP till 50–60?years followed by a decrease thereafter. The model also predicted a negative NEP for a short period (8–11?years) after the seed cut. Aboveground biomass was the main driver of carbon accumulation while soil carbon was not significantly influenced by both age and management system. Moreover, measured data and model showed that the applied shelterwood system allowed for a rapid recovery of the ecosystem after the disturbance (i.e. seed cut), bringing back forest to act as C sink in few years.  相似文献   

16.
Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha~(-1),43.6–63.6 m~2ha~(-1)and 6,675–8400 tree ha~(-1),respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha~(-1)a~(-1),and 7.2 g a~(-1),respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.  相似文献   

17.
If forests are to be used in CO2 mitigation projects, it is essential to understand and quantify the impacts of disturbance on net ecosystem productivity (NEP; i.e., the change in ecosystem carbon (C) storage with time). We examined the influence of live tree and coarse woody debris (CWD) on NEP during secondary succession based on data collected along a 500-year chronosequence on the Wind River Ranger District, Washington. We developed a simple statistical model of live and dead wood accumulation and decomposition to predict changes in the woody component of NEP, which we call NEP(w). The transition from negative to positive NEP(w), for a series of scenarios in which none to all wood was left after disturbance, occurred between 0 and 57 years after disturbance. The timing of this transition decreased as live-tree growth rates increased, and increased as CWD left after disturbance increased. Maximum and minimum NEP(w) for all scenarios were 3.9 and -14.1 Mg C ha-1 year-1, respectively. Maximum live and total wood C stores of 319 and 393 Mg C ha(-1), respectively, were reached approximately 200 years after disturbance. Decomposition rates (k) of CWD ranged between 0.013 and 0.043 year-1 for individual stands. Regenerating stands took 41 years to attain a mean live wood mass equivalent to the mean mass of CWD left behind after logging, 40 years to equal the mean CWD mass in 500-year-old forest, and more than 150 years to equal the mean total live and dead wood in an old-growth stand. At a rotation age of 80 years, regenerating stands stored approximately half the wood C of the remaining nearby old-growth forests (predominant age 500 years), indicating that conversion of old-growth forests to younger managed forests results in a significant net release of C to the atmosphere.  相似文献   

18.
Turbulent fluxes of carbon, water and energy were measured at the Wind River Canopy Crane, Washington, USA from 1999 to 2004 with eddy-covariance instrumentation above (67 m) and below (2.5 m) the forest canopy. Here we present the decomposition of net ecosystem exchange of carbon (NEE) into gross primary productivity (GPP), ecosystem respiration (R(eco)) and tree canopy net CO(2) exchange (DeltaC) for an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)-western hemlock (Tsuga heterophylla (Raf.) Sarg.) forest. Significant amounts of carbon were recycled within the canopy because carbon flux measured at the below-canopy level was always upward. Maximum fluxes reached 4-6 micromol m(-2) s(-1) of CO(2) into the canopy air space during the summer months, often equaling the net downward fluxes measured at the above-canopy level. Ecosystem respiration rates deviated from the expected exponential relationship with temperature during the summer months. An empirical ecosystem stress term was derived from soil water content and understory flux data and was added to the R(eco) model to account for attenuated respiration during the summer drought. This attenuation term was not needed in 1999, a wet La Ni?a year. Years in which climate approximated the historical mean, were within the normal range in both NEE and R(eco), but enhanced or suppressed R(eco) had a significant influence on the carbon balance of the entire stand. In years with low respiration the forest acts as a strong carbon sink (-217 g C m(-2) year(-1)), whereas years in which respiration is high can turn the ecosystem into a weak to moderate carbon source (+100 g C m(-2) year(-1)).  相似文献   

19.
The seasonal trend of plant carbon dioxide (CO2) sequestration is related to the photosynthetic activity, which in turn changes in response to environmental conditions. Great interest has turned to the CO2 sequestration (CS) potential of temperate forests which play an important role in global carbon (C) cycle contributing to the lowering of atmospheric CO2 concentration. In such context, the CS of an unmanaged old broad-leaf deciduous forest developing inside a Strict Nature Reserve, and its variations during the year were analyzed considering the monthly variations of leaf area index (LAI) and net photosynthetic rates (NP). Overall, the total yearly CS of the forest was 141 Mg CO2 ha?1 year?1 with the highest CS value monitored in June (405 Mg CO2 month?1) due to the highest LAI (5.0 ± 0.8 m2 m?2) and a high NP in all the broadleaf species. The first CS decline was observed in August due to the more stressful climatic conditions that constrained NP rates. Overall, the total CS of the forest reflects the good ecological health of the ecosystem due to its conservative management.  相似文献   

20.
  • ? Water and carbon fluxes, as measured by eddy covariance, climate, soil water content, leaf area index, tree biomass, biomass increment (BI), litter fall and mortality were monitored for 10 successive years in a young beech stand in Hesse forest (north-eastern France) under contrasting climatic and management conditions.
  • ? Large year-to-year variability of net carbon fluxes (NEE) and to a lesser extent, of tree growth was observed. The variability in NEE (coefficient of variation, CV = 44%) was related to both gross primary production (GPP) and to variations in total ecosystem respiration (TER), each term showing similar and lower interannual variability (CV = 14%) than NEE. Variation in the annual GPP was related to: (i) the water deficit duration and intensity cumulated over the growing season, and (ii) the growing season length, i.e. the period of carbon uptake by the stand. Two thinnings occurring during the observation period did not provoke a reduction in either GPP, water fluxes, or in tree growth. Interannual variation of TER could not be explained by any annual climatic variables, or LAI, and only water deficit duration showed a poor correlation. Annual biomass increment was well correlated to water shortage duration and was significantly influenced by drought in the previous year.
  • ? The relationship between annual NEE and biomass increment (BI) was poor: in some years, the annual carbon uptake was much higher and in others much lower than tree growth. However this relationship was much stronger and linear (r 2 = 0.93) on a weekly to monthly time-scale from budburst to the date of radial growth cessation, indicating a strong link between net carbon uptake and tree growth, while carbon losses by respiration occurring after this date upset this relationship.
  • ? Despite the lack of correlation between annual data, the NEE and BI cumulated over the 10 years of observations were very close.
  • ? On the annual time-scale, net primary productivity calculated from eddy fluxes and from biological measurements showed a good correlation.
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号