共查询到20条相似文献,搜索用时 18 毫秒
1.
A directed search for QTL affecting carcass traits was carried out in the region of growth differentiation factor 8 (GDF8, also known as myostatin) on ovine chromosome 2 in seven Texel-sired half-sib families totaling 927 progeny. Weights were recorded at birth, weaning, ultrasound scanning, and slaughter. Ultrasonic measures of LM cross-sectional dimensions and s.c. fat above the LM were made, with the same measurements made on the LM after slaughter. Following slaughter, linear measurements of carcass length and width were made on all carcasses, and legs and loins from 540 lambs were dissected. Genotyping was carried out using eight microsatellite markers from FCB128 to RM356 on OAR 2 and analyzed using Haley-Knott regression. There was no evidence for QTL for growth rates or linear carcass traits. There was some evidence for QTL affecting LM dimensions segregating in some sire families, although it was not consistent between ultrasound and carcass measures of the same traits. There was strong and consistent evidence for a QTL affecting muscle and fat traits in the leg that mapped between markers BM81124 and BULGE20 for the four sires that were heterozygous in this region, but not for the three sires that were homozygous. The size of the effect varied across the four sires, ranging from 0.5 to 0.9 of an adjusted SD for weight-adjusted leg muscle traits, and ranging from 0.6 to 1.2 of an adjusted SD for weight-adjusted leg fat traits. The clearest effect shown was for multivariate analysis combining all leg muscle and fat traits analyzed across sires, where the -log(10) probability was 14. Animals carrying the favorable haplotype had 3.3% more muscle and 9.9% less fat in the leg relative to animals carrying other haplotypes. There was evidence for a second peak in the region of marker TEXAN2 for one sire group. It seems that a QTL affecting muscle and fat traits exists within the New Zealand Texel population, and it maps to the region of GDF8 on OAR2. 相似文献
2.
A QTL for muscle hypertrophy has been identified in the Belgian Texel breed. A population of F2 and backcross lambs created from crosses of Belgian Texel rams with Romanov ewes was studied. Effects on carcass traits and muscle development of the Belgian Texel breed polygenes and Belgian Texel single QTL were compared. In both cases, carcass conformation and muscularity were improved. The Texel polygenic environment improved conformation mainly through changes in skeletal frame shape. Segments were shorter and bone weight lower. Muscles were more compact, shorter, and thicker. The single QTL affected muscle development. Thickness and weight of muscles were increased. Composition in myosin changed toward an increase of fast contractile type. The relative contribution of hind limb joint to carcass weight was increased. Differences in skeletal frame morphology among the three genotypes of the single QTL were small. Conformation scoring was mainly influenced by leg muscularity. Back and shoulder muscle development, which largely contributed to variability of muscularity, were less involved in the conformation scoring. Lastly, the QTL explains a small part of differences between these Belgian Texel and Romanov breeds for conformation or muscle development. A large part of genetic variability remains to be explored. 相似文献
3.
Several reports have demonstrated that bovine chromosome 26 (BTA26) harbours significant or suggestive quantitative trait loci (QTL) for milk production and composition traits in dairy cattle. Our previous study showed that a C/T substitution in the bovine TCF7L2 gene on BTA26 was significantly linked to QTL for protein yield (PY) in a Canadian dairy cattle population. Actually, this polymorphism was one of the markers derived from a genome‐wide screening of QTL for milk PY using an amplified fragment length polymorphism technique combined with a DNA pooling strategy. In the present study, 990 Holstein bulls with complete genotype and phenotype data from 14 sire families were analysed to confirm, if the QTL effects exist in other populations. Statistical analysis revealed that this marker was significantly associated with PY, protein percentage, milk yield and fat yield (FY) (p < 0.001) in the US Holstein population. These results indicate that this QTL region has a pleiotrophic effect on different milk traits and is portable in different populations. 相似文献
4.
A QTL study for carcass composition and meat quality traits was conducted on finisher pigs of a cross between a synthetic Piétrain/Large White boar line and a commercial sow cross. The mapping population comprised 715 individuals evaluated for a total of 30 traits related to growth and fatness (4 traits), carcass composition (11 traits), and meat quality (15 traits). Offspring of 8 sires (n = 715) were used for linkage analysis and genotyped for 73 microsatellite markers covering 14 chromosomal regions representing approximately 50% of the pig genome. The regions examined were selected based on previous studies suggesting the presence of QTL affecting carcass composition or meat quality traits. Thirty-two QTL exceeding the 5% chromosome-wise significance level were identified. Among these, 5 QTL affecting 5 different traits were significant at the 1% chromosome-wise level. The greatest significance levels were found for a QTL affecting loin weight on SSC11 and a QTL with an effect on the Japanese color scale score of the loin on SSC4. About one-third of the identified QTL were in agreement with QTL previously reported. Results showed that QTL affecting carcass composition and meat quality traits segregated within commercial lines. Use of these results for marker-assisted selection offers opportunities for improving pork quality by within-line selection. 相似文献
5.
Ovulation rate is an integral component of litter size in swine, but is difficult to directly select for in commercial swine production. Because a QTL has been detected for ovulation rate at the terminal end of chromosome 8p, genetic markers for this QTL would enable direct selection for ovulation rate in both males and females. Eleven genes from human chromosome 4p16-p15, as well as one physiological candidate gene, were genetically mapped in the pig. Large insert swine genomic libraries were screened, clones were isolated and then screened for microsatellite repeats, and informative microsatellite markers were developed for seven genes (GNRHR, IDUA, MAN2B2, MSX1, PDE6B, PPP2R2C, and RGS12). Three genes (LRPAP1, GPRK2L, and FLJ20425) were mapped using genotyping assays developed from single nucleotide polymorphisms. Two genes were assigned since they were present in clones that contained mapped markers (HGFAC and HMX1). The resulting linkage map of pig chromosome 8 contains markers associated with 14 genes in the first 27 cM. One inversion spanning at least 3 Mb in the human genome was detected; all other differences could be explained by resolution of mapping techniques used. Fourteen of the most informative microsatellite markers in the first 27 cM of the map were genotyped across the entire MARC swine resource population, increasing the number of markers typed from 2 to 14 and more than doubling the number ofgenotyped animals with ovulation rate data (295 to 600). Results from the revised data set for the QTL analysis, assuming breed specific QTL alleles, indicated that the most likely position of the QTL resided at 4.85 cM on the new linkage map (F1,592 = 20.5150, genome-wide probability less than 0.015). The updated estimate of the effect of an allele substitution was -1.65 ova for the Meishan allele. The F-ratio peak was closest to markers for MAN2B2 (4.80 cM) and was flanked on the other side by markers for PPP2R2C. Two positional candidate genes included in this study are MAN2B2 and RGS12. These results validate the presence of a QTL affecting ovulation rate on chromosome 8 and facilitate selection of positional candidate genes to be evaluated. 相似文献
6.
A genome scan for chromosomal regions influencing birth weight was performed using 151 progeny of a single Hereford x composite bull and 170 microsatellite markers spanning 2.497 morgans on 29 bovine autosomes. A QTL was identified at the telomeric end of bovine chromosome 2 (maximum effect at 114 cM) accounting for approximately 2.8 kg of birth weight or 0.64 residual standard deviations (after adjustment for sex of calf, age of dam, and breed of dam). No significant effect on growth from birth to weaning was detected in this region. The presence of this QTL within a resource herd composed of breeds common to the Northern Great Plains provides an opportunity to initiate marker-assisted selection to reduce birth weight with minimal effect on postnatal growth. Thus, potentially the amount and degree of dystocia can be reduced and the economic loss associated with calving difficulty lessened without compromise of subsequent growth performance. In addition, this finding indicates that significant genetic variation for birth weight (and presumably other production-related traits) exists within herds composed of commercially adapted Bos taurus germplasm. 相似文献
7.
A total of 110 F 1 crossbred individuals of Piemontese × Chianina cattle and 75 F 2 intercross were genotyped for the DNA marker IDVGA-46, composed of an (AC) repeat, that showed a polymorphism of three alleles: 205, 207 and 229 base pairs. Association of marker polymorphism to beef conformation measures was tested with a linear mixed model which included the fixed effect of the marker genotype separated according to the origin of the allele: whether inherited from Piemontese or from Chianina and random additive genetic effect of the animals. Carriers of allele 205, when inherited from Chainina, were larger than carriers of 207 and showed a globally better body structure. No significant association was found in the animals that had inherited the alleles from Piemontese. It would be interesting to verify, in the chromosome portions flanking the mentioned marker (chromosome 19; q16 band), the existence of eventual coding sequences influencing growth and conformation. 相似文献
8.
Quantitative trait loci analyses were applied to data from Suffolk and Texel commercial sheep flocks in the United Kingdom. The populations comprised 489 Suffolk animals in three half-sib families and 903 Texel animals in nine half-sib families. Phenotypic data comprised measurements of live weight at 8 and 20 wk of age and ultrasonically measured fat and muscle depth at 20 wk. Lambs and their sires were genotyped across candidate regions on chromosomes 1, 2, 3, 4, 5, 6, 11, 18, and 20. Data were analyzed at the breed level, at the family level, and across extended families when families were genetically related. The breed-level analyses revealed a suggestive QTL on chromosome 1 in the Suffolk breed, between markers BM8246 and McM130, affecting muscle depth, although the effect was only significant in one of the three Suffolk families. A two-QTL analysis suggested that this effect may be due to two adjacent QTL acting in coupling. In total, 24 suggestive QTL were identified from individual family analyses. The most significant QTL affected fat depth and was segregating in a Texel family on chromosome 2, with an effect of 0.62 mm. The QTL was located around marker ILSTS030, 26 cM distal to myostatin. Two of the Suffolk and two of the Texel sires were related, and a three-generation analysis was applied across these two extended families. Seven suggestive QTL were identified in this analysis, including one that had not been detected in the individual family analysis. The most significant QTL, which affected muscle depth, was located on chromosome 18 near the callipyge and Carwell loci. Based on the phenotypic effect and location of the QTL, the data suggest that a locus similar to the Carwell locus may be segregating in the United Kingdom Texel population. 相似文献
9.
We previously mapped a quantitative trait locus (QTL) affecting the trait non-return rate at 56 days in heifers to bovine chromosome 9. The purpose of this study was to confirm and refine the position of the QTL by using a denser marker map and fine mapping methods. Five families that previously showed segregation for the QTL were included in the study. The mapping population consisted of 139 bulls in a granddaughter design. All bulls were genotyped for 25 microsatellite markers surrounding the QTL on chromosome 9. We also analysed the correlated trait number of inseminations per service period in heifers. Both traits describe the heifer's ability to become pregnant after insemination. Linkage analysis, linkage disequilibrium and combined linkage and linkage disequilibrium analysis were used to analyse the data. Analysis of the families jointly by linkage analysis resulted in a significant but broad QTL peak for non-return rate. Results from the combined analysis gave a sharp QTL peak with a well-defined maximum in between markers BMS1724 and BM7209, at the same position as where the highest peak from the linkage disequilibrium analysis was found. One of the sire families segregated clearly at this position and the difference in effects between the two sire haplotypes was 2.9 percentage units in non-return rate. No significant results were found for the number of inseminations in the combined analysis. 相似文献
10.
Meat quality characteristics of Bafra ram lambs slaughtered at different weights were investigated. A total of 24 lambs fattened intensively was slaughtered at four slaughter weights of 30, 35, 40, and 45 kg. Water-holding capacity, cooking loss, tenderness, color, as well as protein content did not vary significantly among the slaughter weight groups, although the 30-kg slaughter weight lambs displayed the greatest postmortem pH fall in musculus longissimus dorsi (P?<?0.05). As slaughter weight increased, intramuscular fat of musculus longissimus dorsi showed an increasing nutritive value (P?<?0.05), total unsaturated fatty acids/saturated fatty acids ratio (P?<?0.05), and n6/n3 ratio (P?<?0.05). However, atherogenic index and thrombogenic index values decreased with increasing slaughter weight, although this effect was not significant. The effect of slaughter weight on total cholesterol was not pronounced. 相似文献
11.
A multigeneration crossbred Meishan-White composite resource population was used to identify quantitative trait loci (QTL) for age at first estrus (AP) and the components of litter size: ovulation rate (OR; number of ova released in an estrous period) and uterine capacity (UC). The population was established by reciprocally mating Meishan (ME) and White composite (WC) pigs. Resultant F1 females were mated to either ME or WC boars to produce backcross progeny (BC) of either 3/4 WC 1/4 ME or 1/4 WC 3/4 ME. To produce the next generation (F3), 3/4 WC 1/4 ME animals were mated to 1/4 WC 3/4 ME animals yielding half-blood (1/2 WC 1/2 ME) progeny. A final generation (F4) was produced by inter se mating F3 animals. Measurements for AP and OR were recorded on 101 BC, 389 F3, and 110 F4 gilts, and UC data were from 101 BC and 110 F4 first parity litters. A genomic scan was conducted with markers (n = 157) spaced approximately 20 cM apart. All parental, F1, BC, and F4 animals but only 84 F3 animals were genotyped and included in this study. The QTL analysis fitted a QTL at 1-cM intervals throughout the genome, and QTL effects were tested using approximate genome-wide significance levels. For OR, a significant (E[false positive] < .05) QTL was detected on chromosome 8, suggestive (E[false positive] < 1.0) QTL were detected on chromosomes 3 and 10, and two additional regions were detected that may possess a QTL (E[false positive] < 2.0) on chromosomes 9 and 15. Two regions possessed suggestive evidence for QTL affecting AP on chromosomes 1 and 10, and one suggestive region on chromosome 8 was identified for UC. Further analyses of other populations of swine are necessary to determine the extent of allelic variation at the identified QTL. 相似文献
12.
Leg weakness in pigs is a serious problem in the pig industry. We performed a whole genome quantitative trait locus (QTL) analysis to find QTLs affecting leg weakness traits in the Landrace population. Half-sib progeny ( n = 522) with five sires were measured for leg weakness traits. Whole genome QTL mapping was performed using a half-sib regression-based method using 190 microsatellite markers. No experiment-wide significant QTLs affecting leg weakness traits were detected. However, at the 5% chromosome-wide level, QTLs affecting leg weakness traits were detected on chromosomes 1, 3, 10 and 11 with QTL effects ranging from 0.07 to 0.11 of the phenotypic variance. At the 1% chromosome-wide level, QTLs affecting rear feet score and total leg score were detected on chromosomes 2 and 3 with QTL effects of 0.11 and 0.13 of the phenotypic variance, respectively. On chromosome 3 and 10, some QTLs found in this study were located at nearby positions. The present study is one of the first reports of QTLs affecting fitness related traits such as leg weakness traits, that segregate within the Landrace population. The study also provides useful information for studying QTLs in purebred populations. 相似文献
13.
Muscle histochemical characteristics are decisive determinants of meat quality. The relative percentage and diameters of the different muscular fiber types influence crucial aspects of meat such as color, tenderness, and ultimate pH. Despite its relevance, however, the information on muscle fiber genetic architecture is scant, because histochemical muscle characterization is a laborious task. Here we report a complete QTL scan of muscle fiber traits in 160 animals from a F(2) cross between Iberian and Landrace pigs using 139 markers. We identified 20 genome regions distributed along 15 porcine chromosomes (SSC1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and X) with direct and(or) epistatic effects. Epistasis was frequent and some interactions were highly significant. Chromosomes 10 and 11 seemed to behave as hubs; they harbored 2 individual QTL, but also 6 epistatic regions. Numerous individual QTL effects had cryptic alleles, with opposite effects to phenotypic pure breed differences. Many of the QTL identified here coincided with previous reports for these traits in the literature, and there was overlapping with potential candidate genes and previously reported meat quality QTL. 相似文献
14.
In an experimental cross between Meishan and Dutch Large White and Landrace lines, 785 F2 animals with carcass information and their parents were typed for molecular markers covering the entire porcine genome. Linkage was studied between these markers and eight meat quality traits. Quantitative trait locus analyses were performed using interval mapping by regression under two genetic models: 1) the line-cross approach, where the founder lines were assumed to be fixed for different QTL alleles and 2) a half-sib model where a unique allele substitution effect was fitted within each of the 38 half-sib families. The line-cross approach included tests for genomic imprinting and sex-specific QTL effects. In total, three genome-wide significant and 26 suggestive QTL were detected. The significant QTL on chromosomes 3, 4, and 13, affecting meat color, were only detected under the half-sib model. Failure of the line-cross approach to detect the meat color QTL suggests that the founder lines have similar allele frequencies for these QTL. This study provides information on new QTL affecting meat quality traits. It also shows the benefit of analyzing experimental data under different genetic and statistical models. 相似文献
15.
A genome scan to detect QTL influencing growth and carcass-related traits was conducted in a Charolais x Holstein crossbred cattle population. Phenotypic measurements related to growth and carcass traits were made on the 235 second-generation crossbred males of this herd (F2 and reciprocal backcrosses), which were born in 4 consecutive annual cohorts. Traits measured in vivo were related to birth dimensions, growth rates, and ultrasound measurements of fat and muscle depth. The animals were slaughtered near a target BW of 550 kg, and a wide range of postmortem traits were measured: visual assessment of carcass conformation and carcass fatness, estimated subcutaneous fat percentage, weights of kidney knob and channel fat, and weights of carcass components after commercial and full-tissue dissections. The whole population, including grandparents, parents, and the crossbred bulls, was genotyped initially for 139 genome-wide microsatellite markers. Twenty-six additional markers were subsequently analyzed to increase marker density on some of the chromosomes where QTL had been initially identified. The linear regression analyses based on the 165 markers revealed a total of 51 significant QTL at the suggestive level, 21 of which were highly significant (F-value >or=9; based on the genome-wide thresholds obtained in the initial scan). A large proportion of the highly significant associations were found on chromosomes 5 and 6. The most highly significant QTL was localized between markers DIK1054 and DIK082 on chromosome 6 and explained about 20% of the phenotypic variance for the total bone proportion estimated after the commercial dissection. In the adjacent marker interval on this chromosome, 2 other highly significant QTL were found that explain about 30% of the phenotypic variance for birth dimension traits (BW and body length at birth). On chromosome 5, the most significant association influenced the lean:bone ratio at the forerib joint and was flanked by markers DIK4782 and BR2936. Other highly significant associations were detected on chromosomes 10 (estimated subcutaneous fat percentage), 11 (total saleable meat proportion), 16 (prehousing growth rate), and 22 (bone proportion at the leg joint). These results provide a useful starting point for the identification of the genes associated with traits of direct interest to the beef industry, using fine mapping or positional candidate gene approaches. 相似文献
16.
Most QTL detection studies in pigs have been carried out in experimental F(2) populations. However, segregation of a QTL must be confirmed within a purebred population for successful implementation of marker-assisted selection. Previously, QTL for meat quality and carcass traits were detected on SSC 7 in a Duroc purebred population. The objectives of the present study were to carry out a whole-genome QTL analysis (except for SSC 7) for meat production, meat quality, and carcass traits and to confirm the presence of segregating QTL in a Duroc purebred population. One thousand and four Duroc pigs were studied from base to seventh generation; the pigs comprised 1 closed population of a complex multigenerational pedigree such that all individuals were related. The pigs were evaluated for 6 growth traits, 7 body size traits, 8 carcass traits, 2 physiological traits, and 11 meat quality traits, and the number of pigs with phenotypes ranged from 421 to 953. A total of 119 markers were genotyped and then used for QTL analysis. We utilized a pedigree-based, multipoint variance components approach to test for linkage between QTL and the phenotypic values using a maximum likelihood method; the logarithm of odds score and QTL genotypic heritability were estimated. A total of 42 QTL with suggestive linkages and 3 QTL with significant linkages for 26 traits were detected. These included selection traits such as daily BW gain, backfat thickness, loin eye muscle area, and intramuscular fat content as well as correlated traits such as body size and meat quality traits. The present study disclosed QTL affecting growth, body size, and carcass, physiological, and meat quality traits in a Duroc purebred population. 相似文献
17.
Abstract The data on breeding and performance records (3830) of 1134 Lohi ewes kept at an Institutional Livestock Experiment Station, Okara in Punjab province during the period from 1972 through 2001 were used to study the influence of some non-genetic factors such as year and season of birth/lambing, age and weight at first service sex of lamb born, birth type, age of dam on various reproductive traits. The age of ewes at first service averaged 615.6±8.2 days and was not significantly affected by the year and season of birth of the ewes. The ewes born during spring season had comparatively low (613.6±7.9 days) age at first service than autumn born (617.5±9.8 days). The type of birth did not significantly influence age at first service. The least squares mean for the weight at first service was 42.10±0.24 kg and was significantly ( P<0.01) influenced by the ewe's year and season of birth. The spring-born ewes were heavier (42.3±0.3 kg) at first service than autumn-born ewes (41.9±0.3 kg). The weight at first service was also significantly affected by the age at first service. The type of birth did not significantly influence weight at first service. The number of services per conception averaged 1.29±0.03 and varied significantly ( P<0.01) between seasons. The number of services per conception was higher (1.37±0.02) in ewes bred during autumn than those bred in spring (1.16±0.06). The effects of years and weight at service on the number of services per conception were non-significant. The number of services per conception significantly increased with advancing age. Mean gestation period was 152.31±0.08 days and it was significantly affected by the years and seasons of lambing and the age of the ewe at lambing. However, gestation length was not significantly affected due to birth type and sex of the lamb born. 相似文献
18.
A Bayesian method was developed to handle QTL analyses of multiple experimental data of outbred populations with heterogeneity of variance between sexes for all random effects. The method employed a scaled reduced animal model with random polygenic and QTL allelic effects. A parsimonious model specification was applied by choosing assumptions regarding the covariance structure to limit the number of parameters to estimate. Markov chain Monte Carlo algorithms were applied to obtain marginal posterior densities. Simulation demonstrated that joint analysis of multiple environments is more powerful than separate single trait analyses of each environment. Measurements on broiler BW obtained from 2 experiments concerning growth efficiency and carcass traits were used to illustrate the method. The population consisted of 10 full-sib families from a cross between 2 broiler lines. Microsatellite genotypes were determined on generations 1 and 2, and phenotypes were collected on groups of generation 3 animals. The model included a polygenic correlation, which had a posterior mean of 0.70 in the analyses. The reanalysis agreed on the presence of a QTL in marker bracket MCW0058-LEI0071 accounting for 34% of the genetic variation in males and 24% in females in the growth efficiency experiment. In the carcass experiment, this QTL accounted for 19% of the genetic variation in males and 6% in females. 相似文献
19.
Chinese Erhualian boars have dramatically smaller testes, greater concentrations of circulating androgens, and fewer Sertoli cells than Western commercial breeds. To identify QTL for boar reproductive traits, testicular weight, epididymal weight, seminiferous tubular diameter at 90 and 300 d, and serum testosterone concentration at 300 d were measured in 347 F(2) boars from a White Duroc x Chinese Erhualian cross. A whole genome scan was performed with 183 microsatellites covering 19 porcine chromosomes. A total of 16 QTL were identified on 9 chromosomes, including 1% genome-wide significant QTL for testicular weight at 90 and 300 d and seminiferous tubular diameter at 90 d on SSCX, and for epididymal weight and testosterone concentration at 300 d on SSC7. Two 5% genome-wide significant QTL were detected for testicular weight at 300 d on SSC1 and seminiferous tubular diameter at 300 d on SSC16. Nine suggestive QTL were found on SSC1, 2, 3, 5, 7, 13, and 14. Chinese Erhualian alleles were not systematically favorable for greater reproductive performance. This study confirmed the previous significant QTL for testicular weight on SSCX and for epididymal weight on SSC7, and reported QTL for seminiferous tubular diameter and testosterone concentration at the first time. The observed different QTL for the same trait at different ages reflect the involvement of distinct genes in the development of male reproductive traits. 相似文献
20.
The objective of this research was to identify chromosomal regions harboring QTL affecting reproduction in pigs. A three-generation resource population was developed by crossing low-indexing pigs from a randomly selected control line (C) with high-indexing pigs of a line selected for increased index of ovulation rate and embryonic survival (I). Differences between Lines I and C at Generation 10 were 6.7 ova and 3.3 fetuses at 50 d of gestation and 3.1 fully formed and 1.6 live pigs at birth. Phenotypic data were collected on F2 females, born in three replicates, for ovulation rate (n = 423), age at puberty (n = 295), litter size (n = 370), and number of nipples (n = 428). Litter-size data included number of fully formed, live, stillborn, and mummified pigs. Grandparent, F1, and F2 animals were genotyped for 151 microsatellite markers distributed across all 18 autosomes and the X chromosome. Genotypic data were available on 423 F2 females. Average spacing between markers was 19.3 Kosambi centimorgans. Calculations of logarithms of odds (LOD) scores were by least squares, and fixed effects for sire-dam combination and replicate were included in the models. Genome-wide significance level thresholds of 5% and 10% were calculated using a permutation approach. There was evidence (P < 0.05) for QTL affecting ovulation rate on SSC9, age at puberty on SSC7 and SSC8, number of nipples on SSC8 and SSC11, number of stillborn pigs on SSC5 and SSC13, and number of fully formed pigs on SSC11. There was evidence (P < 0.10) for additional QTL affecting age at puberty on SSC7, SSC8, and SSC12, number born live on SSC11, and number of nipples on SSC1, SSC6, and SSC7. Litter size is lowly heritable and sex-limited. Therefore, accuracy of selection for litter size may be enhanced by marker-assisted selection. Ovulation rate and age at puberty are laborious to measure, and thus marker-assisted selection may provide a practical and efficient method of selection. 相似文献
|